PHYSICAL REVIEW E 107, 064135 (2023)

Stochastic thermodynamics of opinion dynamics models
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We show that models of opinion formation and dissemination in a community of individuals can be framed
within stochastic thermodynamics from which we can build a nonequilibrium thermodynamics of opinion
dynamics. This is accomplished by decomposing the original transition rate that defines an opinion model into
two or more transition rates, each representing the contact with heat reservoirs at different temperatures, and
postulating an energy function. As the temperatures are distinct, heat fluxes are present even at the stationary
state and linked to the production of entropy, the fundamental quantity that characterizes nonequilibrium states.
We apply the present framework to a generic-vote model including the majority-vote model in a square lattice
and in a cubic lattice. The fluxes and the rate of entropy production are calculated by numerical simulation and

by the use of a pair approximation.
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I. INTRODUCTION

Opinion dynamics [1,2] deals with the time evolution of
the number of individuals in each of the various groups that a
community is divided by reason of the opinion of the individ-
uals concerning a given subject. The opinion of an individual
changes with time under the influence of other individuals or
by the influence of an external agent. The repeated action of
these influences leads to a collective behavior of the individu-
als in relation to the opinions, which is the phenomenon to
be explained by the opinion models. The modeling can be
accomplished by expressing these influences in terms of rules
that govern the opinion dynamics.

There are various possibilities of setting up opinion models
according to the way one represents the opinion [3,4]. In view
of the contingent character of the influences, we consider
models with dynamics rules that have a stochastic nature.
A way of representing the stochastic nature of the opinion
dynamics is to consider it to be a continuous-time Markovian
process [5—7] defined on a space of opinions. This means to
say that opinion models are defined once we are given the
rates of the transition from an opinion state of the whole
community to other possible opinion states.

Here we focus on models with a discrete space of opinions
in which individuals, or agents, are located in space at sites
whose collection forms a lattice of sites. To each individual,
or to each site, one associates an opinion variable, understood
as a random variable, that takes certain discrete numerical
values, each corresponding to a certain opinion regarding the
issue being discussed. The equation that governs the time evo-
lution of the opinion probability is the master equation which
is set up from the transition rates.

Many models fall within this framework. We mention the
voter model [8,9] in which at each time step an individual
takes the opinion of one of its neighbors chosen at random.
The noise voter model, or linear Glauber model, which we call
simply linear model, is a modification of the voter model such
that the individual takes the opinion of the chosen neighbor
with a certain probability and the opposite opinion with the
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complementary probability [10—13]. The original voter model
was generalized to the case where the individual takes the
opinion of two or more neighbors chosen randomly as long
as they have a common opinion [14,15]. In the Sznajd model
a pair of neighboring individuals with the same opinions con-
vince all its neighbors to their opinion [16]. The voter model
was generalized to the case in which each individual adopts
three opinions; for instance, leftist, centrist, and rightist [17].

The majority-vote model [18] is based on a majority rule.
An individual takes the opinion of the majority of its neigh-
bor with a certain probability and the opposite opinion with
the complementary probability. If there is a tie, the individ-
ual takes either opinion with equal probability. This model
displays a critical phase transition from a disordered to an
ordered state that belongs to the universality class of the Ising
model, in spite of being a nonequilibrium model in the sense
that its transition rate lacks detailed balance. It was originally
defined in the square lattice but was applied to other regular
lattices [19-22] as well as to small world lattices [23], to
random graphs [24,25], and to complete graphs [26]. When
inertia is incorporated to the majority-vote model, it exhibits
a discontinuous phase transition [27-29]. A version of the
majority-vote model with three states was also conceived [30].

A generic-vote vote model with two states has been con-
sidered with the restriction that the change of opinion of
an individual depends only on the sum of the opinions in
a neighborhood [31]. In a square lattice this model has two
parameters. Depending on the relation between these param-
eters, the generic-vote model reduces to the voter model, the
linear model, and the majority model. In general the transition
rates do not obey detailed balance and the generic-vote model
is a nonequilibrium model. However, for a special relation
between the two parameters, it reduces to the Glauber model
[32,33].

The Glauber model is distinct from the other models de-
scribed above in the sense that its transition rate obeys detailed
balance from which follows that the stationary probability
distribution is the Gibbs probability distribution, which is
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proportional to e #£, where E is the energy function. It
describes a system in thermodynamic equilibrium at a tem-
perature inversely proportional to 8. For the Glauber model,
E is the Ising energy function and the model defined by the
equilibrium Gibbs probability distribution is known as the
Ising model and can be interpreted as an opinion model with
two states. In fact, such an interpretation was put forward as a
sociological model and the two ordered states displayed by the
Ising model were interpreted as the polarizations of opinions
found in society [34].

