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on three-dimensional cubic lattices

P. M. Pasinetti,1 A. J. Ramirez-Pastor ,1,* and E. E. Vogel2,3

1Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis - CONICET,
Ejército de Los Andes 950, D5700HHW San Luis, Argentina

2Departamento de Física, Universidad de La Frontera, Casilla 54-D, Temuco 481180, Chile
3Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile

(Received 7 March 2023; accepted 7 June 2023; published 22 June 2023)

Combining Monte Carlo simulations and thermodynamic integration method, we study the configurational
entropy per site of straight rigid rods of length k (k-mers) adsorbed on three-dimensional (3D) simple cubic
lattices. The process is monitored by following the dependence of the lattice coverage θ on the chemical potential
μ (adsorption isotherm). Then, we perform the integration of μ(θ ) over θ to calculate the configurational entropy
per site of the adsorbed phase s(k, θ ) as a function of the coverage. Based on the behavior of the function s(k, θ ),
different phase diagrams are obtained according to the k values: k � 4, disordered phase; k = 5, 6, disordered
and layered-disordered phases; and k � 7, disordered, nematic and layered-disordered phases. In the limit of
θ → 1 (full coverage), the configurational entropy per site is determined for values of k ranging between 2 and
8. For k � 6, MC data coincide (within the statistical uncertainty) with recent analytical predictions [D. Dhar
and R. Rajesh, Phys. Rev. E 103, 042130 (2021)] for very large rods. This finding represents the first numerical
validation of the expression obtained by Dhar and Rajesh for d-dimensional lattices with d > 2. In addition,
for k � 5, the values of s(k, θ → 1) for simple cubic lattices are coincident with those values reported in [P. M.
Pasinetti et al., Phys. Rev. E 104, 054136 (2021)] for two-dimensional (2D) square lattices. This is consistent with
the picture that at high densities and k � 5, the layered-disordered phase is formed on the lattice. Under these
conditions, the system breaks to 2D layers, and the adsorbed phase becomes essentially 2D. The 2D behavior of
the fully covered lattice reinforces the conjecture that the large-k behavior of entropy per site is superuniversal,
and holds on d-dimensional hypercubical lattices for all d � 2.
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I. INTRODUCTION

Systems of hard rods and cylinders interacting with only
excluded volume interactions between them have long been
of interest to the statistical mechanics community [1]. In the
case of lattice models, the study of linear hard rods (or straight
rigid k-mers) started with the work of Flory [2] and Zwanzig
[3]. The k-mers are modeled as rigid objects containing k
identical units, with each one occupying a lattice site. The
distance between k-mer units is assumed to be equal to the
lattice constant; hence exactly k sites are occupied by a k-mer
when adsorbed. The only interaction between different rods
is hard-core exclusion (no site can be occupied by more than
one k-mer) and the rods can orient only along one of the d
directions of a d-dimensional hypercubic lattice.

With increasing density, and for large enough k-mer sizes,
the system of rigid rods undergoes transitions from a low-
density orientationally disordered phase to an intermediate-
density nematically ordered phase to a high-density disor-
dered phase where the nematic order disappears [4]. The
first transition, usually referred to as isotropic-nematic phase
transition, belongs to the Ising or more generally Potts uni-
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versality class, depending on the number of different possible
directions of nematic order: Ising universality class for square
lattices [5] and three-state Potts universality class for trian-
gular [5] and honeycomb [6] lattices. The existence of the
transition has been rigorously proved in two dimensions (2D)
[7], and has been seen in the exactly soluble case of k-mers on
treelike lattices [8]. The first transition has also been detected
by machine learning [9] and information theory [10,11].

The relaxation time increases very quickly as the density
increases. Usual Monte Carlo (MC) simulations use local
deposition-evaporation moves. In this scheme, the states at
high densities are sampled inefficiently due to the presence
of highly jammed long-lived metastable configurations. As a
result of these limitations, most of the unknown is in regard to
the high-density disordered (HDD) phase, which has been less
studied than the low and intermediate phases. Recent results
suggested the transition from the nematic to the HDD phase
to be discontinuous [12]. The study in Ref. [12] continues a
previous paper by Dhar and Rajesh [13], where the configu-
rational entropy of the HDD phase has been investigated for
a L × M square lattice fully covered by straight rigid rods of
length k. By combining the lower [13] and upper [14] bounds
obtained for entropy, Dhar and Rajesh showed that, in the
limit of large k, the configurational entropy per site tends to
Ak−2 ln k, with A = 1. In addition, based on a perturbative
series expansion, the authors conjectured that the large-k
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behavior of entropy per site is superuniversal, and continues
to hold on d-dimensional hypercubical lattices for all d � 2.

