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Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse
percolation by removing semirigid rods from a L × L square lattice that contains two layers (and M = L × L × 2
sites). The process starts with an initial configuration where all lattice sites are occupied by single monomers
(each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected by
nearest-neighbor occupied sites. Then the system is diluted by removing groups of k consecutive monomers
according to a generalized random sequential adsorption mechanism. The study is conducted by following the
behavior of two critical concentrations with size k: (1) jamming coverage θ j,k , which represents the concentration
of occupied sites at which the jamming state is reached, and (2) inverse percolation threshold θc,k , which
corresponds to the maximum concentration of occupied sites for which connectivity disappears. The obtained
results indicate that (1) the jamming coverage exhibits an increasing dependence on the size k—it rapidly
increases for small values of k and asymptotically converges towards a definite value for infinitely large k
sizes θ j,k→∞ ≈ 0.2701—and (2) the inverse percolation threshold is a decreasing function of k in the range
1 � k � 17. For k � 18, all jammed configurations are percolating states (the lattice remains connected even
when the highest allowed concentration of removed sites is reached) and, consequently, there is no nonperco-
lating phase. This finding contrasts with the results obtained in literature for a complementary problem, where
straight rigid k-mers are randomly and irreversibly deposited on a square lattice forming two layers. In this case,
percolating and nonpercolating phases extend to infinity in the space of the parameter k and the model presents
percolation transition for the whole range of k. The results obtained in the present study were also compared with
those reported for the case of inverse percolation by removal of rigid linear k-mers from a square monolayer.
The differences observed between monolayer and bilayer problems were discussed in terms of vulnerability and
network robustness. Finally, the accurate determination of the critical exponents ν, β, and γ reveals that the
percolation phase transition involved in the system has the same universality class as the standard percolation
problem.

DOI: 10.1103/PhysRevE.107.064128

I. INTRODUCTION

The percolation phase transition occurring in random se-
quential adsorption (RSA) models of extended objects is one
of the most important subjects in statistical physics [1–5]. In
this type of study, the objects are randomly and irreversibly
deposited forming a single monolayer. The final state gener-
ated is a disordered state (known as jamming state), in which
no more objects can be deposited due to the absence of free
space of appropriate size and shape [4].

At intermediate densities, and under certain conditions, a
transition occurs in the connectivity of the system [3]. The
central idea of the percolation theory is based in finding the
minimum concentration of occupied sites for which a cluster
extends from one side to the opposite one of the system (a
cluster is a group of occupied sites arranged in such a way that
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each one of them has at least one occupied nearest-neighbor
site). This particular value of the concentration rate is named
critical concentration or percolation threshold and determines
a well-defined second order transition in the system. Thus a
competition between percolation and jamming is established.

The interplay between jamming and percolation is relevant
for the description of deposition processes. Let us consider
the deposition of objects of characteristic length k: straight
rigid k-mers, k × k square tiles, and k × k × k cubic blocks.
Depending on the relationship between the dimension of the
deposited object and the dimension of the substrate, the fol-
lowing different behaviors have been observed.

(i) D-dimensional lattice and D-dimensional depositing
object. The percolation threshold is an increasing function of
the size k in the range 2 � k � kmax. For k > kmax, all jammed
configurations are nonpercolating states and, consequently,
the percolation phase transition disappears. Thus (1) kmax = 1
for straight rigid k-mers on 1D lattices [3,4], (2) kmax = 3 for
k × k square tiles (k2-mers) on 2D square lattices [6–8], and
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(3) kmax = 16 for k × k × k cubic objects (k3-mers) deposited
on 3D simple cubic lattices [9].

(ii) D-dimensional lattice and (D − 1)-dimensional de-
positing object. The percolation threshold is a nonmonotonic
function of the size k; it decreases for small particle sizes,
goes through a minimum around k = kmin, and finally tends to
a constant value for large k’s. In other words, the percolation
phase transition occurs for all values of k. Thus kmin = 13,
11, and 48 for straight rigid k-mers on 2D square [10–12],
triangular [13], and honeycomb [14] lattices, respectively, and
kmin = 18 for k2-mers on 3D simple cubic lattices [15].

(iii) D-dimensional lattice and (D − 2)-dimensional de-
positing object. This case corresponds to straight rigid k-mers
on 3D simple cubic lattices. The percolation threshold shows
a monotonic decrease with the size k and remains below
the curve of jamming coverage versus k. Consequently, per-
colating and nonpercolating phases extend to infinity in the
space of the parameter k and the model presents percolation
transition in all ranges of said value [16].

Recently, the concept of inverse percolation has been in-
troduced as a strategy to address connectivity loss in diluted
lattices [17]. The study of the inverse percolation problem
starts with all lattice sites occupied by single monomers
(each monomer occupies one lattice site). Consequently, there
always exists a spanning path through a sequence of nearest-
neighbor occupied sites in the initial configuration. Then the
system is diluted by randomly removing objects from the
surface. The main objective is to obtain the maximum con-
centration of occupied sites (minimum concentration of empty
sites) at which the connectivity disappears. This value of the
concentration is named the inverse percolation threshold. The
term inverse is used simply to indicate that the size of the
conductive phase diminishes during the removal process and
the percolation transition occurs between a percolating and a
nonpercolating state.

The inverse percolation scheme can be used to describe
the response of a network to the removal of sites or bonds,
which is the phenomena of primary interest in robustness
[18–23]. The model also offers a simplified representation
of an irreversible reaction-annihilation process [24], where k
nearest-neighbor particles react and desorb from the surface,
leaving behind k empty sites (A(1) + A(2) + · · · + A(k) → 0).