A similar interpretation was given to the Ising model with
an approach that was supplemented by a thermodynamic basis
[35,36]. Accordingly, the free energy associated to the Ising
model was interpreted as the dissatisfaction function and the
principle of minimum free energy as a principle of minimum
dissatisfaction. The energy function of the Ising model was
interpreted as a measure of the degree of convergence or
divergence, that is, of agreement or conflict. Although these
interpretations are appealing, they refer to equilibrium ther-
modynamics and cannot be extended to include the models
presented above, which cannot be found in thermodynamic
equilibrium as they do not obey detailed balance.

The statistical mechanics that has been used as the frame-
work to opinion dynamics [2], which encompasses the master
equation as the central evolution equation, emphasizes the
probabilistic aspects but lacks a thermodynamics perspective
as it makes no reference to energy nor to entropy, the two
main concepts of thermodynamics, and much less to their
relationship.

To circumvent these problems, we propose a framework
to the models of opinion dynamics based on stochastic ther-
modynamics [37—41], which is capable of describing systems
out of thermodynamics equilibrium as well as system in ther-
modynamic equilibrium. The stochastic thermodynamics is
appropriate for systems described by a master equation and
can be understood as an enlargement of the statistical me-
chanics for systems out of thermodynamic equilibrium. This
approach provides in addition an expression for the production
of entropy, a keystone quantity that characterizes systems out
of thermodynamic equilibrium.

The central and crucial idea that we use in the analysis of
the models for opinion dynamics rests on the decomposition
of the transition rate into several mutually exclusive transition
rates. Each of these transition rates describes the contact with
a heat reservoir at a certain temperature. The whole transition
rate thus describes the contact with various heat reservoirs
at distinct temperatures. As the temperatures are different,
the transition rate does not obey detailed balance, and as a
consequence, in the stationary state the system will not be
found in thermodynamic equilibrium. It is worth pointing out
that the idea of using a heat reservoir at distinct temperatures
is not new and has been used before. However, the refer-
ence to a heat reservoir was usually nominal and lacks the
crucial Clausius relation between entropy, heat, and reservoir
temperature.

II. DECOMPOSITION OF THE TRANSITION RATES

We consider a community of individuals, each holding
an opinion concerning a particular issue. The individuals are

immobile and are located at the sites of a lattice. To properly
describe the opinion of the whole community, we attach to
each site an opinion variable o; that takes one of several
possible numerical values, each associated to an opinion con-
cerning the issue at hand.

The opinion state, which is the collection of the opinions
of the individuals, is denoted by o. As time goes by, the
opinion state changes according to a stochastic process. The
rate at which the state changes from o to ¢’ is denoted by
W (o', o), which is the central quantity that defined a model
of opinion dynamics. The probability P(o,t) of finding the
whole community in a given opinion o at time ¢ obeys the
master equation

dP = w "P(c')—W(a’',o)P 1
E (0)—2{ (0,09)P(0’) =W(o',0)P(0)}. (1)

’

The transition rate W is decomposed into a certain number
of transition rates W,

W(o,0)=> Wo.0). )
14

each holding the following property. Given o and o', and if
Wi (o, 0’) is nonzero, then W, (o, o) will vanish necessarily
for £ # k. The possible pairs of configuration (o, ¢’) are par-
titioned into a certain number of mutually exclusive subsets,
and one associates to each subset £ a transition rate W, (o, o)
meaning that this transition vanishes if (o, o) does not belong
to the subset £.

Another property of the rate W, is its association to an
energy function. To express this property one starts by pos-
tulating an energy function E (o), which may be called the
opinion function. Then the transition rate is set up in such a
way that

/
Welo', o) _ e IE@)~E@)1/; 3)
We(o,0')

where 0, is a parameter. We remark that this property is
possible if the process described by the rate W, has its reverse,
or in other terms, if Wy(c”, o) is nonzero so is Wy (o, o’).

Let us suppose that the whole transition rate W is com-
posed by just one transition of the type (3). Then it will hold
the property

W(o’ '
(00) _ o 1E@)—E@))/6 )
W(o,o’)

If we define the probability distribution
1
P — _pE(0)/0 , 5
0(0) = ~e )

we see that Py is the stationary solution of the master equation,
which can be verified by the use of the property (4) which
is the detailed balance condition. The distribution (5) is the
Gibbs distribution, which describes a system in thermody-
namic equilibrium at a temperature 6.

The whole transition rate W that fulfills the detailed
balance condition (4) can also be understood as the one ap-
propriate to describe a system in contact with a heat reservoir
at a temperature 6. When W is a sum of terms W,, the detailed
balance condition is not satisfied. At first sight the property (3)
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seems to be the detailed balance condition but it is not because
6, in (3) is distinct for distinct £. However, we may interpret W
as describing a system in contact with several heat reservoirs,
each being at a given temperature ;. In the long run, when
the steady state is reached, the system will not be found in the
equilibrium state since the detailed balance is not satisfied,
unless all temperatures are the same.

