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Sandpiles subjected to sinusoidal drive
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This paper considers a sandpile model subjected to a sinusoidal external drive with the period T . We
develop a theoretical model for the Green’s function in a large T limit, which predicts that the avalanches are
anisotropic and elongated in the oscillation direction. We track the problem numerically and show that the system
additionally shows a regime where the avalanches are elongated in the perpendicular direction with respect to
the oscillations. We find a crossover between these two regimes. The power spectrum of avalanche size and
the grains wasted from the parallel and perpendicular directions are studied. These functions show power-law
behavior in terms of the frequency with exponents, which run with T .
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I. INTRODUCTION

Sandpile models are prototypical examples of systems that
show self-organized criticality (SOC) that is self-sustaining in
a critical state without tuning any external parameter. To cover
various SOC systems found in nature, plenty of versions of
sandpiles have been introduced so far, each of which addresses
an essential aspect of the original sandpile model introduced
by Bak, Tang, and Weisenfeld (BTW). The question of how
the universality class of the sandpile is changed fueled many
studies in the field. The Manna version of sandpiles (Manna
model, sometimes called the two-state sandpile model) intro-
duced stochasticity to the BTW model [1,2], while the Zhang
model [3,4] for sandpiles made a continuous-energy model.
There were also directed versions of sandpiles that have been
greatly investigated over time [5–7]. The sandpile models
were also implemented on top of many host systems like
the regular d-dimensional hypercubic lattice [6,8,9], honey-
comb lattice [10], Bethe lattice [11], random network [12–15],
scale-free network [16,17], small-world network [18–23], and
so on. Many aspects of this model are known, like the height
correlations [24] and its relation to the other statistical mod-
els, like the q-state Potts model and Spanning trees [25,26],
loop-erased random walks [27], logarithmic conformal field
theories [28–30], and Schramm-Loewner evolution [10,31].
For review see [2,32,33].

The real sandpiles were considered in a few studies.
In [34], the properties of real sandpiles on a circular disk were
analyzed, where the sand grains were added to the pile after
the avalanches subsided. In this study, self-similar avalanches
with power-law mass distribution functions were observed
and a power spectrum of mass was found to behave like f −2

( f being the frequency). Jaeger et al. [35] arranged an experi-
mental setup for sandpiles consisting of spherical glass beads
or rough aluminum-oxide particles, where the effect of vibra-
tion was also tested. For the case without vibrations, serious
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deviations from the theoretical predictions were found for the
avalanche duration and the power spectrum of the system. It is
believed that the deviations from the power-law behavior for
the power spectrum predicted by BTW are due to the hystere-
sis angle (the difference between the threshold angle above
which avalanches form and the metastable angle). In fact, for
each toppling, the metastable angle should be exceeded by this
hysterics angle to allow sands to slide downhill, which causes
the periodic occurrence of avalanches in the steady state [36].
The generation of vibrations (which were generated by con-
necting the system to speakers) as an external drive of the
sandpile [35] has shown to have a drastic effect on the spectral
properties of the system. Importantly, it causes the system to
show a self-similar power spectrum, which for the case of
study in [35] it is like f −0.8, valid for high-enough frequencies
and independent of the type of particles. This problem was
analytically followed by considering a periodic external drive.
This and the following attempts have been made to under-
stand the dynamic response of a granular pile to vibration,
by assuming that the effect of the vibration is equivalent to
a white noise. The effect of vibrations and their properties
have not been thoroughly investigated in the literature and
some limited simulations have been done [37–39]. The relax-
ation of granular systems like the powder was considered in
a few papers [35,37–41] in which the volume fraction was
investigated in terms of the intensity and the frequency of
the vibrations. In [37,39–41] the authors were able to tackle
the problem by replacing the effect of the vibration by white
noise within a potential well model. Besides the logarithmic
decay of the slope with time, which was observed experimen-
tally [35] and explained theoretically [39,40], an important
question concerning their universal behaviors remains unan-
swered: That of whether and how the vibrations modify the
geometrical and statistical properties of a sandpile. Regarding
the limited theoretical knowledge of sandpiles, the modeling
of the oscillating external drive helps to shed much light on
its lesser-known aspects. Importantly, modeling the in-plane
vibrations generates anisotropy in the system, which has not
been examined and characterized in previous studies. Up to
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FIG. 1. Polar plot for the asymptotic behavior r → ∞ according
to Eq. (6). The symmetric circle path is for the isotropic case ε0 = 0
and the most anisotropic one (largest aspect ratio) is for ε0 = 1.

the authors’ knowledge, the power spectrum analysis on these
systems in terms of external vibration strength was only done
in [35]. In this study, we try to fill this gap.