As in the classic percolation problem, the behavior of the
inverse percolation threshold depends strongly on the struc-
ture, shape, and size of the removed objects and the geometry
of the lattice. Several works have been developed in this line
[13,17,25,26]. In the case of straight rigid k-mers removed
from 2D square lattices [17], simulation results showed a
nonmonotonic size k dependence for the inverse percolation
threshold, which rapidly decreases for small particle sizes
(1 � k � 3). Then, it grows for k = 4, 5, and 6, goes through
a maximum at k = 7, and finally decreases again and asymp-
totically converges towards a definite value for large values of
k. The inverse critical concentration also exhibits a nonmono-
tonic behavior for the case of straight rigid k-mers removed
from 2D triangular lattices [13,25]: it grows from k = 1 to
k = 10, presents a maximum at k = 11, and finally decreases
and asymptotically converges towards a finite value for large
segments. In both square and triangular lattices, the percolat-
ing and nonpercolating phases extend to infinity in the space

of the parameter k and, consequently, the model presents
percolation transition in all the ranges of k-mer size.

The situation is very different for the problem of inverse
site percolation by the removal of k × k square tiles (k2-mers)
from 2D square lattices [26]: the inverse percolation threshold
is a decreasing function of k in the range (1 � k � 4). For
k � 5, all jammed configurations are percolating states and,
consequently, the percolation transition disappears (the lattice
remains connected even when the highest allowed concentra-
tion of removed sites is reached).

The aforementioned studies have been conducted in the
monolayer regime; however, less attention has been received
by the development of more realistic models considering the
formation of more than one layer. In a recent work from
our group [27], the irreversible bilayer adsorption of straight
semirigid k-mers of different sizes on 2D square lattices has
been studied. The adsorption kinetics was simulated by a
RSA algorithm, generalized to two deposited layers. The ob-
tained results revealed that the percolation threshold exhibits a
monotonic decreasing function when it is plotted as a function
of the k-mer size. This behavior is completely different from
that observed for the monolayer problem, where the percola-
tion threshold shows a nonmonotonic k-mer size dependence.

The study in Ref. [27] clearly shows that the bilayer
formation drastically affects the behavior of the percolation
threshold with k and other critical properties (such as the
crossing points of the percolation probability functions). The
notable differences observed between monolayer and bilayer
problems for standard percolation encourage the extension of
the inverse percolation model to substrates formed by more
than one layer. The objective of this paper is to provide
a thorough study in this direction. For this purpose, exten-
sive numerical simulations supplemented by analysis using
finite-size scaling theory have been carried out to study the
problem of inverse percolation by removing semirigid rods
from square bilayers. Jamming and percolation thresholds
have been obtained as a function of the k-mer size. In addition,
an exhaustive analysis of critical exponents and universality
has been performed. All of these quantities are reported for
the bilayer problem.

The percolation problem in the bilayer may resemble the
case of percolation on multilayer networks [28–33]. These
systems consist of two interdependent networks, denoted as A
and B, with a common number M of nodes. The functioning
of a node in network A, denoted as Ai [where i = (1, . . . , M )],
is dependent on the performance of the corresponding node
in network B, denoted as Bi. Specifically, a failure in a node
Ai leads to a cessation of the operation of the corresponding
node Bi, highlighting the interdependence of the networks.
Given that many critical infrastructures such as power sta-
tions, transportation, and power grids are interconnected, the
study of multiplex networks has become increasingly impor-
tant displaying differences in terms of their robustness and
percolation characteristics when compared to single networks
[34]. Although some similarities can be found between the
interdependent networks and bilayer problems, there are sub-
stantial differences in the dilution process. In interdependent
networks, the failures of nodes in one network cause depen-
dent nodes in the other network to fail, leading to a cascade
of failures [34]. However, in our inverse percolation problem,

064128-2



INVERSE PERCOLATION BY REMOVING STRAIGHT … PHYSICAL REVIEW E 107, 064128 (2023)

the removal of a particle (i, j, 1) in the upper layer is required
to remove the particle beneath it, (i, j, 2), but these are not
simultaneous events. Furthermore, the particle in (i, j, 2) may
never be removed due to jamming.

Another variation of the classical percolation problem in
which components of the system are also removed randomly,
irreversibly, and independently until large scale connectivity is
lost was given in Ref. [35], where the authors introduced the
“drilling percolation” model. The problem consists of study-
ing how a solid cube is randomly drilled until it fragments
into pieces. For this purpose, columns of size 1 × 1 × L are
sequentially removed from a large cube of size L × L × L.
The process is repeated until the structure collapses into small
pieces and the bottom and top part of the cube are no longer
connected. The drilling percolation model exhibits a contin-
uous transition at a critical density of holes with a different
universality than the random percolation [35–37]. It should
be noted that the problem presented here is different from the
one in Ref. [35], not only in terms of the structure (bilayer
2 × L × L/cube L × L × L), but also in terms of the removal
process (needles of size k << L/rods of size L).

This paper is organized as follows. The deposition model
and jamming results are described in Sec. II. The percolation
properties (inverse percolation thresholds and critical expo-
nents) are presented and discussed in Sec. III. Finally, the
conclusions are drawn in Sec. IV.

II. MODEL, REMOVAL KINETICS,
AND JAMMING COVERAGE

Let us assume the substrate is represented by a two-
dimensional L × L square lattice that contains two layers, so
that the sites matrix has a geometry M = L × L × 2. Occu-
pied and empty sites are distributed with concentrations θ and
θ∗ (θ∗ = 1 − θ ), respectively. Initially, all sites are occupied;
thus the concentration is θ = 1 (θ∗ = 0). When N k-mers are
removed, the concentration of occupied [empty] sites goes as
θ = 1 − kN/(2L2) [θ ′ = kN/(2L2)].