III. STOCHASTIC THERMODYNAMICS
A. General

The time derivative of the average energy U = (E (o)) is
obtained by multiplying the master equation (1) by E (o) and
summing in o. The result is

dU
= o, 6
7 (6)

o= "o, (7)
t

@, = Y [E(c') — E(0)IWi(0',0)P(0). ®)

oo’

The quantity @, is understood as the flux of energy from the
£th heat reservoir fo the system, and @ is the total flux of
energy from the reservoirs to the system.

The entropy of the system is defined by

S=— ZP(G)ln P(o), ©))

and depends on time. Its time derivative can be written by the
use of the master equation (1) in the following form:
ds

—=0-Y, 10
7 (10)

n:an, \y=Z\y5, (11)
14 4

where
1= % ;;{Wz((h o )P(c") — Wi(o', 0)P(0)}

W, (o, 0c")P(c’) (12)
Wi(o’, 0)P(c)’
We(o', o)

v, = ZW[(U ,0)P(o)1n Wi o

oo’

13)

The quantity I, is the rate of the entropy production due to
process £ and is a non-negative quantity, and I is the total
rate of entropy production. The quantity W, is interpreted as
the flux of entropy from the system to the reservoir £, and ¥
is the total flux of entropy from the system to the reservoirs.

Next we use the property (3) to write the flux of entropy
Y, in the form

1
V== W OP@IEE) ~E@). (14)

Comparing this expression with (8), we reach the following
relation between the flux of entropy and the flux of energy

related to the reservoir £,
Yy = ——, (15)

It is worth making the following comment concerning the
stationary state. In this state dU /dt = 0 and dS/dt = 0, from
which follows that

> =0, (16)
¢
and hence

)
nz_ze—;. (17)
4

Although the sum of all fluxes of energy vanishes in the sta-
tionary state, it does not mean that the sum on the right-hand
side of (17) will vanish. This happens because the tempera-
tures are distinct from each other. Thus there is a continuous
production of entropy and the system is out of thermodynamic
equilibrium. The equilibrium will be reached if all tempera-
tures are the same in which case the right-hand side of (17)
vanishes. In this case the production of entropy vanishes and
the system will be found in equilibrium.

A special type of transition rate could also be included
in the decomposition (2) of W (o, ¢’). This type of transition
rate, which we label by £ = 0 is the one such that Wy(o, 0) =
Wo(o’, o). The corresponding contribution to the production
of entropy is

/

Iy = % ; Wo(o, 0 ){P(c’) — P(c)} In %, (18)
but the corresponding contribution to the flux of entropy van-
ishes. We assume that the variation in energy associated to this
special type of transition rate vanishes, E(c’) = E (o), which
is consistent with the relation (4). Thus, the contribution to the
flux of energy also vanishes.

The relation (15), which is a fundamental result coming
out of the present approach, is identified as the essential and
central relation of thermodynamics introduced by Clausius.
However, the Clausius relation connects the entropy to the
heat flux and not to the energy flux. To conform with Clau-
sius we proceed as follows. The energy function E (o) that
we have postulated and which appears in the definition (3)
of the transition rates W, is replaced by the function H (o),
which is E (o), understood as the internal energy, subtracted
from the potential energy L(o ) due to external forces, that is,
H=FE-L.

The time evolution of U = (E) is given by equations (6),
(7), and (8), and that of (L) is given by

d(L
C(ﬁ) = PN — Z ‘I’va (19)
4

O =) [L(e) — L)W', 0)P(o).  (20)

Using the same reasoning above we conclude that the entropy
flux W, from the system to the reservoir £ is now given by

V= ——, 21
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where
Ol = o, — PP (22)

Writing @, = &} + & we see that this equation can be
understood as the conservation of energy and CD(} as the flux
of heat. The first term is the variation of energy of the system
and the last is the variation of the external potential per unit
time, or power. From now on we treat the cases such that L
can be set to zero and the flux of heat is identified as the flux
of energy.

B. One-site transitions

We consider here models such that at each time step just
one individual changes its opinion. The individuals are located
at the sites of a lattice and we suppose that each individual
holds an opinion for or against a particular issue. The opinion
variable o; then takes two values which we choose to be +1
or —1 according to whether the individual at the site i of
the lattice is for or against the issue at hand, respectively.
Thus the dynamics is defined by the transition rate w;(o ") that
the individual at i changes its opinion from the present to
the opposite opinion, that is, from o; to —o;, and the master
equation reads

d . .
5P = > (wi(eHP(o') — wia)P(o)},  (23)

where o stands for the state obtained from o by changing o;
to —o;. The one-site transition rate is decomposed in the form

wi(0) = Y wei(o), (24)
4
where wy; holds the property
wil0) _ e -E@N6 (25)
wei(0")

where E (o) is the postulated energy. The transition rate
wy;(0) holds the property mentioned just below the equa-
tion (2). That is, if o is a state such that wy;(o) is nonzero,
then wy; (o) will vanish for £ # k.

