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Dynamical phase transition in the occupation fraction statistics for noncrossing Brownian particles
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We consider a system of N noncrossing Brownian particles in one dimension. We find the exact rate function
that describes the long-time large deviation statistics of their occupation fraction in a finite interval in space.
Remarkably, we find that, for any general N > 2, the system undergoes N — 1 dynamical phase transitions
of second order. The N — 1 transitions are the boundaries of N phases that correspond to different numbers
of particles which are in the vicinity of the interval throughout the dynamics. We achieve this by mapping
the problem to that of finding the ground-state energy for N noninteracting spinless fermions in a square-well
potential. The phases correspond to different numbers of single-body bound states for the quantum problem. We
also study the process conditioned on a given occupation fraction and the large-N limiting behavior.
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I. INTRODUCTION

Fluctuations in stochastic systems are of central impor-
tance in statistical mechanics and other fields [1-8]. Examples
include population dynamics [4,8], nonequilibrium phase
transitions [6], current statistics [1,2], condensation phenom-
ena [5], etc., to name a few. In particular, large deviations (or
rare events) have been a central theme of interest over the
past few decades [9—15]. The fluctuations of the quantities of
interest are encoded in the large deviation functions (LDFs),
which are analogous to thermodynamic potentials in equilib-
rium systems [14]. One of the most remarkable phenomena in
the context of large deviations is dynamical phase transitions
(DPTs), which correspond to singularities (i.e., nonanalytici-
ties) in LDFs [16-24].

The occupation (or residence) time of a particle is the time
that it spends in some specified spatial domain. Fluctuations
of the occupation time have been of interest in many random
systems, including coarsening and phase ordering dynamics
in magnetic systems [25-27], financial time series [28], and
random walks on graphs [29,30]. Since the seminal work of
Lévy [31], who computed the exact probability distribution of
the occupation time for an ordinary Brownian motion, there
have been studies of the fluctuations of occupation time for
various processes in or out of equilibrium [32-46] because
of their potential applications in many physical systems. For
example, to analyze the morphological dynamics of interfaces
[47], the fluorescence intermittency emitting from colloidal
semiconductor dots [48], theory and experiments of blinking
quantum dots [39], optical imaging [49], etc.

Recently, Tsobgni Nyawo and Touchette studied fluc-
tuations of occupation fraction in a closed interval for a
Brownian motion with and without drift [43,44]. They demon-
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strated that this relatively simple model exhibits a DPT in
the fluctuations of the occupation time in the presence of
a drift in the long-time limit. Their analysis of this model
used the Donsker-Varadhan (DV) large-deviation formalism
[14,15,50-53], which maps the problem onto that of finding
the ground-state energy of a quantum problem of a single
particle inside an effective potential well. The transition oc-
curs between the escape and confinement of the Brownian
motion and is first order in nature. Similar DPTs have been
observed in many systems in the limit of low noise and/or
large system size [7,16-22,54,55]. To observe the DPT in a
drifted Brownian motion occupation fraction, it is sufficient
to consider the long-time limit without taking any additional
limits of small or large parameters [43,44].

It is natural to ask how the occupation fraction fluctuates
for N > 1 Brownian particles, conditioned not to cross each
other (vicious Brownian motions). The noncrossing condition
introduces correlations between the particles, making this a
nontrivial, many-body problem. Since the pioneering works
[56,57], noncrossing random walkers have been studied in the
context of wetting and melting [57], networks of polymers
[58], persistence properties in nonequilibrium systems [59],
and more. Noncrossing Brownian motions are also known to
be closely related to random matrix theory because the joint
distribution of their positions (which has been studied in many
contexts [60-66]) coincides, in some special cases, to that of
eigenvalues of certain types of random matrices [67—-69].

In this paper, we extend the study of occupation fraction
statistics to N > 1 noncrossing Brownian particles in an inter-
val [—1, ] for a given time interval [0, T']. By extending the
DV formalism to noncrossing Brownian motions, we study the
LDF for all N > 1. We find that the DV formalism maps this
problem to N noninteracting, spinless fermions in a square-
well potential, cf. Refs. [64,65]. Interestingly, we find that
the LDFs show multiple singularities: The system undergoes
N — 1 second-order DPTs. These transitions are of very dif-
ferent nature to the DPT found for a single Brownian particle
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in Refs. [43,44]. In particular, they occur in the absence of a
drift, i.e., the dynamics obey time-reversal symmetry. In each
of the N different phases, separated by the DPTs, a different
number of particles remains in the vicinity of the interval for
the entire dynamics, while the other particles wander away
from the interval.