The surface goes through a dilution process in which
groups of k particles are removed at a time. Those groups of
particles are sets of consecutive occupied sites aligned along
one of two lattice axes and are called k-mers. The positions
available for desorption are indicated by three indices (i, j, n).
The pair (i, j) denotes the location in the square lattice (x, y
coordinates) and n is the layer number: n = 1 for layer 1
(bottom layer) and n = 2 for layer 2 (top layer).

The desorption process starts by the removal of a k-mer
from the top layer. After this first k-mer is removed, the
system is randomly diluted as follows: (i) one of the two (x, y)
possible lattice directions and a starting site are randomly
chosen and (ii) if, beginning at the chosen site, there are k
consecutive nearest-neighbor sites (particles), then a k-mer is
removed from those sites (see Fig. 1). Otherwise, the attempt
is rejected. The removal procedure is performed with periodic
boundary conditions in both directions (x and y axes) and
in both layers. For a given realization, we start from a fully
occupied lattice with θ = 1 and remove k-mers until no more
removals are possible. Every time N̄ k-mers are removed
[that is, the concentration of occupied sites decreases in a
�θ = kN̄/(2L2)], the percolation and jamming quantities that

FIG. 1. (a) Schematic representation of tetramers (k = 4) re-
moved along a line in the y direction of the square lattice. As the
k-mers are semirigid, they can deform to find adjacent empty sites
between the second and first layers (but always extend along one
of the two lattice directions). Black spheres not connected repre-
sent initially filled sites, open black spheres not connected represent
vacancies, blue spheres connected by lines correspond to k-mers in
the second layer, and red spheres connected by lines indicate k-mers
located partially in the first and second layers. (b) Final state. Some
objects have been removed in the x direction (open red circles). The
system has reached the jamming state and it is no longer possible to
remove objects of length 4.

are described below are measured. This strategy allows us to
get information for several values of θ in a single run. To
obtain statistically meaningful results, we repeat this process
105 times and calculate the average percolation and jamming
quantities. This averaging over many realizations allows us to
obtain reliable results.

A simple visualization of how the lattice is diluted is
presented in Fig. 1(a). The figure shows a portion of sites
along the y direction of a square lattice. k-mers (with k = 4)
removed from the top layer are indicated by blue spheres con-
nected by lines. The dilution is not restricted to straight rigid
rods but includes semirigid k-mers whose components may
be in both layers. The removed semirigid objects are denoted
as red spheres connected by lines. The resulting vacancies
are indicated by open black spheres not connected. Black
spheres not connected represent occupied sites. As shown in
the figure, removing a k-mer unit from a given (i, j, 1) site
in the bottom layer requires that the site (i, j, 2) in the top
layer has already been removed. In part (b), the final state is
presented. Open red circles represent vacancies generated by
k-mers removed along the x direction. In the final state, it is
no longer possible to remove objects of length 4.

The removal process ends when there are no k-adjacent
occupied sites to remove; see Fig. 1(b). The coverage at which
it is no longer possible to remove units even when there are
occupied sites is called jamming coverage. This configuration
depends both on the size of the deposited object and the lattice
geometry. In order to find the maximum concentration θ for
which the connectivity disappears, the space of concentrations
allowed for removal given by the jamming concentration must
be known.

As it was established in Refs. [17,25], both the direct and
inverse jamming problems are complementary for the mono-
layer and it is possible to obtain one from the other. This
argument can be extended for the bilayer as follows. Let us
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FIG. 2. Mapping L → L∗ from the original bilayer lattice L to
the complementary lattice L∗ where the first (second) layer in L
corresponds to the second (first) layer in L∗ and each empty (occu-
pied) site of L transforms into an occupied (empty) one of L∗. Three
different situations have been represented: (a) L is fully occupied thus
L∗ is empty, (b) a dimer has been removed from the second layer of L
and then it corresponds to the deposition of a dimer in the first layer
of L∗, and (c) a set of dimers are removed from L so that no more
objects can be removed and, consequently, no more objects fit in L∗.
Full circles correspond to the occupied sites and the dotted circles to
the removed objects.

consider a mapping L → L∗ from the original bilayer lattice
L to the complementary lattice L∗ where the first (second)
layer in L corresponds to the second (first) layer in L∗ and
each empty (occupied) site of L transforms into an occupied
(empty) one of L∗; see Fig. 2(a). The latter can be better appre-
ciated in Fig. 2(b), which shows how the removal of a dimer
in the second layer of L maps to a dimer deposition in the first
layer of L∗. Then, the filling process in the complementary
lattice (dilution process in the original lattice) is equivalent to
a RSA process of k-mers. Accordingly, the final state in L∗ is a
disordered state (known as jamming state), in which no more
objects can be deposited due to the absence of free space of
appropriate size and shape [4] [see Fig. 2(c)].

The jamming threshold as a function of k (θ∗
j,k) was ob-

tained in Ref. [27] for the deposition of semirigid k-mers
on a bilayer square lattice. The authors found that (1) θ∗

j,k
is a decreasing function of k and (2) the best fit to θ∗

j,k
(obtained for k � 8) corresponds to the expression θ∗

j,k =
0.7299 − 0.062/k + 3.54/k2, with θ∗

j,∞ = 0.7299(21) being
the result for the limit coverage of a square bilayer lattice by
infinitely long k-mers.

Then, during the dilution process in the original lattice, the
fraction of holes varies between 0 and θ∗

j,k , while the fraction
of occupied sites ranges from 1 to θ j,k (≡ 1 − θ∗

j,k ) as

θ j,k = 0.2701 + 0.062

k
− 3.54

k2
(k � 8). (1)

Once the space of the parameters θ and θ∗ are determined,
the percolation properties of the system will be studied in the
following.