In a recent work from our group [15], MC simula-
tions in the grand canonical ensemble, supplemented by
thermodynamic integration, were used to first calculate the
configurational entropy of the adsorbed phase as a function
of the coverage, and then to explore the different phases
(and orientational transitions) that appear on the surface with
increasing the density of adsorbed k-mers. In the limit of
θ → 1 (full coverage), the configurational entropy was ob-
tained for values of k ranging between 2 and 10. The study
showed that Dhar and Rajesh’s theoretical results [13] and
simulation data coincide, within the statistical uncertainty,
in the range k � 6. The numerical results in Ref. [15] val-
idate the dependence of the configurational entropy on k
obtained in Ref. [13] and allow for an accurate determi-
nation of its applicability range. The theoretical predictions
in Ref. [13] have also been corroborated by transfer-matrix
analysis [16].

In this work, we extend the study of Ref. [15] to
three-dimensional (3D) lattices. For this purpose, extensive
MC simulations supplemented by thermodynamic integration
method have been used to calculate the configurational en-
tropy per site of the adsorbed phase s(k, θ ) as a function
of coverage (0 � θ � 1). The process has been carried out
for straight rigid k-mers (2 � k � 8) adsorbed on 3D simple
cubic lattices. The behavior of the configurational entropy
per site at full coverage as a function of the k-mer size was
obtained and compared with the recently reported expres-
sion s(k, θ = 1)/kB = k−2 ln k (k → ∞) [13]. The MC study
presented here represents, to our best knowledge, the first
numerical validation of the theoretical predictions of Rajesh
and Dhar [13] in dimensions greater than 2. Previous studies
in Refs. [15,16] were restricted to 2D lattices.

On the other hand, by comparing the configurational en-
tropy s(k, θ ) with the ones corresponding to square lattices
and fully aligned systems [whose calculation reduces to the
one-dimensional (1D) case], the different phase transitions
that occur on the surface were identified: (i) k � 4, the sys-
tem is disordered at all densities; (ii) for k = 5 and 6, there
is no nematic phase, and a single transition occurs from a
disordered 3D phase to a layered-disordered phase. In the
layered-disordered phase, the system breaks up into very
weakly interacting 2D planes within which the rods are disor-
dered; and (iii) for k � 7, the adsorbed phase shows nematic
order at intermediate density. In addition, the system breaks to
2D layers at high density. The obtained results are discussed
and compared with previous data in the literature for monodis-
persed hard rods of length k adsorbed on 3D simple cubic
lattices [17,18].

Our study, based on the behavior of the configurational
entropy of the adsorbed phase, allows to clearly visualize the
2D character of the layered-disordered phase appearing for
large k-mers and coverage close to 1. This 2D behavior of the
fully covered lattice reinforces the conjecture that the large-k
behavior of entropy per site is superuniversal, and holds on
d-dimensional hypercubical lattices for all d � 2 [13].

This paper is organized as follows. The calculation
methodology is presented in Sec. II. Most relevant results

are presented in the form of plots which are immediately
discussed in Sec. III. Conclusions are summarized in Sec. IV.

II. METHODOLOGY. FUNCTIONS AND VARIABLES

A. Simulations: Adsorption-desorption algorithm

Lattice gas simulations of rods of length k (linear k-mers)
were done in the grand canonical ensemble using a efficient
algorithm presented by Kundu et al. [19,20], which was de-
signed to overcome the slow sampling at high coverage and
was generalized in this work to cubic lattices. The temper-
ature T , chemical potential μ, and system size L are kept
fixed, whereas the number of particles N is allowed to fluc-
tuate through nonlocal changes, i.e., insertion and/or removal
of several k-mers at the time (in contrast to the standard
Metropolis algorithm).