We model the vibrating (periodic external drive) sandpiles
with a constant rate of grain addition. To this end, we consider
a pile subjected to periodic forcing with a period T . In the
local toppling rule, the sands spread in the direction parallel to
the vibrations and the perpendicular direction is different. The
problem studied here is important from two points of view.

(1) Mathematical point of view. The problem which is
studied here is in a sense the inverse of the diffusive sand-
piles, studied in [42]. More precisely, here we are tracking
the sandpiles in which vibrations prevent the avalanches to
settle perfectly. Also, in the steady state of the normal sandpile
models the recurrent configurations (RC), also referred to as
steady state configurations, are statistically constant, while the
RCs are replaced by oscillatory RCs, the average of which is a
constant. Such vibrating RC states have not been investigated
and characterized before.

(2) The second point of view is the experimental perspec-
tive. As we stated above, there were some experiments where
the sandpile was exposed to vibrations. What the vibrations do
is expose an extra force, which can be realized experimentally
by preparing a real sandpile on top of a vibrating table. While
a more complicated model should be designed for such real
situations (like the under-threshold topplings), the first step
towards understanding is considering an ideal model which is

FIG. 2. Total system activity (sum of activity from t = treached recurrent till t = tfinished, i.e., the time at which the simulation ends) for various
T on L = 256 lattice. The direction of oscillations (parallel direction) is up-down and the perpendicular direction is left-right.
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FIG. 3. Finite activity (a) T = 2 and t ∈ [trecurrent, trecurrent +
1000] time step (b) T = 64 and t ∈ [trecurrent, trecurrent + 1000] time
step (c) T = 2048 and t ∈ [trecurrent, trecurrent + 10000] time step. For
all cases L = 256. (d) 〈ln Ly〉 in terms of 〈ln Lx〉. Lx and Ly show a box
size that covers a growing avalanche. (e) 〈Ly〉

〈Lx 〉 in terms of T . Snapshot
time delay is dt = 100.

easier to handle and gives the main ingredients of the system
which we are doing here.

As an observation, we assert and numerically confirm that
for the large (small) T values, the avalanches are extended
along the direction (perpendicular direction) to the vibrations.
We find that the system undergoes a crossover between these
two regimes. We report on the associated exponents that moni-
tor the crossover. The power spectrum behaves in a power-law
form for all T values, with the exponent which runs with T .

The paper is organized as follows. We introduce the model
in the next section. Section III is devoted to the results of the
simulations. We close the paper with a conclusion.

II. MODEL

We define a sandpile model under oscillations (oscillatory
sandpile model, OSM) on a L × L lattice and attribute the
height variable {hi, j}L

i, j=1 to each site, which takes the val-
ues from the range hi, j ∈ [1, hth ≡ 4n] (n being an integer
number, which is 10 in this paper). When the height of any
site (i, j) exceeds the threshold hth, it topples, meaning that
the site loses hth sand grains, which are distributed over its
neighbors. More precisely, when the site (i, j) topples, then
hi′, j′ → hi′, j′ + �t

i, j;i′, j′ , where �t
i, j;i′, j′ is a time-dependent (t)

matrix as follows:

�t
i, j;i′, j′ =

⎧⎪⎪⎨
⎪⎪⎩

−4n if i = i′ and j = j′,
n if i = i′ ± 1 and j = j′,
{n[1 ± ε0 sin(ωt )]} if i = i′ and j = j′ ± 1,

0 other,
(1)

where ε0 is the vibration strength parameter, ω = 2π
T is the

angular frequency, [x] shows the integer value of x, and T is
the time period for the oscillations. Note that the oscillations
are imposed only in the j direction. Throughout this paper, we
call the direction parallel to the direction of oscillations ( j) as
the parallel direction, while the other direction (perpendicular
to the oscillations, i) as the perpendicular direction. Obvi-
ously, the OSM is anisotropic, i.e., the dynamic in the parallel
direction is different from the one in the perpendicular (i)
direction.