III. PERCOLATION PROPERTIES

As already mentioned, the central idea of inverse perco-
lation is based on finding the maximum concentration of
occupied sites, θ , for which connectivity disappears. This
critical concentration is called inverse percolation thresh-
old θc and determines a well defined geometrical transition
that separates a phase in which an infinite cluster is present
(θ > θc) from a phase where we find many finite clus-
ters (θ < θc). This is a second-order phase transition and
can be characterized by well-defined critical exponents.
Our interest is in studying the bilayer problem and in
determining (i) how the inverse percolation threshold is
modified when the size of the k-mer increases and (ii) to
what universality class the phase transition of this problem
belongs.

A. Calculation method

It is well known that it is quite a difficult matter to ana-
lytically determine the value of a percolation threshold for a
given lattice when multisite occupation is considered. Then,
percolation thresholds have to be estimated numerically by
means of computer simulations.

To obtain the inverse percolation threshold, we perform a
number of numerical simulations of the following steps: (a)
the construction of the bilayer lattice for the desired fraction
θ of occupied sites, according to the scheme in Sec. II, and
(b) the cluster analysis by using the Hoshen and Kopelman
algorithm [38] with the following connectivity criterion: each
position (i, j, 1) in the first layer has four nearest-neighbor
positions in the first layer [(i − 1, j, 1), (i + 1, j, 1), (i, j −
1, 1), and (i, j + 1, 1)] and one nearest-neighbor position in
the second layer [(i, j, 2)]. In the same way, each position
(i, j, 2) in the second layer has four nearest-neighbor positions
in the second layer [(i − 1, j, 2), (i + 1, j, 2), (i, j − 1, 2),
and (i, j + 1, 2)] and one nearest-neighbor position in the
first layer [(i, j, 1)] and (c) the determination of the largest
cluster SL and, finally, the existence of a percolating island. In
steps (b) and (c), open boundary conditions are implemented.
At this point, the probability RX

L,k (θ ) that a bilayer lattice
composed of L × L × 2 sites percolates at the concentration
θ of occupied sites is calculated. According to the afore-
mentioned connectivity criterion, we say that a bilayer lattice
percolates when there is a percolating path (composed by
nearest-neighbor occupied sites located in layer 1 and layer
2) that passes from one side to the other side of the system.
The subindex k in the definition of R indicates that the density
θ was reached by removing sets of particles of size k (k-mers).

The probability R = RX
L,k (θ ) that a bilayer lattice of linear

size L percolates at concentrations θ is defined [39] as follows.
RR

L,k (θ ): the probability of finding a rightward percolating
cluster, along the x direction.

RD
L,k (θ ): the probability of finding a downward percolating

cluster, along the y direction.
RU

L,k (θ ): the probability of finding a cluster which perco-
lates on any direction.

RI
L,k (θ ): the probability of finding a cluster which perco-

lates in both (mutually perpendicular) directions.
RA

L,k (θ ) = 1
2 [RU

L,k (θ ) + RI
L,k (θ )].

064128-4



INVERSE PERCOLATION BY REMOVING STRAIGHT … PHYSICAL REVIEW E 107, 064128 (2023)

FIG. 3. Fraction of percolating lattices RX
L,k (θ ) as a function of

the concentration θ for k = 2 (a), k = 4 (b), and three different lattice
sizes: L/k = 128, squares, L/k = 320, triangles, and L/k = 512,
circles. Blue, red, and green symbols represent data for U, A, and
I criteria, respectively. Vertical dashed lines denote the inverse per-
colation threshold in the thermodynamic limit L → ∞.

A total of mL = 105 independent runs of such a two step
procedure were carried out for each bilayer of size L. Then,
RX

L,k (θ ) is given by the number of samples that have a per-
colating cluster for a given criterion X = {R, D, I,U, A}, mX

L ,
divided by the total number of samples: RX

L,k (θ ) = mX
L /mL.

The procedure is repeated for different values of L, θ , and
k-mer size. In our simulations, 2 � k � 20 and 0 � θ �
θ j . In the case of k � 12, the values of the inverse per-
colation thresholds were obtained for lattice sizes L/k =
128, 256, 320, 448, and 512. The cases corresponding to
k ranging between 14 and 20 were calculated for L/k =
64, 96, 128, and 256 with an effort reaching almost the limits
of our computational capabilities. As it can be appreciated,
this represents extensive calculations from the numeric point
of view.

In addition to the different probabilities RX
L,k (θ ), perco-

lation order parameter P and susceptibility χ have been
measured [40–42] as

P = 〈SL〉
M

(2)

and

χ = [〈
S2

L

〉 − 〈SL〉2
]
/M, (3)

where M = 2L2, SL represents the size of the largest cluster,
and 〈. . .〉 means an average over simulation runs.

B. Percolation thresholds

In Fig. 3, the probabilities RA
L,k (θ ), RI

L,k (θ ), and RU
L,k (θ ) are

presented for k = 2 (a) and k = 4 (b). As mentioned above,
the simulations were performed for lattice sizes ranging

between L/k = 128 and L/k = 512. For clarity, simulation
results from only three lattice sizes are shown: L/k = 128
(squares), L/k = 320 (up triangles), and L/k = 512 (circles).
The behavior of the probability curves RX

L,k (θ ) strongly de-
pends on the system size. Even so, for a given criterion X , they
all cross in a unique point RX ∗

. In this case, the obtained values
RA∗ ≈ 0.35, RI∗ ≈ 0.17, and RU ∗ ≈ 0.53 agree with the ones
reported for the standard percolation bilayer problem [27]. In
addition, the intersection points do not modify their numerical
value for the different k sizes studied. This finding represents
an indication that the universality class of the phase transition
involved in the inverse percolation bilayer problem (i) does
not change with respect to the standard percolation bilayer
problem and (ii) is conserved no matter the values of k.