The paper is organized as follows. In Sec. II, we define the
model and present the scaling behavior of the fluctuations of
the occupation fraction. In Sec. III, we show how to extend
the DV formalism to our system. In Sec. IV, we solve the DV
problem and show that there are N — 1 second-order phase
transitions. We give explicit results for N = 2. We also discuss
the process conditioned on a given value of the occupation
fraction, and some limiting behaviors that emerge in the limit
N > 1. Finally, we summarize and conclude in Sec. V. Some
details of the calculations are given in the Appendixes.

II. MODEL

We consider N one-dimensional Brownian particles, which
are defined by the following stochastic differential equations:

Xi(t)=+v2D &(t), i=1,2,...,N, (1)

where X; is the position of the ith particle, D is the diffusion
constant, and &;(¢) are Gaussian white noises with (§;(¢)) = 0
and (&;(¢)&;(t")) = 6;;6(t —t’). Here (.) denotes the ensemble
average over realizations of the noise. We condition the par-
ticles to be noncrossing, i.e., X;(t) < Xp(¢) < --- < Xy(¢) for
allt € [0, T] [70].

The occupation fraction is defined as

1 T
Pr = 7/ MK @) + -+ L Xy @) dt,  (2)
0
where 1 _; ;j(x) is the indicator function

1, forxel[-1,1]
1 nx) = { €))

0, otherwise.
or is a random variable that takes values on [0, N], where
or =0 (pr = N) corresponds to realizations in which none
(all) of the Brownian particles stay in the interval [—, [] for
the entire duration of the dynamics. For T — oo, it becomes
very unlikely for the Brownian particles to spend an extensive
time O(T) in the interval [—/, [], so we expect that the proba-
bility distribution P(pr = p) concentrates around p = 0.
Rescaling space and time,

X/l - X, 2Dt]I*> -1, 4)
Equations (1) and (2) become
Xit)=&@), i=1,2,....,N (5)

and
1 T
T = f/ Loy X @) + - + Loy Xn @) de, (6)
0
with the rescaled T (which equals 2DT/I? in the original

variables). From this rescaling, it follows that the distribution
of pr takes the scaling form

2DT
Plor =p;D,1,T) = P(pr =p; 1_2> (N

in the original variables (where the dependence on the param-
eters is indicated explicitly, but will be suppressed for brevity
below).

As we show below, in the long-7" limit, the fluctuations
of pr follow the large deviation principle [9-15,50,51,71,72],
which states that the probability distribution P(pr = p)
scales as

P(pr = p) ~e 10 ®)

This describes an exponential decay with T at a rate described
by the LDF or the rate function I(p) = 0, which is defined as

1
I(p)=— lim - InP(pr = p). &)

(In the physical variables, this translates to P(pr = p) ~
e~@PT/)I(0) which is valid at T > [2/D.)

In general, the rate function is difficult to calculate directly.
However, according to the Girtner-Ellis theorem [71,72], the
rate function /(o) can be calculated via the Legendre-Fenchel
transform of the scaled cumulant generating function (SCGF),
which is defined as [14,71,72]

1
k) = _lim - In(e"*ery. (10)

The rate function is then expressed as the Legendre-Fenchel
transformation of A(k),

I(p) = Sl;p{kp—?»(k)}, (1)

provided that A(k) exists and differentiable [14]. If A(k) is
convex, then the transform reduces to the Legendre transform,
so the conjugate variable of k, p is given by [73]

_drk)
T dk

Hence, the problem reduces to that of calculating the SCGF of
the occupation fraction of N noncrossing Brownian particles.
In the next section, we explain how this can be done by ex-
tending the DV formalism to noncrossing Brownian particles.

(12)

III. DONSKER-VARADHAN FORMALISM

An equivalent description of the dynamics of the N Brow-
nian particles is given in terms of the Fokker-Planck equation

00(X1, ..., Xy, 1)
ot

Here Q(Xj, ..., Xy, t) is the unnormalized time dependent
joint probability density function of the X;’s, LT = 1V? is
called the Fokker-Planck generator, with V2 = % +.+
32 1

0x;
have time-reversal symmetry [73]. Due to the noncrossing
condition, we consider only the domain X; < --- < Xy, with

the Dirichlet boundary conditions:
oX, ..