Now we define the sandpile dynamic. We start with a
uniform random configuration in which all the sites are stable.
Then we add n sand grains to a randomly chosen site. This
operation, called grain injection, takes place every �t time
step that is defined in the following. If it is stable again, then
we wait for �t time steps to choose another random site for
adding grains. If it becomes unstable, then it topples according
to Eq. (1). For the boundary sites, n or 2n sand grains are
dissipated depending on the position of the boundary site.
As a result, the neighboring sites may become unstable and
topple in their turn. Therefore, a chain of topplings is trig-
gered. We define one-time step δt = 1 as the time during
which all the sites of the lattice are tested once for local
toppling, after which t → t + δt . After �t time steps, another
random site is chosen to add an external grain, whether or
not the previous chain of activities is over: If the chain is
over (there are no further unstable sites at some time), then
the time is added one by one during which no activity is
done until reaching the next time for injection (reaching �t
steps). Therefore, the avalanches are not well defined as in
the regular sandpiles (chain of topplings between two sta-
ble configurations). However, we have some toppled sites in
any arbitrary time interval [t1, t2] which allows us to define
avalanches: It is the set of sites that have toppled at least once
in this interval where are unconnected avalanches. All the ge-
ometrical statistical analyses are upon such avalanches in this
paper.

In the limit T = 2 the effect of oscillations is zero. When
T is large, the sand grains tend to diffuse more in the parallel
( j) direction in the short timescales and the avalanches are
expected to extend in this direction. In the limit T → ∞, the
fate of the sandpile depends on t/T . For small times t/T 	 1,
the effect of vibrations is negligible, while their effect is max-
imal for ωt ≈ π

2 . In the opposite limit, i.e., high ω values, one
expects that the avalanche is squeezed in the parallel direction
and extends more in the perpendicular direction. This is be-
cause the timescale for changing the direction of the preferred
parallel direction [i.e., the direction to which the sand grains
are more likely to topple according to Eq. (1)] due to the oscil-
lations is much smaller than the timescale of the avalanche to
diffuse in this direction and the avalanches do not have enough
time to extend in the parallel direction. Therefore, we expect
the avalanches to be anisotropic and there is a transition point
where the preferred alignment changes from the parallel to
the perpendicular direction. The observation of this crossover
between two regimes and its characterization is the main
goal of the present paper. During this crossover (in terms of
T ) the avalanches change their behavior from perpendicular-
direction-squeezed avalanches to parallel-direction-squeezed
avalanches. Additionally, we provide some exponents for the
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FIG. 4. The system activity ACF for various T on L = 256 lattice size. Note that the scale of the x axes is 104.

anisotropic elongated avalanches. The power spectral density
(PSD, or power spectrum) for the system activity and the
dissipated sand grains shows power-law behavior in terms
of the frequency some with nontrivial exponents which are
different in the sandpile literature.

We consider the following time series. The number of
topplings at time t , a(t ), which is called activity. The number
of grains in the pile at time t , i.e., m(t ). These variables do
not depend on the sign of bias, i.e., in terms of the Eq. (1)
they would be a function of sin2(wt ) and have the peri-
odicity T

2 . The number of dissipated grains in the parallel
(perpendicular) direction dn‖(t ) [dn⊥(t )] are the other quan-
tities that we investigate here. These variables depend on the
sign of the bias field and they have the periodicity T . Note
also that m(t ) = m(0) + t

�t − ∑t
t ′=1[dn‖(t ′) + dn⊥(t ′)], i.e.,

these quantities are not independent. The system’s dynamics
are divided into two parts. The first stages are called the
transient configurations, identified by the height increasing
with time and configurations with nonzero probability in the
periodic steady state. All of our analyses are done in the latter
configurations.