The crossing point for each criterion X is located at a very
well defined value in the θ axis, allowing for a preliminary
calculation of the inverse percolation threshold. The theory
of finite-size scaling [3,40] gives us a more efficient way to
determine the percolation threshold from the maximum of
the curves of RX

L,k (θ ). To do this, first it is convenient to fit
the probability curves with some function through the least-
squares method so that they can be expressed as a continuous
function of θ . The fitting curve used is the error function
because dRX

L,k (θ )/dθ is expected to behave like the Gaussian
distribution near the peak. This assumption is good enough
to obtain the parameters that are needed to apply finite-size
scaling theory [3,43],

dRX
L,k (θ )

dθ
= 1√

2π�X
L,k

exp

⎧⎨
⎩−1

2

[
θ − θX

c,k (L)

�X
L,k

]2
⎫⎬
⎭, (4)

where θX
c,k (L) is the concentration at which the slope of

RX
L,k (θ ) is the largest and �X

L,k is the standard deviation from
θX

c,k (L). For large systems (L → ∞), these thresholds con-
verge to a unique value according to the scaling behavior [3]

θX
c,k (L) = θX

c,k (∞) + AX L−1/ν, (5)

where AX is a nonuniversal constant and ν is the critical
exponent of the correlation length.

Figure 4 shows the plots towards the thermodynamic
limit of the inverse percolation threshold θX

c,k (L) according to
Eq. (5) for the data in Fig. 3. The critical exponent ν was set
as ν = 4/3 for the present analysis, since, as will be shown
in Sec. III C, our model belongs to the same universality class
as random percolation [3]. From extrapolations it is possible
to obtain θX

c,k (∞) for the criteria I , A, and U . Combining
the three estimates for each case, the final values of θc,k (∞)
can be obtained. The maximum of the differences between
|θU

c,k (∞) − θA
c,k (∞)| and |θ I

c,k (∞) − θA
c,k (∞)| gives the error

bar for each determination of θc,k (∞). In this case, the val-
ues obtained were θc,k=2(∞) = 0.3910(3) and θc,k=4(∞) =
0.3587(2). For the rest of the paper, we will denote the perco-
lation threshold for each size k by θc,k [for simplicity we will
drop the symbol “(∞)”].

The method used in Fig. 4 was introduced by Yonezawa
et al. [39] to estimate percolation thresholds from the study of
finite-size systems. In Ref. [39], the authors showed that (1)
a true value close to the percolation threshold of an infinite
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FIG. 4. Extrapolation of the inverse percolation threshold for
an L-lattice θX

c,k (L) (X = I, A,U ) toward the thermodynamic limit
according to the theoretical prediction given by Eq. (5). Squares,
circles, and triangles denote the values of θX

c,k (L) obtained by using
the criteria I, A, and U , respectively. Two values of k are presented:
(a) k = 2 and (b) k = 4. The bar error in each measurement is smaller
than the size of the corresponding symbol.

system can be obtained from the probability curves for A
criterion and (2) upper and lower bounds of the estimated
threshold are given from the probability curves for I and U
criteria, respectively.

The procedure of Fig. 4 was repeated for increasing values
of k. The obtained results revealed that the inverse percola-
tion threshold is a monotonically decreasing function of k in
the interval [1,17] (see Fig. 7). However, when k increases
above 17 (k > 17), a striking behavior is observed: all jammed
configurations are percolating states and, consequently, there
is no nonpercolating phase. This phenomenon can be better
understood by examining Fig. 5, where the curves of RX

L,k (θ )
(X = I,U, A as indicated) as a function of the concentration
θ are shown for k = 17 (a) and k = 18 (b).

For k = 17, three lattice sizes are shown in the figure:
L/k = 96 (squares), L/k = 128 (triangles), and L/k = 256
(circles). The probabilities RA

L,k (θ ), RI
L,k (θ ), and RU

L,k (θ ) look
similar to those of Fig. 3. Namely, the curves for different
lattice sizes cross each other in a unique point (which depends
on the criterion X used), determining the inverse percolation
threshold for each k.

The situation is different for k = 18. In this case, only
the curves for L/k = 128 (triangles) and L/k = 256 (circles)
are plotted. As it can be observed from Fig. 5(b) (and from
data not shown here for clarity), the functions RX

L,k (θ ) tend
to 1 as the lattice size increases. Thus it is expected that, in
the thermodynamic limit (L → ∞), the probabilities RX

L,k (θ )
remain constant and equal to 1 up to the jamming coverage
θ j,k=18 = 0.2632(1) (vertical dashed line in the figure). This
finding is a clear indication that (i) the percolation phase

FIG. 5. (a) Fraction of percolating lattices RX
L,k (θ ) as a function

of the concentration θ for k = 17 and different lattice sizes: L/k =
96 (squares), 128 (triangles), and 256 (circles). Blue, red, and green
symbols represent data for U, A, and I criteria, respectively. Dashed
and dotted lines denote the inverse jamming limit and the percolation
threshold in the thermodynamic limit L → ∞, respectively. (b) Same
as part (a) but for k = 18. For clarity, only the curves for L/k = 128
(triangles) and L/k = 256 (circles) are plotted. The vertical dashed
line indicates the inverse jamming coverage.

transition disappears and (ii) there is only one phase (the
percolating phase) for k > 17. The interplay between the
percolation and the jamming effects is responsible for the
existence of a maximum value of k (in this case, kmax = 17)
from which the percolation phase transition no longer occurs.
These concepts can be better visualized with the help of the
next figure.