=LTOX,.... Xy, 1).  (13)

. LT is a Hermitian operator (LT = L) as the dynamics

XN, Dlx=x,, =0 foranyie{l,...,N —1}.
(14)

The normalized joint probability density function of
X1 Sy XN is

Q(Xl, XN, 1)

IR

PXy, ..., Xy, t)=
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where N (¢) is the (time-dependent) normalization constant:

[e.¢] [o.¢]

N(f):/ dX1/ dXn0(Xy, ..., Xy, 1). (16)
—00 —00

At long times, 1 —> 00, N (¢) goes as a power law N (¢) ~

t~NNV=1/4157.59,64,74,75].

A mathematical framework for calculating large deviations
of time-averaged quantities in stochastic processes of the form
Eq. (2) (which are often referred to as dynamical or addi-
tive observables) was formulated by Donsker and Varadhan
in Refs. [50,51]. We will now extend this formalism to the
case of noncrossing Brownian particles. To calculate A(k),
the Feynman-Kac formula is used [32,53], which states that
the evolution of the generating function of pr involves a linear
operator

Li=3 V+k(LgX)+ -+ L&), A7)

which is called the tilted generator. The SCGF of pr is evalu-
ated as the largest eigenvalue of £y [76] (see Appendix A for
more detailed calculation)

The eigenvalue problem is defined by the equation

[,k rk(Xl,...,XN)Z)»(k) I’k(Xl,...,XN), (18)

where ri (X, ..., Xy) is the right eigenfunction of L, to-
gether with the same boundary conditions as for Q, i.e.,

r(Xi, ..., Xy, )|x=x,, =0 forany i e {1,...,N —1}.
(19)

Note that as the operator £; is Hermitian, its left eigen-
functions are the same as r (X, ..., Xy). We are generally
interested in normalizable solutions, and we (arbitrarily)
choose the normalization constant to be 1:

[o¢] o0
/ dX-- / dXy Xy, ..., X)PP =1 (20)
—00 —00

Equation (18) with the tilted operator (17) and the bound-
ary condition (19) can be recognized as the time-independent
Schrodinger equation of N noninteracting, spinless fermions
up to an overall minus sign with ;’—m = % in a finite potential
well:

Vi(x) = =kl 11(x). (21)

Figure 1 shows a schematic plot of the equivalent quantum
problem. This implies that the A(k) equals minus the (many-
body) ground-state energy of —L;. For N = 1, the problem
reduces to that of a single particle in the potential well Vj,
which was solved in Refs. [43,44].

IV. RESULTS

The SCGF A(k) for general N is calculated from the
ground-state energy of N noninteracting, spinless fermions in
a square well potential of depth k, which is given by the sum of
the single-body energy levels. For a single Brownian particle
(N = 1), there is always a bound state for any k > 0 given
by the cosine inside the well and two decaying exponentials
outside the well. The single-body energy levels of a quantum
particle inside a square-well potential can be found in any
standard textbook of quantum physics [77,78], and each of
them is given by the solution to one of two transcendental

Vi ()

—A(K)

-1 1

FIG. 1. The effective quantum problem of N fermions in a square
potential well (21) of depth —k, whose solution yields the behavior
of fluctuations of the occupation fraction in the interval [—1, 1] of
N noncrossing Brownian particles. The solid red lines represent the
single-particle energy levels occupied by the fermions. —A(k) is the
many-body ground-state energy.

equations (see below). For any general N, an interesting effect
occurs: As k is increased, the number of solutions to the
transcendental equations increases and, as shown below, this
results in N — 1 DPTs which correspond to critical values
of k.

In this section, we first briefly recall the single-body energy
levels of a quantum particle in a finite potential well. Then, we
give a brief review of the results for the case N = 1 [43,44].
Next, we study the problem for general N, giving explicit
results for the case N = 2 which is already sufficient to ob-
serve the DPT. We then consider the large-N limit where we
uncover a universal behavior of the system. We also discuss
the conditioned process, both for general N and in the large-N
limit.