We start our arguments by defining the Green’s function
G(t, X, Y) as the probability that the site X topples in an
avalanche at time t created by addition sand grain to the
site Y at t = 0. The Green’s function satisfies the master

equation (X = Y),

G(t + 1, X, Y) = 1
4 {G(t, X + ex, Y) + G(t, X − ex, Y)

+ [1 − ε0 sin(ωt )]G(t, X + ey, Y)

+ [1 + ε0 sin(ωt )]G(t, X − ey, Y)}. (2)

In the continuum limit one obtains (X = Y)

∂t G(t, X, Y) = D2∇2G(t, X, Y) − D1ε0 sin ωt∂yG(t, X, Y),
(3)

where D1 = a
2δt and D2 = a2

4δt are the diffusion coefficients
in the scaling limit, a is the lattice constant, and δt is the
time difference. Note that the case ε0 = 0 reduces to a sim-
ple diffusion equation. The solution to the above equation is
complex to find. Instead, let us consider simple cases. The
OSM with ε0 = 1 is mapped to a superposition of two deepest
descent sandpile model (DDSM) with preferred directions
{nn}1 = {ex, ey} and {nn}2 = {e′

x, ey} [where {nn} shows the
list of nearest neighbors, ex ≡ (1, 0), ey ≡ (0,−1), and e′

x ≡
(−1, 0)] just at the moments ωtn = (2n + 1)π

2 (n being an
integer number). By the superposition, we mean that the
toppling role is a mix of these two models, where, for exam-
ple, one sand grain goes left, one goes right, and two sand
grains go up. The DDSM model was investigated analytically
in [43]. For the other times, OSM is equivalent to a variant
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FIG. 5. The system activity PSD for various T at L = 256 lattice size. (i) α
(1)
PS exponents in terms of T for the PSD of the activity time

series [i.e., A(ω) ∼ f −α]. The fit is the logarithm of T .

of this model where the diffusion in one preferred direction
is stronger than in the other direction. Although a complete
mapping is restricted to the times tn, some general features of
OSM can be potentially understood in terms of DDSM (easily
mapped to a voter model), at least intuitively. Evidently, our
model is more complicated since it is directed just in one di-
rection, in contrast to the voter model, for which there are two
preferred directions. In the large T limit, during a long time of
dynamics, the sand propagation in one direction (up or down)
is much larger than in the opposite direction. In this case,
sin ωt is close to (positive or negative) unity for a long time,

allowing us to talk about the steady state Green’s function,
which is independent of time, i.e., g(X) ≡ G(t, X, 0). In this
time interval, the system is mapped effectively as a DDSM,
with directed diffusion in the ey direction, and (far from the
boundaries) Eq. (3) becomes [X ≡ (x, y), and sin ωt ≈ 1]

D2
[
∂2

x + (∂y − κ )2 − κ2
]
g(X) = δ2(X), (4)

where κ−1 ≡ 2 D2
D1ε0

= a/ε0 is proportional to the lattice con-
stant. For the case X = 0, the solution is

g(X) = eκy[c1I0(κr) + c2K0(κr)], (5)
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FIG. 6. ACF of sand dissipation in the parallel direction for various T at L = 256 lattice size. Note: The scale of the x axes is 104.

where r ≡
√

x2 + y2, In(z) and Kn(z) are the modified Bessel
function of the first and second kinds and c1 and c2 are
constants to be determined. Since this solution is valid during
times shorter or in order to obtain T/2, one should not be con-
cerned about exponential growth in the positive y direction.
Noting that, in the large r limit, I0(κr) → (1/

√
2πκr exp[κr])

and K0(κr) → (
√

π/2κr exp[−κr]), one concludes that c1 =
0 and c2 is nonzero.

Note that, in the absence of oscillations ε0 = 0 or κ = 0,
the system is isotropic and g depends only on r, so that
1
r

d
dr [r d

dr gε0=0(r)] = δ(r), the solution of which is ln r as a
well-known fact in two-dimensional (2D) ASM. Asymptoti-
cally, far from the boundaries, the Green’s function behaves
like the following [X ≡ (r, θ ), where θ = tan−1( y

x )]

g(r, θ ) →
{

eκr cos θ
[
const. − ln κr

2

]
κr 	 1,

1√
κr

exp [−κr(1 − cos θ )] κr � 1.
(6)

The plots for the lower branch are shown in Fig. 1 for a
constant r. Increasing ε0 from zero (isotropic case) makes the
Green’s function more oriented along the y axis as expected.
We see that the upper branch in Eq. (6) gives the known
logarithmic result for ε0 = 0 (κ = 0), i.e., the isotropic case.
A useful representation of Eq. (5) is as follows (c1 = 0):

g(r, θ ) ∝
∫ ∞

r

e−κ (R−r cos θ )