Figure 6 shows typical configurations obtained after re-
moving semirigid k-mers from a 32 × 32 × 2 square bilayer
lattice. Gray (black) spheres represent occupied sites in the
first (second) layer. Green and yellow lines indicate percola-
tion paths connecting top and bottom (left and right) sides of
the lattice. In part (a), k = 16 < kmax, the fraction of occupied
sites is slightly above the corresponding jamming coverage
and the system percolates in both directions. Solid spheres
surrounded by ellipses correspond to sets of 16 consecutive
nearest-neighbor sites, which could still be removed from
the lattice. Now suppose that the dilution process contin-
ues and the set of sites pointed to by an arrow is removed.
The obtained configuration [see Fig. 6(b)] corresponds to a
nonpercolating state (note that vertical and horizontal con-
nectivity disappeared) and the jamming concentration has not
yet been reached. A percolation phase transition has occurred
during the removal process.

The same does not happen for the case of k > kmax. In fact,
Fig. 6(c) depicts a typical jamming configuration produced by
the removal of k-mers of length k = 20 > kmax. Upon reach-
ing jamming, there is no possibility of removing 20-mers, but
the lattice is still connected by occupied sites. In this case,
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FIG. 6. Typical configurations obtained after removing semirigid
k-mers from a 32 × 32 × 2 square lattice at the bilayer regime. Gray
(black) spheres represent occupied sites in the first (second) layer.
Green and yellow lines indicate percolation paths connecting top and
bottom (left and right) sides of the lattice. In part (a), k = 16 < kmax

and the fraction of occupied sites is slightly above the corresponding
jamming coverage. Solid spheres surrounded by ellipses correspond
to sets of 16 consecutive nearest-neighbor sites, which could still be
removed from the lattice. (b) Configuration obtained after removing
the set of sites pointed to by an arrow in part (a). In part (c), a typical
jamming configuration produced by the removal of k-mers of length
k = 20 > kmax is shown.

FIG. 7. Inverse percolation threshold θc,k (solid circles) and jam-
ming coverage θ j,k (solid squares) for k ranging from 2 to 32. The
line fitting the solid squares corresponds to Eq. (1). Inset: zoom of
the main figure for 12 � k � 20.

the lattice connectivity is maintained throughout the entire
removal process and no percolation phase transition occurs.

The resulting jamming-percolation phase diagram is pre-
sented in Fig. 7: (1) for 1 � k � 17, the curve of θc,k (solid
circles) divides the space of allowed values of θ in a percolat-
ing region (θ > θc,k) and a nonpercolating region (θ j,k < θ <

θc,k) and (2) for k > 17, the entire space of allowed values
of θ (θ > θ j,k) is a percolating region. The region below the
curve of θ j,k (solid squares) corresponds to a forbidden region
for removal of the θ space. The line fitting the solid squares
corresponds to Eq. (1).

The decreasing behavior of θc,k versus k is also accompa-
nied by a decrease in the partial concentrations θ l1

c,k and θ l2
c,k ,

where θ l1
c,k (θ l2

c,k ) represents the coverage of the layer 1(2) at
the critical point (θc,k = θ l1

c,k/2 + θ l2
c,k/2). The partial critical

concentrations vary from θ l1
c,k=2 ≈ 0.569 and θ l2

c,k=2 ≈ 0.213
to θ l1

c,k=17 ≈ 0.469 and θ l2
c,k=17 ≈ 0.053. These findings indi-

cate that, in the percolating phase, most of the occupied sites
are located in layer 1 (73% for k = 2 and 90% for k = 17) and
only a minority of the occupied sites are in the layer 2. Then, if
the layers are analyzed independently, (i) we observe always
a percolating cluster in layer 1 when θ = θc,k (for all values
of k) and (ii) on the contrary, the layer 2 is a nonpercolating
phase at the critical coverage θ = θc,k (occupied sites located
in layer 2 can only be connected to each other through sites in
layer 1).

In the case of the standard percolation bilayer problem
[27], the percolation threshold is a decreasing function with
increasing k [solid squares in Fig. 8(a)]. That is, the percola-
tion threshold decreases for small particle sizes and then tends
to a constant value for very long objects. Accordingly, the
model presents percolation transition in all ranges of k-mer
size. This monotonic decreasing behavior is completely dif-
ferent from that observed in Fig. 7 for the inverse percolation
bilayer problem, where the percolation threshold curve cuts
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FIG. 8. (a) Inverse percolation curve in Fig. 7, θc,k versus k (solid
circles), is shown in comparison with the data of the standard perco-
lation threshold as a function of size k corresponding to irreversible
bilayer adsorption of straight semirigid k-mers on 2D square lattices
(solid squares, Ref. [27]). (b) Comparison between the percolation
phase diagram obtained by removing semirigid k-mers from square
bilayers (solid circles) and the corresponding one obtained by remov-
ing rigid k-mers from square monolayers (solid squares) [17]. Region
I represents the percolating region for the monolayer problem. In
the case of the bilayer problem, the percolating region is the sum
of regions I and II.

off abruptly at k = 17 [solid circles in Fig. 8(a)]. Thus, while
the inverse and direct jamming bilayer problems turn out to
be complementary and, therefore, one can be deduced from
the other (θ j,k + θ∗

j,k = 1; see Sec. II), the same is not true for
the inverse and direct percolation bilayer problems.