A. Single-body energy levels

Due to the symmetry in the potential Eq. (21), the single-
body wave functions of bound states are either symmetric or
antisymmetric. For any k > 0, there always exists at least one
bound state with a symmetric wave function [78]. As the depth
of the potential k increases, the number of bound energy levels
increases, with the wave functions alternating between sym-
metric and antisymmetric. The energy levels —A;, —A,, ...
satisfy the following transcendental equations [77,78]:

A+A tanz(\/ﬂ) =k for symmetric case (22)
and
A+ A cotz(\/E) =k for antisymmetric case, (23)
where
A=k — ri(k). (24)

The ith energy level (i = 1, 2, ...) is the solution of Eq. (22)
(for odd i) or Eq. (23) (for even i) for the following range
of A’s:

w? w?
?(i — 172 <A < ?F. (25)
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B.N=1

For a single (N = 1) Brownian motion, the problem was
solved in Refs. [43,44]. The calculation of A(k) = XA (k) boils
down to calculating the ground-state energy of one quantum
particle trapped in a potential well with depth k. The ground-
state wave function is symmetric, satisfying Eq. (22), where
0<k<ooand 0<A<Z. Egs. (22) and (24) thus give
A(k) in a parametric form (with k and A both given explicitly
as functions of the parameter A).

The conjugate variable p and the rate function /(p) of the
problem can also be expressed in terms of the variable A, thus
giving the rate function in a parametric form:

_dh_drdA _ cos’(V24) 26)
P=ak T dkjdA = " 1+ V2Atan(V2A)
AV2A tan(v/24)
I=pk—h= . 27
P VoA tan(J2A) + 1 @7

The asymptotic behaviors of A(k) and I(p) are given by
Ref. [44] (see also Appendix B for a derivation):

" 262, k—> 0 -
~ 2 2
k — % + 47r_ Tk k — o,
I(p) %2 P 0 (29)
p) 1% 2/3
= -3(Z5) " a=p), p— 1.

The SCGF and rate function for N = 1 are shown in Figs. 2
and 3, respectively [1; (k) and I;(p), respectively].

C. General N

For N > 1, the problem is mapped to N noninteracting,
spinless fermions in the potential well (21). As k is increased,
the number of single-body bound states increases and the
fermions alternately occupy the odd and even energy levels
which are found from Egs. (22) and (23), respectively. These
energy levels correspond to multiple values of A with ranges
given by Eq. (295).

Importantly, there are N — 1 critical values of k = k.; =
iz%z for i € {1,...,N — 1}, at which the number of bound
states increases. The critical values correspond to singularities
of A(k) and these correspond to DPTs, i.e., singularities of
I(p). Indeed, at k slightly larger than k.;, A;1(k) behaves
asymptotically as (for details, see Appendix B)

Aip1 (k) = Sk — kei)? (30)

and, as a result, the SCGF A(k) shows a jump in the sec-
ond derivative at k = k. ;. As we show below, this leads to
a jump in the second derivative of I(p), which we interpret
as a second-order DPT (see next subsection for details of the
particular case N = 2).

For k < ke ny—1, M(k) = A1(k) + - - - + Ap(k), where M is
the number of single-body bound states. The eigenfunction

re(Xi, ..., Xy) in Eq. (18) is now given by the following
Slater determinant [79]:
Y1(X1) Y (X1)
\I’(Xl,...,XN)Z ) (31)
Y1 (Xn) Ynv(Xn)

12} A'(K) e

10}

k
gl 051015202530 -

: k
2 4 6 8

FIG. 2. Solid line: The plot of the exact SCGF A (k) as a function
of k for N = 2 noncrossing Brownian particle occupation fraction.
The solid circle represents the critical point k. = 7%/8. For k < k,,
M(k) coincides with the SCGF X (k) for N = 1, and for k > k., the
SCGF is A(k) = A1 (k) + A2(k), where —A,(k) is the energy of the
first excited state for the potential (21). The dot-dashed line repre-
sents the continuation of the single particle SCGF for k > k.. The
red dashed line depicts the asymptotic behavior of A(k) for k > 1.
The second derivative of A(k) has a jump discontinuity at k = k..
This can be seen as a corner singularity in the inset, which shows
d\/dk as a function of k.

where v/;(X;) is the single particle state function. For k <
ken—1, M < N, so the many-body energy spectrum is contin-
uous, and N — M of the fermions will not be localized around
the interval [—1, 1]. As we show below, the interpretation of
this in terms of the original problem is that M of the Brownian
particles remain in the vicinity of the interval [—1, 1] and the
remaining N — M particles do not.