Given a particular configuration of k-mers on the cubic
lattice, distributed in the three possible directions (d1, d2, d3),
a Monte Carlo step (MCs) begins with the choice of one
direction, for example d1, followed by the removal of all the
k-mers in that direction. In this way, we have L2 rows (or
rings considering the periodic boundary conditions) along the
d1 direction, consisting in intervals of different length formed
by contiguous empty sites. Such intervals are separated from
each other by sites occupied by k-mers along the other two
directions.

Each interval on these rows could be filled independently
by new k-mers in the d1 direction, provided that the interval
length be greater or equal to k. Given one of these intervals
of length l (� k), it is very simple to calculate the equilibrium
probability (given the temperature and chemical potential) of
having the first k sites of the interval occupied by a k-mer [21].
Such probability could be previously calculated and stored,
for intervals of different lengths (from 0 to L) to increase
the computational performance. From these probabilities it is
possible to fill all the intervals in the d1 direction of the system
with new equilibrium configurations of k-mers and empty
sites. The MCs is completed by repeating the same procedure
of emptying and refilling along the other two directions, d2

and d3.
Besides the just described removal and filling processes of

k-mers along the three directions, it is found that the sampling
and equilibrating times can be considerably reduced by adding
a patch or tile rotation step. In this process, a site (x, y, z) and a
direction di are randomly selected. If that site is the corner of a
set of k parallel and contiguous k-mers forming a tile of k × k
sites on a plane normal to the di direction, then the tile is ro-
tated 90 degree of that direction (in this rotation only the k × k
sites above mentioned are affected). Otherwise, the attempt is
rejected.

Then, the complete MCs will comprise removing and fill-
ing processes along each of the three possible directions,
followed by the patch rotation process which will be repeated
L3 times, i.e., one per site in average. A detailed discussion
of the original algorithm can be found in Refs. [19,20]. The
algorithm thus defined proved to be ergodic and to satisfy the
detailed balance principle.

A cubic lattice of M = L3 sites with periodic boundary
conditions was used. The relation L/k was fixed to 60. The
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equilibrium is reached typically after r0 = 106 MCs. Then,
simple averages are computed over other r = 106 configura-
tions. In our MC simulations, we varied the chemical potential
and monitored the density θ ,

θ = k〈N〉
M

, (1)

where the bracket 〈. . . 〉 denotes the average over the r MC
simulation runs after equilibrium is settled.

B. Configurational entropy of the adsorbed phase:
Thermodynamic integration method

As mentioned in Sec. I, the configurational entropy of the
adsorbed phase S was calculated by using the thermodynamic
integration method [15,22–28]. In the grand canonical en-
semble, the method relies upon integration of the chemical
potential μ on coverage along a reversible path between an ar-
bitrary reference state and the desired state of the system. This
calculation also requires the knowledge of the total energy U
for each coverage. Thus, for a system made of N particles on
M lattice sites, we have

μ =
(

∂F

∂N

)
M,T

, (2)

where F = U − T S is the Helmholtz free energy and S is the
configurational entropy. It follows that,

S(k, M, N, T ) = S0(k, M, N0, T )

+ U (k, M, N, T ) − U (k, M, N0, T )

T

− 1

T

∫ N

N0

μdN . (3)

In the present case, U (k, M, N, T ) = 0 and the determina-
tion of the entropy in the reference state, S0(k, M, N0, T ), is
trivial [S0(k, M, N0, T ) = 0 for N0 = 0]. Then, after writing
the last equation in terms of intensive variables, the configu-
rational entropy per site (s = S/M) results in

s(k, θ, T )

kB
= − 1

kBT

∫ θ

0

μ

k
dθ, (4)

where θ = kN/M and kB is the Boltzmann constant. Given
that all chemical potentials are being measured in units of
kBT , all results will be independent of the temperature. Ac-
cordingly, for the rest of the paper we will use s(k, θ ) to denote
the configurational entropy per site (for simplicity we will
drop the “T ” label).