Finally, it is also interesting to compare the results obtained
here for the bilayer problem with those reported for the case
of inverse percolation by removing rigid linear k-mers from
a square monolayer [17]. The comparative study is shown
in Fig. 8(b). Solid squares represent the inverse percolation
threshold as a function of k for the square lattice. This curve
was previously obtained in Ref. [17] and determines the lower
limit of the percolating region for the monolayer problem. In
the case of the bilayer problem, the lower boundary of the

percolating region (solid circles) results from the combination
of two curves (see the phase diagram in Fig. 7): (i) the per-
colation curve for k ranging between 1 and 17 and (ii) the
jamming curve for k > 17.

As it can be observed from Fig. 8(b), the limit curve cor-
responding to the bilayer problem remains below the curve
obtained for the monolayer problem. This behavior has very
interesting implications in terms of vulnerability and network
attacks. In fact, inverse percolation theory can be used to
understand network robustness, i.e., how the connectivity of
a network changes as its elements (sites or bonds) are re-
moved (or failed) through either random or malicious attacks
[18–23]. The focus of robustness in complex networks is the
response of the network to the removal of nodes or links.
From this point of view, the results in Fig. 8(b) indicate that
the square monolayer is more vulnerable than the square bi-
layer to removal of linear sets of consecutive nodes. As an
illustrative example, it is necessary to remove almost 68%
of the links to disconnect a bilayer lattice by removing sets
of eight linear nearest-neighbor consecutive sites. The same
effect can be achieved by removing only 43% of nodes in
the case of a monolayer lattice. Moreover, for large k-mers
(k > 17), the bilayer lattice remains connected even when the
highest allowed concentration of removed sites is reached.

C. Critical exponents and universality

In order to determine the universality class to which this
problem belongs, the critical exponents ν, β, and γ have been
calculated. According to scaling assumptions, the standard fi-
nite size scaling theory [40] provides several ways to estimate
the critical exponent ν from simulation data. One of these
methods is from the maximum of the function dRX

L,k/dθ ,

(
dRX

L,k

dθ

)
∝ L1/ν . (6)

In Fig. 9(a), log[(dRX
L,k/dθ )max] has been plotted as a

function of log L (note the log-log functional dependence)
for k = 2 and 4 as indicated. According to Eq. (6), the slope
of each line corresponds to 1/ν. As it can be observed, the
slopes of the curves remain constant, with ν = 4/3 being for
the inverse percolation model in the bilayer square lattice.

Once ν was known, the exponent γ can be determined by
scaling the maximum value of the susceptibility in Eq. (3).
The behavior of χ at criticality is χ = Lγ /νχ (u), where u =
(θ − θc,k )L1/ν and χ is the corresponding scaling function. At
the point where χ is maximal, u = const and χmax ∝ Lγ /ν .
The data for χmax with k = 2 (squares) and k = 4 (circles) are
shown in Fig. 9(b). The obtained values of the slopes (γ /ν)
are consistent with the exact value of the critical exponent of
the ordinary percolation, γ = 43/18.

And, finally, the exponent β can be determined from the
scaling behavior at criticality of the order parameter in Eq. (2):
P = L−β/νP(u′), where u′ = |θ − θc,k|L1/ν and P is the scal-
ing function. At the point where dP/dθ is maximal, u′ =
const and ( dP

dθ
)max = L(−β/ν+1/ν)P(u′) ∝ L(1−β )/ν .

The scaling of (dP/dθ )max is shown in Fig. 9(c) for k = 2
and 4 as indicated. The values of β obtained from the slopes of
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FIG. 9. (a) Log-log plot of (dRA
L,k/dθ )max as a function of L/k for

two different cases: k = 2 (circles) and k = 4 (squares). According to
Eq. (6), the slope of each line corresponds to 1/ν = 3/4. (b) Log-log
plot of χmax as a function of L/k for the cases in part (a). The
slope of each line corresponds to γ /ν = 43/24. (c) Log-log plot
of (dP/dθ )max as a function of L/k for the same cases reported in
parts (a) and (b). The slope of each line corresponds to (1 − β )/ν =
31/48.

the curves coincide (within the statistical error) with the exact
value of β for ordinary percolation, β = 5/36.

The analysis carried out in Fig. 9 was repeated for k vary-
ing between 2 and 17. For each k, the values of ν, γ , and β

were determined from the corresponding linear regressions.
Combining these estimates, the average values of the critical
exponents were calculated: ν = 1.341(11), γ = 2.411(33),
and β = 0.138(9). The results obtained for ν, γ , and β clearly
indicate that the inverse percolation model in the bilayer
square lattice belongs to the same universality class as random
percolation regardless of the size of k considered.

When inverse percolation is considered both on the mono-
layer [17,25,26] and on the bilayer (this work), the analysis
of the critical exponents shows that the problem belongs to
the random percolation universality class. The latter is not
the case for the drilling percolation model [35–37], which
presents a different universality class than the ordinary ran-
dom percolation model.

IV. CONCLUSIONS

The problem of inverse percolation by removing semirigid
rods of length k (k-mers) from L × L square lattices has
been studied by numerical simulations and finite-size analy-
sis. The process starts with the deposition of 2L2 monomers
forming two layers. In this initial configuration, all lattice
sites are occupied and, consequently, the opposite sides of
the lattice are connected by nearest-neighbor occupied sites.
Then the L × L × 2 system is diluted by removing groups
of k consecutive nearest-neighbor monomers (aligned along
one of two lattice axes) following a generalized random se-
quential adsorption (RSA) mechanism. The removed rods
include semirigid k-mers whose components may be in both
layers.