In the next subsection, we will analyze the results for a
fixed N. We consider the occupation fraction for N = 2 non-
crossing Brownian particles, as it displays all of the interesting
features for any general N.

D.N=2

For N = 2, the two lowest single-body energy levels are
found from Eqgs. (22) and (23), which together take the form

k= Ax(1 + cot? /2A,) = A (1 + tan® \/2A,). (32)

There is a critical value of k =k, =k, | = %2 (corresponds

to Ay =0.436191... and A, = %2), below which only one
physically possible solution A; contributes, whereas for
k > k., the Ay(k) (corresponding to the solution A;) con-
tributes and the total SCGF of the problem is

Ak) = A (k) + Ao (k). (33)

Figure 2 shows the plot of the SCGF for the two noncrossing
Brownian particle occupation fractions (shown by the solid
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P

FIG. 3. Solid line: The plot of the exact rate function /(p) as a
function of the occupation fraction p for N = 2 noncrossing Brow-
nian particles. The solid circle represents the critical point p. =
0.84375.... For p < p., the rate function coincides with the rate
function for the corresponding single particle problem (N = 1). The
dot-dashed line represents the continuation of the single-particle rate
function for p > p.. The red dashed line depicts the asymptotic
behavior of I(p) for p —> 2. The second derivative of I(p) has a
jump discontinuity at p = p., which we interpret as a second-order
DPT. This can be seen as a corner singularity in the inset, which
shows dI /dp.

line). For k < k., the SCGF coincides with 1, (k). At k = k.,
Mo (k) starts to contribute and continues to exist with A, (k) for
all k > k..

Similarly, for the rate function, there is a critical value of
the occupation fraction p = p. = A} (k.) = 0.84375. .., be-
low which the rate function coincides with the rate function
I (p) of the case N = 1. For p > p., the rate function is
given by the Legendre transform of the SCGF A; (k) + A, (k).
Figure 3 shows the plot of the rate function for N = 2.

Next, we study the asymptotic behaviors of the SCGF, with
particular emphasis on the behavior near the critical point
k — k. (o —> p.), where we study the DPT in detail.

In the Kk — O limit, which corresponds to p —> 0, the
SCGF and the rate function coincide with their counterparts
for N = 1, and their asymptotic behaviors in these limits are
given by the first lines of Eqgs. (28) and (29), respectively.

In the critical regime, the SCGF behaves as

MK ~ M k), k <k, (34)
T M)+ 5k — k) k= ke < ke
Similarly, the rate function near p. behaves as
Li(p), L < Pe
I(p) ~ )
Li(pe) +ke(p—pc)+B(p—p)s  p— pe <K Pe-
(35)

where B = m >~ 0.447705 . ... The detailed calcula-

tions are presented in Appendix B.

Clearly, the second derivative of the SCGF jumps at the
critical point. As we now show, the same is true for the
rate function. The first derivative of the rate function I(p)
is continuous because I{(p.) = k., but I'(p) shows a cor-
ner singularity as shown in the bottom inset of Fig. 3.
Indeed, the second derivative shows a jump discontinuity (see
Appendix B)

Lp)=57m P <p

(36)
2B p = pe L P

I"(p) =~ {

We interpret the jump in the second derivative of / as a DPT
of second order [21,22].
In the K — oo limit, the SCGF behaves as
My ~ 2k~ (37)
N 8 4 2k
Taking the Legendre transform of this expression, we find that
the corresponding limit p — 2 of the rate function behaves
as

52 572\

1(p) = —— — 3(—) 2-p'-. (38)
8 8v2

The details of the calculations are given in Appendix B. The

asymptotic behaviors of the SCGF and the rate function are
shown in Figs. 2 and 3, respectively, by the dashed red lines.