The time variation of the average energy U is given by (6)
and (7), where now the energy flux from the reservoir ¢ reads

o, =Y Y [E(') — E@)lwu(@)P(@).  (26)

o

which can be written as an average

@ =Y ([E(c') — E(0)]w(o)), 27)
and can thus be obtained from numerical simulations.
The time variation of the entropy is given by (10) and (11),

where now the rate of entropy production due to the process £
is

M, = % Z Xij{we,-(a")P(a") — w0 )P(e))

) wei(o')P(o")
n —

, 28
wei(0)P(0) %)

and is a non-negative quantity, and the flux of entropy ¥, from
the system to the reservoir £ is

W, =YY wulo)P(o)In w‘f(a.) . (29)

wy;(a?)

o

Using the relation (25) we reach again the result (15), namely,
v, = —®,/0,. We remark that the W, given by (29) can be
written as the following average:

W, = Z<wei(0)ln ;‘)”—(:)> (30)

IV. CONTACT WITH ONE HEAT RESERVOIR

A transition rate w; that leads to the Gibbs equilibrium
probability distribution

1
Py(o) = zeE(“W 31)

can be constructed by the use of the detailed balance condition

wi@) _ PO _ e
wi(c’)  Po(o)
The most general form of w; satisfying the detailed balance
condition is

(32)

wi(o) = ki(o)eF ", (33)

where k;(0%) = k;(o), that is, k;(c') does not depend on o;. If
we define «;(0;) by

@i(0) = ki(o)[eE 0 4 @], (34)

we see that the transition rate can be written in the form

hE(Gl)_E(U)}» (35)
26

where «;(0), as happens to k;(o), does not depend on o,
that is, a;(6?) = «;(0), which is also a general form of w;(o)
satisfying the detailed balance condition. Since this transition
leads to the equilibrium Gibbs distribution, we may interpret it
as describing the contact with a heat reservoir at a temperature
0.

If the energy function is

E(0)=-) o), (36)
()]

w;(o) = %a,-(a)[l — tan

where the summation is over all nearest-neighbor pairs of
sites, then

wi(o) = %a,-(a)|:l — o, tanh é Za,»+5], (37)
8

where the summation is over the nearest-neighbor sites of
site .

When «; does not depend on o, that is, when it is a
constant,

1
wi(o) = %[1 ~ ojtanh & ng}, (38)
)

and it is called the Glauber transition rate because Glauber
used it to describe the dynamics of the one-dimensional Ising
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TABLE I. Transition rates of the generic-vote model in a
square lattice. The transition rates depend on the possible values
4,2,0, —2, —4 of the sum of the opinion variables of the neighboring
individuals.

0p —> —0y 4 2 0 -2 —4
1— -1 A=p) 30-¢9) 3 30+q 30+p)
-1—-1 +p 1049 1 1d-¢9 1d-p

model. In this case the expression (38) can be simplified and
reads

o 4

wi(@) = 3[1=Zoioi +oun] (39
2 2

where y = tanh2/6. In fact, this is the original expression

used by Glauber in 1963 [32]. That given by (38) was intro-

duced later on by Suzuki and Kubo in 1968 [33].

V. GENERIC-VOTE MODEL
A. General

We apply the results of the previous section to the generic-
vote model introduced in Ref. [31]. In this model the change
of opinion of an individual depends only on the sum of the
opinions of the nearest-neighbor individuals. We consider
here a square lattice in which case the number of nearest
neighbors is four, and the possible values of the sum are
4,2,0, —2, —4. The rates at which the opinion changes are
given in Table I.

We will consider the transition rate with reference to a
certain site labeled 0. In addition, the four nearest neighbors
of site O are labeled 1, 2, 3, and 4, which are respectively on
the right, above, left, and below the site zero. The transition
rate related to the site zero is assumed to be of the form

w=1(1-o00f), (40)

where f is a function of the opinion variables associated to the
four nearest neighbors of site 0. Notice that we are dropping
the site index of w and f. For the generic-vote model f is
given by [31]

f = s(a + bo10,0304), 41
s =01+ 0y + 03 + 04, “42)

where a and b are parameters related to p and g by
a=3(p+2q). b=3(p—2q), (43)

or p=4(a+b)and g = 2(a — b).
Replacing these relations in (41), we write

f=q& +pé&, 44)

where
& = 2(1 — 01020304), (45)
& = (1 +01020304). (46)

Notice & takes the values 1 and —1 for s equal to 2 and —2,
and the value zero otherwise; and that &, takes the values 1
and —1 for s equal to 4 and —4, and the value zero otherwise.