√
R2 − r2

dR. (7)

To interpret this equation, we take the strategy of the authors
of [44]. Let us define p(R, θ ) as the probability that the linear
extent of an avalanche is R in the θ direction and ρR(r, θ ) as
the density of sites [at (r, θ )], covered by the avalanche with
the extension R. Then it is easy to see that

g(r, θ ) ∝
∫ ∞

r
p(R, θ )ρR(r, θ )dR. (8)

It was previously shown that for the isotropic case
pε0=0(R) ∝ R−τR (τR = 1

4 ) and ρ
ε0=0
R (r) ∝ rd f −2 = r− 3

4 , lead-
ing to gε0=0(r) ∝ ln r, see [44,45] for details. In our case, to
be consistent with Eq. (6), and also with the isotropic ε0 = 0
case, we propose that (x ≡ R

r )

p(R, θ ) ∝ e−κR(1−cos θ )

RτR
, ρR(r, θ ) ∝ rd f −2 e−κr(x−1) cos θ√

x
3
2 − x− 1

2

,

(9)
which results in Eq. (7). Note that P(R) has the same angular
structure as the lower branch of Eq. (6), see Fig. 1. These
analytical arguments predict the directional deformation of the
avalanches in the same form as the Green’s function.

Now we consider the system with a periodic external drive.
For this case, the above equation is expected for long T
values and also times that the external drive is only in one
direction, while for generic t and T , the behavior is much
different. In fact, the system’s response to the external drive
is determined by comparing t and T , and therefore, we need

064132-6



SANDPILES SUBJECTED TO SINUSOIDAL DRIVE PHYSICAL REVIEW E 107, 064132 (2023)

FIG. 7. ACF of sand dissipation in the perpendicular direction of oscillation for various T at L = 256 lattice size. Note that the scale of the
x axes is 104.

dynamic scaling arguments. Generally, the probability that
in the SOC state the avalanche has a duration Td greater
than a time t varies as p(Td > t ) ∝ t−τd +1 in the thermody-
namic limit and for large-enough t values, where τd is the
critical exponent of the avalanche duration, which is 3/2 for
DDSM [43]. As a well-known fact for the finite size systems,
the probability distribution function (PDF) of the avalanche
duration shows scaling behavior in terms of the size of the
system L, so that T̄d ≡ 〈Td〉 shows power-law behavior in
terms of L [4,6,46,47]. The same arguments are expected here
for our directed sandpile model, although the change of this
scaling relation does not hurt our main logic in the following
arguments, for which the existence of such a L-dependent
timescale is enough. Therefore, we base our arguments in the
following on the existence of such a finite timescale. To add
the effect of changing the direction of the preferred orientation
due to the oscillations, we approximate the sinusoidal function
by a periodic step function f (t ) = +ε0 (= −ε0) for 0 � t <

T/2 (−T/2 � t < 0) with a period T . As a consequence,
the probability that an avalanche experiences a significant
change of the preferred direction p(Td > T ) is proportional
to T − 1

2 . One then expects two distinct regimes: T 	 T̄d and
T � T̄d . For the first case, it is easy to show that p(Td > T )
is considerably large in the thermodynamic limit, while for
thesecond case, it is negligibly small. Therefore, for the first
case, the avalanches are squeezed in the parallel direction and

are more extended in the perpendicular direction since they do
not have enough time to settle or be completely established
in the parallel direction. For the second case, the avalanches
would not experience this significant change and are more
extended in the parallel direction.

We consider the autocorrelation function (ACF) and the
power spectral density (PSD) [48] for these time series as-
sociated with the quantities introduced above. Given the
measurements {ti, xi}N

i=1 where ti are times, the ACF is
defined as

Cx(τ ) =
∑N

i=1{[x(ti) − x̄][x(ti + τ ) − x̄}∑N
i=1[x(ti) − x̄]2

, (10)

where x ∈ {a, m, dv, d p}, x̄ shows average of time series, and
τ is some time lag. The PSD is the Fourier transform of ACF
(the increment of τ is one, i.e., �τ = 1), i.e.,

Ax( f ) ≡
N∑

i=1

Cx(τi )e
−i2π f τi , (11)

where f is the frequency.