E. Large N behavior

Let us consider the large-N limit, where, as we show below,
a universal behavior emerges at p >> 1. This corresponds to
k —> oo, where the single-body energy levels can be ap-
proximated as the energy levels of particle in a box, i.e.,
E, ~—k+ %ziz. —A(k) for the large N limit is thus the sum
of the energy levels up to M, where M is the energy level at
which Ey; >~ 0, which gives

22k
~ . (39)
T
Thus, the SCGF can be written as
Mk)=—(Ey+Ey+ -+ Eyn)
2 442
k= o~ B2 (40)
24 3
Taking the Legendre transform, we obtain
2
b4
I(p) ~ = p. 41
() P (4D

Equation (41) is valid in the limit 1 <« p < N. Despite the
fact that I(p) has N — 1 singularities, we find that the limiting
behavior (41) is nevertheless smooth. Figure 4 shows the exact
SCGF and rate function together with the limiting behaviors
for N =5, which turns out to be large enough to observe
excellent agreement. There are four critical points at which
the DPTs of second order occur.
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FIG. 4. The plot of the (a) SCGF as a function of k£ and (b) rate function as a function of p for N = 5 Brownian particles. There are four
critical points where the second-order DPTs happen, shown by black dots. The red dashed lines depict the asymptotic large-k and large-p
behaviors, see Eqs. (40) and (41). The exact and asymptotic expressions agree surprisingly well (blue) and are indistinguishable at the scale of

the figure.

F. Conditioned process

WX, ..., Xy)|? is the joint distribution of the positions
of the particles at some intermediate time 0 < ¢t < T condi-
tioned on a given value of p [44]. Therefore, the N phases
correspond to conditioned processes in which M particles stay
in the vicinity of the interval [—1, 1] (where M =1, ..., N).
It is then intriguing to study the properties of the conditioned
process in more detail. This can be done by exploiting the
interpretation of the joint distribution as that of the positions
of M noninteracting fermions confined by the potential Vi (x).
The latter system is closely related to that which was studied
in Ref. [80]. Below, we reiterate some of the main properties,
but we refer the reader to Ref. [80] for details.

Quantum fluctuations of interacting or noninteracting
fermions, possibly confined by an external potential, have
attracted much recent attention [81-85], in particular, due to
their importance in applications such as experiments in cold
atoms [86-91]. Using a variety of analytical methods, such as
determinantal processes and surprising connections to random
matrix theory [80,83—-85,92-94], fundamental properties such
as the spatial density of fermions and its correlations have
been studied. For M noninteracting fermions in the presence
of a trapping potential at zero temperature (i.e., in the many-
body ground state), the quantum correlations are encoded in a
fundamental object called the kernel, that is given by

M
Ku(x,y) =Y ¥ v;), (42)

j=1
where ¥(x), ..., ¥y (x) are the wave functions of the M

single-body lowest energy states. The quantum correlations
of the fermions’ positions can be expressed using the kernel.
For instance, the density of particles at point x is given by
Ry (x) = Ky (x, x), see, e.g., Ref. [85] for more details.

The above expressions for Ry, and Kj, are valid for arbi-
trary M, and (for the potential V (x) = Vi (x)) they describe
the density and density-density correlations of the M particles
that remain near the interval [—1, 1], conditioned on a given
value of the occupation fraction. However, in the large-M limit
they approach universal behaviors as we now describe. Over
large scales, the density is in general given by the local density
(or Thomas-Fermi) approximation, Ry, (x) =~ kr(x)/m, where
krp(x) >~ &/2(u — V(x)) is the local Fermi wave vector and i
is the Fermi energy (we consider i = m = 1). The density is
normalized such that f _oooo Ry (x)dx = M. For the square-well
potential Vi(x), as we saw above, M is determined by the
condition u = Ej =~ 0, so we obtain

V2k/m ~MJ2, xe[-1,1]

Rut) =1, xé¢[—1,1],

(43)

which thus determines M ~ 2+/2k/m in agreement with
Eq. (39) above. This gives the mean interparticle distance
between particles inside the interval, d = 1/Ry(x) = 2/M.
Moreover, the density correlations inside the interval are given
in terms of the celebrated sine kernel [83,85,93]:

sin [kr (x)(x — y)]

K (x, ) ~ ———————. (44)

T(x—y)
These expressions for the density and the kernel break down
near the edges of the interval, x = £1. In fact, the behavior of
a noninteracting Fermi gas in the presence of a step-function
potential was analyzed in Ref. [80] in some detail. A universal
form of the density and kernel were obtained. For u >~ 0 (the

so-called critical case), they are given by

1 X 1 Xy
R ~—n|-=), Kuk,y)~-«|-,=], 45

m(X) 7" (d) m(x,y) 7° <d d) (45)
respectively, where the universal functions n, and «, are given
explicitly in Ref. [80]. They provide an interpolation of Ry,
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and K); between the regime inside the interval (x € [—1, 1])
and outside it (x ¢ [—1, 1]).