The transition rate w is invariant under the inversion of
all variables o;, which amounts to say that f changes sign
under the inversion transformation. The expression (41) is
the most generic form for f obeying this invariance [31]. As
shown in Table I, the transition rate w for the generic-vote
model depends only on the four nearest-neighbor variables
only through their sum s.

The decomposition of the transition rate w is carried out
by postulating an energy function, which we choose to be that
given by (36). The decomposition is carried out in such a way
that each component is related to a transition rate associated
to a certain reservoir. The transition rate is written as the sum
of three transition rates,

w=go+g& + &, 47
two of them being of the type (37),
1 N
g1 = EO{1|:1 — op tanh a], 48)
1 s
82 = 5062 |:1 — 0 tanh E]’ (49)

which describe the contact with heat reservoirs at temper-
atures 0; and 6,, respectively. The third component g is
chosen not to depend on oy so that go(o’) = go(c). We write
8o = ap/2.

The first process associated to the transition rate g, which
describes the contact with the first reservoir at temperature
01, occurs when s = +2; and the second process associated
to the transition rate g,, which describes the contact with the
second reservoir at temperature 6,, occurs when s = +4; and
we assume that the process labeled zero occurs when s = 0.
These assumptions are accomplished by setting «; equal to 1
for s £ 2, and zero otherwise; «; equal to 1 for s £ 4, and zero
otherwise; and oy equal to 1 for s = 0, and zero otherwise.

If we consider the transition 1 — —1 and s = 2, then
w = g; = (1 —tanh 2/6,) which, according to Table I, must
be equal to (1 — ¢)/2, and we conclude that

2
g = tanh —. (50)
01
Analogously, if we consider the transition 1 — 1 and s = 4,
then w = g, = (1 — tanh 4/6,), which, according to Table I,
must be equal to (1 — p)/2, and we conclude that

p = tanh i oy
)

The relations of the parameters p and g with the tempera-
tures 6, and 6, given by (50) and (51), can also be obtained
as follows. We start by writing the following equivalent forms
of g; and g;:

! 1 st h 2 (52)
= — — 0g— tanh — |,
&1 20lI 2 6,
L 1 St h 4 53)
= — — 09— tanh — |,
&2 2“2 004 o
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0 L L L
0 0.5 q 1
FIG. 1. Phase diagram of the generic-vote model in a square
lattice in the plane ¢ =tanh2/0, and p = tanh4/6,. The dashed
lines correspond to majority-vote (M) model, Glauber (G) model,
model K, and linear (L) model. The small full circle (V) corresponds
to the voter model. Below the line G, 6, > 6;, and above it 6, < 0;.
Along the line G, 6, = 6. The solid line is the critical line separating
the ordered state, above the line, from the disordered state, below
the line. The critical point of the models K, G, and M occur at
q. = 0.576(2), q. = \/5/2, and g, = 0.850(2) [18], respectively.

and by replacing them in (47). The result for w is of the form
(40) with f given by

Fea S anh 2+ tanh = (54)
= oy = tanh — + ap— tanh —,
e T g,
where we used the relation oy + o + ap = 1. Taking into
account that oy s = 2&; and aps = 4&,, we reach the result

2 4
f = & tanh — + & tanh —, (55)
0, 0,

which compared with (44) leads us to the results (50) and (51).

B. Specific models

Depending on the values of the parameters g and p, several
models are particular cases of the generic-vote model. They
correspond to a certain relation between ¢ and p, and are thus
described by lines in the diagram of Fig. 1. The majority-vote
model [18] is defined by the transition rate

wym = 5(1 = yaoS), (56)

where y is a parameter and S(s) is a function of s that takes
the values —1, 0, and + 1, when s <0, s =0, and s > 0,
respectively. We see that the transition rate w reduces to the
majority-vote transition rate when p = g = y or equivalently
when a = —3b = 3y /8. The temperatures are related to y by

4
CIn(1+y)/(1—y)

6 (57)

and 92 = 291.
When b = 0, the model reduces to the linear model [13],
defined by the transition rate

wy, = %(1 — aoys). (58)

In this case p = 2g = 4a, and

4
o1 = In(1 + 2a)/(1 — 2a)’ (59)
6 8 (60)

~ In(1 +4a)/(1 — 4a)’
If b = 0 and in addition a = 1/4, then the model reduces
to the voter model [9], defined by the transition rate
wy = %(1 — ioos). 61)
Inthiscase p=1,9 =1/2,
_ 4
In3’

and 6, — 0. The vanishing of 6; is a consequence of the fact
that when s = +4, the reverse transition rate vanishes.
The Glauber transition rate is given by

01 (62)

wg = %(1 — o0y tanh g) (63)

and describes the contact of a system with energy function
(36) with a reservoir at temperature 6. Using the relation

tanh > = & tanh > + & tanh (64)
nn — = nn — nn —
al P 1 tal 9 2 la 9,

it follows that the generic-vote transition rate reduces to the
Glauber transition rate if ¢ = tanh 2/6 and p = tanh 4/6, that
is,