First, the dependence of the jamming coverage θ j,k on
the size k was studied. It was demonstrated that the removal
process of semirigid k-mers from the bilayer lattice L is
equivalent to a RSA process of semirigid k-mers on the com-
plementary bilayer lattice L∗. Each empty (occupied) site of
L transforms into an occupied (empty) one of L∗ and the first
(second) layer in L corresponds to the second (first) layer in
L∗. On the basis of these arguments, it is straightforward to
conclude that θ j,k ≡ 1 − θ∗

j,k , where θ∗
j,k represents the limit

concentration threshold for the standard (RSA) deposition of
semirigid k-mers on a bilayer square lattice. Then, using the
expression obtained for θ∗

j,k in Ref. [27], it was found that
θ j,k = 0.2701 + 0.062/k − 3.54/k2. According to this equa-
tion, the jamming coverage θ j,k rapidly increases for small
values of k and asymptotically converges towards a definite
value for infinitely large k-sizes θ j,k→∞ ≈ 0.2701.

Once the limiting parameters θ j,k were determined, the
percolation properties of the system were studied. It was
found that the percolation threshold θc,k decreases monotoni-
cally with increasing k up to k = 17. For k � 18, all jammed
configurations are percolating states and, consequently, the
percolation phase transition disappears. This implies that, for
larger values of k, the jamming critical concentration occurs
before the percolation phase transition and the system cannot
be disconnected even when the highest allowed concentration
of removed sites is reached.

The crossing between the percolation and jamming curves
around k = 17 and the absence of percolation phase transition
for k � 18 contrast sharply with the behavior observed for the
standard RSA of semirigid k-mers on square lattices forming
two layers. In the deposition case, percolating and nonperco-
lating phases extend to infinity in the space of the parameter
k and the model presents percolation transition for the whole
range of k. This finding indicates that, contrary to what was
observed in the jamming case (where standard and inverse
models are trivially symmetric, θ j,k + θ∗

j,k = 1), the comple-
mentarity property is not valid for percolation: θc,k + θ∗

c,k �= 1
(k > 1). In fact, the cluster analysis for standard percolation
is carried out in a phase of deposited rods. On the other
hand, for inverse percolation, the cluster analysis is carried
out in a phase of monomers, which remain in the lattice after
the removal of a given number of k-mers. For k = 1, and
as a consequence of the particle-hole symmetry characteriz-
ing the usual single-particle statistics, standard and inverse
percolation are simply related: θc,k=1 + θ∗

c,k=1 = 1. However,
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if some sort of correlation exists, like particles that occupy
several contiguous lattice sites, the particle-hole symmetry is
missing and standard and inverse percolation are completely
independent problems. In other words, the inverse percolation
problem cannot be derived straightforwardly from the stan-
dard percolation problem and it deserves a detailed treatment
as presented here. This behavior had already been observed
for the monolayer problem on the square lattice [17,26].

The results obtained here were also compared with the ones
corresponding to the inverse percolation problem by removing
rigid linear k-mers from a square monolayer [17]. The curve
determining the lower boundary of the percolating region for
the bilayer problem remains below the limit curve obtained for
the monolayer problem. In terms of vulnerability and network
attacks, this behavior indicates that the square monolayer is
more vulnerable than the square bilayer to removal of lin-
ear sets of consecutive nodes. Moreover, for large k-mers
(k > 17), the bilayer lattice remains connected even when the
highest allowed concentration of removed sites is reached.
The present study reinforces the concept that the vulnerability
of a network depends on its structure and the shape and size
of the attacked region.

The present study complements previous research findings
obtained for the monolayer problem [17] and could have po-
tential application in the field of conductive films. The results
in this paper, and those in Ref. [17], demonstrate that the
possibility of forming a bilayer favors the connectivity of
the system against the failure of single network components.
Thus our theoretical predictions can guide future experiments
investigating the effects of multilayer deposition or removal
of conductive elements on the conductive properties of the
resulting system.

As it was mentioned in the Introduction, the bilayer may
resemble the multilayer networks but there are several differ-
ences in the behavior of both systems. Studies on attacks in
single complex networks have shown that percolation transi-
tions are second-order transitions [20,21]. The robustness of
single networks strongly depends on their degree distribution.
For instance, Erdös-Rényi networks with homogeneous con-
nectivity are highly susceptible to random failures or attacks,
whereas scale-free networks with heterogeneous connectivity
demonstrate exceptional resilience to them but are more sen-
sitive to targeted attacks [44,45]. In contrast, percolation in
multiplex networks leads to a first-order transition [30,34,46]
and is extremely vulnerable to random removal of nodes,
even when broader degree distributions are considered [30].
Real multilayer networks have also been studied and it has
been found that they can be resilient to targeted attacks

on high degree nodes due to their hidden interlayer geo-
metric correlations. In contrast, multiplex networks without
such correlations are extremely vulnerable to these attacks
[29]. It is also noteworthy that a single layer is found to
be more resilient to random failures than the multilayer
[30,34,46], whereas here the bilayer is more robust than the
monolayer.

The complete set of critical exponents ν, β, and γ was
determined. The results obtained confirm that the percolation
phase transition involved in the system, which occurs for k
varying between 1 and 17, belongs to the same universality
class as the standard two-dimensional percolation problem.
Even though the bilayer geometry of the lattice drastically
affects the behavior of the percolation threshold as a function
of the k-mer size, it does not alter the nature of the percolation
transition occurring in the system as in the drilling percolation
problem [35–37].

Future efforts will be devoted to (i) extending the present
analysis to n-layer systems with n > 2 and removed rods of
sizes k of the order of L (under these conditions, the results
obtained could be analyzed in terms of drilling percolation),
(ii) exploring the asymmetry between standard and inverse
percolation in other 2D lattices (honeycomb, triangular), and
(iii) investigating the effect of the shape of the removed object
(structure of the attack) on the connectivity properties of the
diluted (damaged) lattice.
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