V. DISCUSSION

We have studied the fluctuations of the occupation fraction
of N noncrossing Brownian particles in a finite interval. We
found that the rate function that describes these fluctuations
at long times undergoes a sequence of N — 1 DPTs of second
order. The N different phases correspond to different numbers
of particles in the vicinity of the interval. We achieved this
by extending the DV formalism to noncrossing Brownian
particles and found that this maps the problem to that of N
noninteracting spinless fermions in the presence of an effec-
tive potential. Under this mapping, the N phases correspond to
different numbers of bound single-body states of the effective
potential.

This DPT observed here for any N > 2 is of very different
nature to the DPT that has been previously found for a single
particle (N = 1). The latter DPT only occurs if the particle
experiences an additional external drift (which leads to break-
ing of time-reversal symmetry) [43,44], and its properties are
quite different to those of the DPTs that we found here. For
instance, it involves coexistence between two different phases,
which correspond to the particle being confined (or not) to the
vicinity of the interval. However, in the present work, we have
found N — 1 DPTs that separate between N temporally homo-
geneous phases, each corresponding to a different number of
particles which are in the vicinity of the given interval for the
entire dynamics.

It would be interesting to study fluctuations of the oc-
cupation time in presence of other interactions between the
Brownian particles (instead of or in addition to the noncross-
ing condition). This problem has been solved in the limit
N > 1 for abroad class of interacting diffusive gases (e.g., the
exclusion process, that does not include the gas of noncrossing
Brownian particles as a particular case, in Ref. [45]. Another
natural extension of the present problem would be to study the
effect of a drift in the system or to study the occupation time
for other processes, such as fractional Brownian motion or
for active particles. Moreover, one could study more detailed
quantities such as the empirical distribution of the positions of
the particles.

ACKNOWLEDGMENT

We acknowledge several useful discussions with Pierre Le
Doussal on related topics.

APPENDIX A: DONSKER-VARADHAN FORMALISM
FOR NONCROSSING PARTICLES

We first consider the unnormalized joint probability dis-
tribution Q(Xi,...,Xy,R,t) of the X;’s and R =1p,. Q
satisfies the Fokker-Planck equation

0 ) d
a—? =L Q—ﬂl_l,u(wﬁQz (A1)

together with the noncrossing boundary conditions given in
Eq. (14) at X; = X; . It is convenient to define the generating

function:
Gk(Xl,...,XN,t)=/ekRQ(X1,...,XN,R,t)dR. (A2)

According to Feynman-Kac formula [32,53], Gy evolves with
time as

Gy (X, ..
ot

'9XN9t)

z‘cka(Xls"'vavt)? (A3)

where

Ly =L+ kl_;x), (A4)

known as the tilted generator. Note that G also satisfies the
boundary conditions (14).

Equation (A3) can be solved by expanding G over the
eigenbasis of £y [95],

GeXi, ... Xy, 1) =Y cid¥ri(Xi,.... Xy), (A5

where ¢; and r,i(Xl, ..., Xy) are the eigenvalues and eigen-
functions of L, respectively, and the ¢;’s are coefficients that
depend on the initial condition.

For T — o0, the sum in Eq. (AS) is dominated by the
largest eigenvalue {iyax (and if ¢max doesn’t exist, then instead
we must use the supremum of the ¢;’s). In this long-time
limit, the nomalization factor N'(r) goes as a power law
N () ~ t=NN=D/4 [57,59,64,74,75]. Comparing Eq. (A5) to
the definition of the SCGF in Eq. (10), it can be concluded
that A(k) = Zmax, as the logarithm of N (¢) can be neglected.

APPENDIX B: ASYMPTOTIC BEHAVIORS
OF A (k) AND OF I(p)

In this Appendix, we show the details of the calculation of
some of the asymptotic behaviors of the SCGF and the rate
function. We mostly focus on the case N = 2, and consider
the limits k — 0 (0 —> 0), k — o0 (p —> 2), and near
the critical point, k >~ k.. We use Eqgs. (22)—(24) to study the
asymtotic behaviors for different limits of A (or k).