0, =6, =86. (65)
From this relation it follows that p and ¢ are connected by
__2
=i
As an example of a model whose fluxes of energy are
the opposite of the majority vote model we define a model
corresponding to a temperature 6, smaller than 6;. We choose

6, = 61/2, and call it model K. Using (50) and (51), the
relation between p and g for model K is

p (66)

4q(1 2
_ 4 +q) 67)
1464 +q*

VI. FLUXES OF ENERGY AND ENTROPY PRODUCTION

A. Square lattice

There are two quantities that interest us here which are
the fluxes of energy and the rate of entropy production in the
stationary state. From formula (27), we see that there is no
flux of energy due to the zero process because in this case the
energy E remains the same. The energy fluxes per site due to
the first and second processes are

¢2 = 2(00582), (68)

because E (%) — E (o) = 20ps. In the stationary state the rate
of entropy production per site is given by

1 = 2(00sg1),

=—0 =7 (69)
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0.10

M

0.05]

2 G

0
L

-0.05} K
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FIG. 2. Flux of energy ¢, from the second to the first reservoir
as a function of ¢g for the majority-vote model (M), for the linear
model (L), and for the model K. For the Glauber model (G) the flux
vanishes. The critical points of models M and K occur at the inflexion
point and are indicated by small full circles. The triangle represents
the flux of energy for the voter model. The results were obtained by
numerical simulations on a square lattice with 100 x 100 sites.

and taking into account that ¢; + ¢» = 0, we may write

1 1
P=e(y5) 70

The quantity ¢, represents the flux of energy that traverses
the system from the second to the first reservoir. Taking into
account that P > 0, if 6, > 6}, then ¢, > 0 and energy flows
from the second to the first reservoir. This happens to the
models with parameters p and ¢ in the region below the line
G of the diagram of Fig. 1. Above this line 8, < 6, and since
P > 0, then ¢, < 0 and energy flows effectively from the first
to the second reservoir as happens to model K and the linear
model. Along the line G, the energy flux ¢, vanishes.

From Eq. (68), we see that the energy fluxes are averages
and can thus be calculated from numerical simulations. We
have simulated the majority-vote model, the model K, and
the linear model in a square lattice with sizes 100 x 100 sites
with periodic boundary conditions. The fluxes of energy as
a function of g are shown in Fig. 2. It is positive for the
majority-vote model, and negative for the model K and for the
linear model as expected. From the flux of energy, the rate of
the production of entropy is determined from Eq. (70) and is
shown in Fig. 3. The entropy production of the majority-vote
model in a square lattice has already been calculated in a direct
manner by the use of Eq. (30) [42]. This equation has also
been used to calculate the production of entropy in other mod-
els and as a means of characterizing nonequilibrium phase
transitions [43].

The generic-vote model is found to undergo a phase transi-
tion [31] from a disordered state characterized by (o;) = 0,
occurring for small values of ¢ and p, to an ordered state
characterized by (o;) # 0, occurring at higher values of g
and p, as shown in Fig. 1. When one moves from inside
the ordered state region to the transition line, (o;) vanishes
continuously. The criticality behavior of the model is reflected
as a singularity in ¢ and P at the inflexion points of these

L
0.02f
M
P !
0.01F
K
0 1
0 0.2 04 0.6 0.8 1
q

FIG. 3. Rate of entropy production P as a function of g for the
majority-vote model (M), for the linear model (L), and for the model
K. The critical points of models M and K occur at the inflexion
point and are indicated by small full circles. The curve L diverges at
q = 0.5. The results were obtained from the fluxes shown in Fig. 2
by the use of formula (70).

quantities which occur at g. = 0.850(2) for the majority-vote
model [18] and g, = 0.576(2) for the model K. The linear
model becomes critical at the voter point occurring at g = 0.5.
At this point, ¢ is finite but P diverges.

It should be pointed out that for finite lattices the slope
at the inflexion point of the fluxes and the rate of entropy
production is finite. As one increases the size of the lattice,
the slope becomes greater and diverges in the thermodynamic
limit, characterizing a true singularity [42]. As we shall see
below, the same is true for the model defined in a cubic lattice.