III. RESULTS AND ANALYSIS

In this section, we present the results of simulating OSM.
Throughout this section we set ε0 = 1.0, n = 10, and �t =
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FIG. 8. PSD for sand dissipation in the parallel direction for various T at L = 256 lattice size.

100. Figure 2 shows the total (accumulated) activity of the
system is shown in terms of T [note that the case T = 2 is
isotropic as expected from Eq. (1)]. This helps to figure out
how the arguments presented in the previous section work,
i.e., for small T values, the avalanches are spatially extended
in the perpendicular direction. In contrast, for large T val-
ues, their extension in the parallel direction is more than
the other direction. Figure 3 shows the same effect for the
avalanches.

To quantify this, we define the avalanches as the chain
of activities in the interval t ∈ [trecurrent, trecurrent + 1000] and
extract the contour lines of the resulting avalanches, see
Figs. 3(a), 3(b), and 3(c) (T = 2, 64, and 2048, respectively).
We calculate the fractal dimension of the resulting avalanches
by confining the avalanches in a minimal rectangle with size
Lx × Ly [Lx = xmax − xmin, and Ly = ymax − ymin, where xmax

and ymax (xmin and ymin) are maximum (minimum) values for
x and y, respectively, for the points on the external fron-
tier of avalanches]. For isotropic avalanches one expects that
〈ln Ly〉 = D f 〈ln Lx〉, where D f = 1. We plot 〈ln Ly〉 in terms
of 〈ln Lx〉 in Figs. 3(d) and 3(e). We see that there are two
slopes in the figure, and the graphs crossover between them.
For a better understanding, let us first consider T = 2 (the
isotropic case), for which D f ≈ 1 is expected. Figure 3(e)
shows that the ratio of averages 〈Ly〉

〈Lx〉 decrease with T for small
T values (up to T ∗ ≈ 16), and then increases. It is worth men-

tioning that we should retrieve the ordinary isotropic BTW
model as T → ∞. To see this behavior T � Td , which is
not reached in this figure (due to the simulation time, it was
not possible for us to go to this limit). Note also that in
the limit T → 2, the ratio goes to 1. The same phenomenon
is seen in Fig. 3(d), where the lowest slope is observed in
T = 16, while the highest value considered is T , for which
the slope is approximately 1.38(3). The expected orientational
transition is evidenced by changing from D f < 1 to D f > 1.
For intermediate T values, the graphs crossover from the first
to the second regime, as is seen in the figure. We repeat this
calculation for the system sizes L = 32, 64, 128, and 256 to
control the finite size effects. The associated exponents are
more or less the same for all system sizes, which are not
shown here. As a response to a sinusoidal external drive, the
system’s activity is expected to show periodic behavior. Since
the activity field is not sensitive to the sign of the external
drive, one expects that the activity ACF has a half period of
the one for the external drive. Figure 4 shows this function for
various rates of period. First, observe that the system with-
out oscillations (T = 2) is correlated. As T increases, some
tiny oscillations are born the period of which increases by
increasing T . For example, for T = 4096, the period of ACF
is τ0 = 2048 = T/2. To visualize the structure of the oscilla-
tions and the characteristic periods more explicitly, one should
study the power spectrum of the time series. PSDs are shown
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FIG. 9. PSD for sand dissipation in the perpendicular direction for various T at L = 256 lattice size.

in Fig. 5, where a multifractal structure (self-similar) structure
is observed, reflected in A(ω) ∝ ωαPS , where αPS depends on

FIG. 10. Total system activity (sum of activities from
treached recurrent till tfinished, i.e., The time at which the simulation
ends) at T = 2048 on L = 256 lattice size.

the scale. Observe how the nonoscillating system (T = 2)
exhibits two regimes: One with the exponent αPS � 2 and
another with αPS � 1.6. It is already known that avalanches
in sandpiles are multifractals, but since ACFs (for the BTW
model) exponentially decay with time αPS = 2 (red noise) is
expected for them, as numerically is confirmed. Additionally,
PSD functions show peaked structures having their roots in
the fact that there are driven oscillations in the ACFs, as we
just saw. Indeed, for ω � 2π