1. k~k,

For any general N, for k, that is near the critical point
kei= % but slightly larger (i.e., for k > k. ; withk — k. ; <
ki), using tanx = tan(x — nw) >~ x — nx (for even i) and
cotx = cot(x — nmr) >~ x — nm (for odd i) for x >~ nm, the k
and A;4 (k) behaves for A; — 72 as Eq. (22) becomes

i‘m”
8

1 (22 :
k>~ — ——A,' A,’, B1
2( : ) + B1)
leading to
1 [ Pn? 2
)\,‘ k:k—A[Z— ——A,
+1(k) 2< 2 )
1 2r2\*
~ —\k——]), B2
2( 8) (B2)

which coincides with Eq. (30) of the main text. Using the
above two equations, the behavior of the SCGF A(k) for
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N = 2 can now be written as
Ak) = hy (k) 4 5k — ke)?, (B3)
which is Eq. (34) in Sec. IV. Taking the derivative, we have

p= Z—z =~ M (k) + (k= ke) = pe + [A] (ke) + 11k — k),
(B4)
where we used p. = A} (k). Inverting this relation, we obtain
pP—Pe
M (ko) +1

Taking the Legendre transform of the Eq. (34) while using
Egs. (B4) and (BY), the expression of the rate function at p
that is slightly larger than p, can now be expressed as

k~k + (B5)

(0 — pe)’,
(B6)
which coincides with the second line of Eq. (35) in Sec. IV.

1
1(p) ~ I (p. p—p)+ —-—
(p) = Li(pe) + ke(p — pe) + 2+ 1]

2.k—0

In the k — O limit, the SCGF A(k) = A;(k) ~ 0, which
implies A —> 0. Around A = 0, using Egs. (22) and (24), the
asymptotic behaviors of A(k) and k are

k) ~2A%, k~A+2A% (B7)

respectively. This implies
A(k) ~ 2k, (B8)
coinciding with the first line of Eq. (28) in Sec. IV. The

Legendre transform of A(k) in this limit is thus

2
um:%, (BY)

which coincides the first line of Eq. (29) in Sec. IV.

3. k- o

In the limit k — oo, A| goes as A| — %2 Considering
Eq. (22), the asymptotic behavior of the left-hand side of
Eq. (22), near this value of A; we obtain

T 372
(= -4) 8% —A)

+ ! Q1 +7?)
24 &

(B10)

which yields
Ak) =k — Ay

12

(2 L) (E A (B11)
322 )\s )

From Egs. (B10) and (B11), we now express A (k) as a func-

tion of k in the limit k > 1,
w2 w2

Mk ~k— — 4+ ——,

: 8 ' 4v2k

which coincides with the second line of Eq. (28) in the main

text. This result gives the asymptotic behavior of the SCGF

for the case N = 1.
For N = 2, we must add the contribution of 1, (k), whose
asymptotic behavior in the large-k limit we now calculate. For

the second energy level, A, goes as A, — ”72 and by using

the corresponding behavior of Eq. (23) and following similar
steps as above, we find

(B12)

72 7l
k) ~k — — + —. (B13)
2(k) RN

Now, using Egs. (B12) and (B13), we find the asymptotic
behavior of the SCGF A(k) = A (k) + Ap(k) at k —> o0,
s 5m? 1
Ak) =2k — — + ——,
8 4 2k
which coincides with Eq. (37) in Sec. IV. We now calculate
the Legendre transform of this expression to find the corre-
sponding asymptotic behavior of the rate function. Taking the
derivative of Eq. (B14) with respect to k, we get the limiting
behavior of p —> 2 as

da(k) 572
= =2 — .
dk 8+/2k3/2

By combining Eqs. (B14) and (B15), we find the behavior of
the rate function in the limit p — 2,

(B14)

(B15)

572 sn2\*?
I(p) =kp — r(k) ~ — — 3(—) 2 —p)'3, (Bl6)
pI==p 8 82
which coincides with Eq. (38) in Sec. IV. The second line
of Eq. (29) (for the case N = 1) is obtained similarly, by
calculating the Legendre transform of Eq. (B12).
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