B. Cubic lattice

The generic-vote model can also be defined in a cubic
lattice. In this case it is necessary to introduce three heat reser-
voirs to appropriately describe the transition rates. The six
nearest-neighbor sites to a central site 0 are labeled 1,2,3,4,5,6
and we denote by s the sum s = 01 + 02 + 03 + 04 + 05 + 06
and by 61, 6,, and 05 the temperatures of the three reservoirs.
The transition rate is

w=go+g+8 +8s (71
where go = /2, and
g1 = 3(ay — 00k1q), (72)
g2 = (o — 0o2p), (73)
g3 = 3(a3 — 0o&sr), (74)

where ¢ = tanh 2/6,, p = tanh4/0,, r = tanh 6/65; and ¢ =
1 when s = 0, and zero otherwise; «; = 1 when s = £2, and
zero otherwise; o, = 1 when s = +4, and zero otherwise;
and o3 = 1 when s = £6, and zero otherwise; whereas &
takes the values 1 and —1 for s equal to 2 and —2, and zero
otherwise; &, takes the values 1 and —1 for s equal to 4 and
—4, and zero otherwise; and &; takes the values 1 and —1 for
s equal to 6 and —6, and zero otherwise.
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FIG. 4. Fluxes of energy ¢, ¢, and ¢ as functions of g for the
majority-vote model in a cubic lattice. The critical transition point
occurs at the inflexion point of the curves and are indicated by small
full circles. The results were obtained by numerical simulations on a
cubic lattice with 20 x 20 x 20 sites.

The fluxes of energy per site are given by

¢¢ = 2{0058e), (75)
and the rate of entropy production per site is given by
¢ P 3
P=—-——- —. 76
61 6, 6 (76)

The generic-vote model on the cubic line, defined by the
transition rates above, reduces to the majority-vote model on
the cubic lattice when p = ¢ = r, which implies that the tem-
peratures are related by 6, = 6,/2 = 65/3. We have simulated
the majority-vote model on a cubic lattice with 20 x 20 x 20
sites with periodic boundary conditions. We determined the
three energy fluxes ¢, ¢,, and ¢; in the stationary state and
they are shown in Fig. 4. Within the statistical errors we
verified that ¢; + ¢, + ¢3 = 0. The model displays a crit-
ical phase transition that occurs at the inflexion points of
the fluxes, which we found to be g. = 0.649(2), which is in
agreement with previous a calculation on the location of the
critical point, g. = 0.6474(2) [19].

We have also determined the rate of entropy production P,
which is shown in Fig. 5 and we see that it is in fact positive
although the three fluxes do not have the same sign.

VII. PAIR APPROXIMATION

We solve the master equation (23) by means of a pair
approximation [44]. Denoting by P(o, 02, 03, 04|00) the con-
ditional probability associated to the four neighboring sites of
site zero, the pair approximation consists in writing

P(01, 03,03, 04log) = [ [ P(ailoo), (77)
where P(o;|og) = P(0;, 009)/P(0p). The pair probability is
parametrized as follows:

P(0i,00) = 1[1 +m(0y + 07) + rogoil, (78)

0.03
0.0285
0.0280 | 4
0.021 1
00275 2 0.64 0.66
P . .0 .00
0.01r 1
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

q

FIG. 5. Rate of entropy production P as a function of g for the
majority-vote model in a cubic lattice. The critical transition point is
indicated by a small full circle and does not occur at the maximum of
the curve as can be seen in the inset. The results were obtained from
the fluxes shown in Fig. 4 by the use of formula (76).

where m = (0p) = (0;) and r = (0y0o;). From this expression,

P(a9) = 5(1 + moy). (79)
It is convenient to define the quantities
B e S e e
(1 + m)n-1 (1 —m)n-1
In terms of these quantities we get
(0001 -+~ ) = 5(Ay — By, 8D
(01-+-0n) = 3(Ay + By). (82)

To determine the time evolution of m, we multiply the
master equation (23) by oy and sum in the variables o; after
employing (77) on the right-hand side of (23). The result is

dm
dr
Similarly, we find the time evolution of r, which is

d
d_: = —2r+2a+3(a+b)(As + By) + b(As + By). (84)

A stationary solution of these equations is m = 0 and r the
root of the equation

r=a+3(a+byr*+ brt, (85)

= —m+ 4am + 2b(A3 + B3). (83)

and corresponds to the disordered state. A stability analysis
is obtained by the expansion of the right-hand side of (83)
in powers of m. The solution becomes unstable when the
coefficient of m vanishes, that is, when

4a + 12br* — 8br° = 1. (86)

By inspection we see that the solution of Egs. (85) and (86) is
r=1/3and 27a + 7b = 27/4, or

17p + 20g = 27, (87)

which describes the critical line in the plane p, ¢ that separates
the disordered and ordered states. The critical line ends on
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the voter point p = 1 and ¢ = 1/2. The critical point of the
majority vote model occurs when p = ¢ = 27/37, the Glauber
model when ¢ = 3/5 and p = 15/17, and the model K when
g =0.517246 and p = 0.979710.

Another solution corresponds to the ordered state for which
m # 0. The values of m and r for this solution can be obtained
by solving Eqgs. (83) and (84), which we did numerically.