T it has information about single
avalanches, while for ω 	 2π

T it tells about the long-time
correlations of activity. The regimes are identified with respect
to two pronounced peaks which are identified in the figures,
one of which is at f −1 = T/2 and the other one is f −1 = T/4.
One can study the long-time correlations more effectively by
subtracting the power spectrum at frequencies ω � 2π

T . The
power spectrum exponent in the small frequency regime (α(1)

PS )
decreases by increasing T . This is shown in Fig. 5(i), where a
logarithmic decay α

(1)
PS = a − b ln T is observed, where a =

1.88 ± 0.04 and b = 0.06 ± 0.01. This fitting is not valid
for all ranges of T , i.e., the best fitting is for the range
T � 128, where for a self-similar monofractal time series
with a Hurst exponent H , the power spectrum is expected to
behave like ω−2H+1 [49,50], which corresponds in OSM to
the Hurst exponent H = 1

2 (1 + a − b ln T ). While avalanches
in OSM are multifractal, a more comprehensive multifrac-
tal analysis is necessary to determine the spectrum of the
Hurst exponent.

064132-9



J. CHERAGHALIZADEH et al. PHYSICAL REVIEW E 107, 064132 (2023)

FIG. 11. Finite activity (t ∈ [trecurrent, trecurrent + 1000] time step) in the recurrent regime for various T on L = 256 lattice size.

The other independent quantities of interest are the grain
dissipation in the parallel (dn‖) and perpendicular (dn⊥)
directions. The ACF of dn‖ and dn⊥ are shown in Figs. 6 and 7
in the Appendix. The decay of ACF for these two quantities
is faster than for the activity time series. The corresponding
PSD’s are shown in Figs. 8 and 9 for dn‖ and dn⊥, respec-
tively. It is seen that PSD for dn‖ reveals the same spectral
structure just like the activity field, while for the PSD of dn⊥
the position of the peaks are not distinguishable. Actually,
by looking at the ACF, we observe that the strength of the
oscillations is much weaker for dn⊥ than for dn‖, which is the
reason the peaks in PSD of dn⊥ are not pronounced and dis-
tinguishable. PSD functions show power-law decay for both
cases for more than two decades (note that the PSD for the
nonoscillating SM T = 2 can hardly be fitted by a power-law
function). The corresponding exponent is fixed (0.37 ± 0.03)
for dn‖, while a small change is observed with changing T for
dn⊥ exponent ∈ [0.37 ± 0.03 − 0.5 ± 0.03].

IV. CONCLUSION

This paper was devoted to the sandpile model subjected to
a sinusoidal external drive with the period T . This problem
was analyzed analytically and numerically. Using an analyt-
ical approach we found that in a large T limit, the Green’s
function and the avalanches are anisotropic and elongated in

the oscillation direction. In particular, we found that in the
thermodynamic limit and for the times ωt ≈ π

2 the Green’s
function is approximately a multiplication of an exponen-
tial term and a modified Bessel function. We considered the
problem numerically and showed that, in the intermediate T
values, the system is in a regime in which the avalanches are
elongated in the perpendicular direction with respect to the
oscillations. The transition region between these two regimes
is identified by measuring the scaling relation between par-
allel and perpendicular spatial scales. The power spectrum
of avalanche size and the grains wasted from the parallel
and perpendicular directions are studied. In agreement with
previous studies (like [35]), we find that this simple model
generates a flicker (1/ f ) noise, i.e., the power spectrum shows
a power-law behavior in terms of the frequency with a T -
dependent exponent.
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APPENDIX: ACTIVITY FIELD

Figure 2 shows the activity as a function of various T . It
shows stretching in the opposite direction of oscillation for
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2 < T < 256 and for T > 256, stretching in the direction of
oscillation. Figure 10 shows T = 2048 in a large frame with
contour lines.

Figure 11 shows the system activity in a finite
time step, i.e., t ∈ [trecurrent, trecurrent + tfinite]. This figure
shows the toppling number in the recurrent regime

for t = 1000 time steps. This figure shows system
activity decreases for T � 256. Figures 3(a) and 3(b) show
finite system activity for T = 2 and T = 64 with contour
lines in large scale, and also Fig. 3(c) shows T = 2048 for
t = 10 000 time steps in the recurrent regime. It shows the
fact that the activity for large T is significantly low.
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