To determine the energy fluxes we observe that they can be
written in terms of correlations of two and four sites. Using
(51) and (50), we may write g; and g;, given by (52) and (53),
as

g1 = 3(o1 — 0o&1q), (83)

g2 = (o — 0o2p). (39)

We then replace these results in

¢ = 3(¢o — ¢1) = (005(g2 — 81)) (90)
to find

¢ = 5{[00(4€1 — 26) — s(52p — £19))), oD

where we used the relations oy s = 2&; and aps = 4&,. Replac-
ing the expression of &; and &, given by Egs. (45) and (46) in
this equation we find

¢ = $(00501020304 — 57 (b + a01020304)). (92)
It is then straightforward to write ¢ in the form
¢ = 2{00010203) — 2b — 2a(01020304)

—4(a + b){o102) — 2(a + b){o103), (93)

where sites 1 and 3, and 2 and 4 are opposite in relation to
the central site 0. This is accomplished by using symmetric
operations that leave a square lattice invariant.

From the stationary solutions for m and r, calculated
numerically, we have determined the values of (cgo0,03),
(01020304), (0102), and (o703) by the use of (81) and (82).
From these values we have determined ¢ by (93). In the
stationary state ¢; = —¢, so that ¢, = ¢. The flux of energy
¢ is shown in Fig. 6 as a function of g for the majority model,
the model K, and for the linear model. From ¢,, we have
determined the rate of entropy production by (70), which is
shown in Fig. 7 as a function of g for the majority model, the
model K, and for the linear model.

For the Glauber model, our numerical calculations ob-
tained from the pair approximation show that the flux ¢,
vanishes for any value of g. This result shows that this approx-
imation is capable of preserving the detailed balance condition
for the models that hold this property as happens with the
Glauber model.

VIII. CONCLUSION

We have shown that the models of opinion dynamics can
be framed within the stochastic thermodynamics from which
we may construct a nonequilibrium thermodynamics of opin-
ion dynamics. To this end we postulated an energy function,
which we have called the opinion function, which is absent in
the original definition of a model as it is defined by the tran-
sition rate. From the energy function, we defined by the use

0.2
M
0.1
?,
. G
L
K
0.1t
0 02 0.4 0.6 0.8 1
q

FIG. 6. Flux of energy ¢, from the second to the first reservoir
as a function of g for the majority-vote model (M), for the linear
model (L), and for the model K. For the Glauber model (G) the flux
vanishes. The critical points of models V and K occur at the kink
of the curves and are indicated by small full circles. The triangle
represents the flux of energy for the voter model. The results were
obtained from the pair approximation on a square lattice.

of formula (3) the various components of the transition rate
that define the model that we wish to study. Each component
is understood as describing the contact with heat reservoirs at
distinct temperatures. As the temperatures are different from
one another, the system will be in a nonequilibrium state at
the stationary state, which is one of the main features of the
opinion dynamics.

Given a model, we face the problem of finding the energy
function. Here, we have circumvented this problem by pos-
tulating a certain energy function and then determining the
possible transition rates that follow from that energy function.
In the present case we adopted the Ising energy function with

0.04

0.03

0.02r

0.01r

q

FIG. 7. Rate of entropy production P as a function of g for the
majority-vote model (M), for the linear model (L), and for the model
K. For the linear model, P diverges at ¢ = 1/2. The critical points of
models V and K occur at the kink of the curves and are indicated by
small full circles. The results were obtained from the fluxes of Fig. 6
by the use of formula (70), corresponding to the pair approximation
on a square lattice.
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nearest-neighbor interactions, given by (36) and then proved
that it leads to the generic-vote model by using (25).

The idea of using heat reservoirs at distinct temperatures
or effective temperatures to define transition rates leading to
nonequilibrium steady states is not new and has been used
before, for instance, in the analysis of the generic-vote model
[45]. The reference to heat reservoirs or to effective tem-
peratures is usually nominal. Here we justified this idea by
presenting a systematic approach in which a given state of the
system is associated to just one of the heat reservoirs, with a
transition rate describing the contact with the heat reservoir
being given by (3). Our approach leads to the significant
Clausius relation (15) between flux of entropy, flux of heat,
and temperature of the reservoir, that characterizes thermody-
namically the contact of a system with a heat reservoir.

We have applied the approach developed here to nonequi-
librium lattice models with two states that include the
majority-vote model in the square lattice and the cubic lattice.
In the square lattice it suffices to use two heat reservoirs
but in the cubic lattice it is necessary to use three heat

reservoirs to set up the transition rates. We have determined
the fluxes of energy from each reservoir from which we de-
termined the rate of entropy flux. The critical phase transition
from a disordered to an ordered state that takes place in the
models analyzed here is reflected in the fluxes and the pro-
duction of entropy as a singularity occurring at the inflexion
point of these quantities. We have also used a pair approx-
imation in which case the singularity is characterized by a
kink.

The approach proposed here is general and can be applied
to stochastic models as long as their dynamic rules can be
expressed by transition rates that can be decomposed into
transition rates with each one of them describing the contact
with a heat reservoir.
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