The curve of μ versus θ can be got by following the
adsorption-desorption algorithm described in Sec. II A [see
Eq. (1)]. The integration required in Eq. (4) is carried out using
the well-known trapezoidal rule [29]. Two error sources affect
the entropy calculations: (i) the simulation error associated
with the measurement of the adsorption isotherm; and (ii)
the error inherent to the integration method. Regarding the
simulation error, each point in the adsorption isotherm curve
is obtained with an error of the order of 10−5. Moreover, the
error coming from the integration method can be controlled
by choosing appropriately the number of integration points
nμ (number of discrete values in the adsorption isotherm)

FIG. 1. Chemical potential (a) and configurational entropy per
site (b) as function of coverage for k = 6. Parts (a) and (b) illustrate
the implementation of the thermodynamic integration method. The
value of A is −1.4512. The adsorption isotherm in (a) was measured
in the range from μ/kBT = −15 to μ/kBT = 20. A shorter range
is shown (μ/kBT = −8 to μ/kBT = 12) for a better visualization.
(c) Configurational entropy per site as function of coverage for dif-
ferent values of k: k = 2, open circles; k = 3, solid circles; k = 4,
open squares; k = 5, solid squares; k = 6, open diamonds; k = 7,
solid diamonds; and k = 8, open triangles.

[29]. In the present study, the curve μ(θ ) contains nμ = 61
points. With these values of the parameters, the simulation
error is of the order of 10−3 and the integration error is
negligible compared to the simulation error. This results in
the total error for the entropy per site at full coverage that
will be reported in the next section (see the sixth column in
Table I).

III. RESULTS AND DISCUSSION

We begin by getting the configurational entropy per site
as a function of coverage s(k, θ )/kB through Eq. (4). The
calculation is carried out in two stages. In the first stage,
the coverage dependence of μ(θ )/kBT is evaluated follow-
ing the MC procedure described in the previous section.
A typical curve of μ/kBT versus θ , obtained for k = 6
is depicted in Fig. 1(a). A smooth coverage dependence
is observed as a result of the large number of averaged
configurations. The error bars are smaller than the size of
the symbols, which tells of the accuracy of the simulated
data.

In the second stage, the curves of μ(θ )/kBT are numer-
ically integrated. To apply the thermodynamic integration
method, a point θi is chosen on the curve of μ(θ )/kBT , and the
integral A = ∫ θi

0 (μ/kBT ) dθ is calculated. Let us consider, as
an example, the adsorption isotherm for k = 6 [Fig. 1(a)] and
θi = 0.77067 (gray diamond). In this case, A = −1.4512 and
the corresponding entropy per site yields s(k = 6, θi )/kB =
−A/6 = 0.24187 [see the gray diamond in Fig. 1(b)]. By re-
peating the procedure for all values of θi, the curve of entropy
versus coverage can be calculated.

The methodology described in Figs. 1(a) and 1(b) was
repeated for 2 � k � 8, the results are shown in Fig. 1(c).
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TABLE I. Configurational entropy per site for straight rigid k-mers at full coverage. First column, k-mer size (2 � k � 8); second column,
theoretical predictions from Eq. (8) (the values are rounded to five decimal places) [13]; third column, MC results obtained in Ref. [15] for 2D
square lattices; and fourth column, MC results obtained in the present work for 3D simple cubic lattices. Statistical errors are in the last digit
and are indicated in parentheses.

Entropy per site at full coverage, s(k, θ = 1)/kB

k Eq. (8) [13] MC, square lattices [15] MC, simple cubic lattices (this work)

2 0.17329 0.293(2) 0.451(2)
3 0.12207 0.159(2) 0.203(3)
4 0.08664 0.101(2) 0.111(3)
5 0.06438 0.070(3) 0.071(3)
6 0.04977 0.052(3) 0.050(3)
7 0.03971 0.040(3) 0.040(4)
8 0.03249 0.032(3) 0.031(4)

As mentioned in Sec. II B, the configurational entropy curves
were calculated for nμ = 61 points. Only 31 points are shown
in the figure for clarity. The general features of the cover-
age dependence of the entropy per site are the following.
Approaching the limit θ = 0 the entropy tends to zero. For
very low densities, s(k, θ )/kB is an increasing function of θ ; it
reaches a maximum at θm, then decreases monotonically to a
finite value for θ = 1.

As shown in previous work [15], the behavior of entropy
as a function of coverage appears as a useful property to
explore the possible ordered phases present in systems with
purely steric interactions for increasing values of the den-
sity. In the case of straight rigid k-mers adsorbed on 3D
cubic lattices (with three allowed orientations), Vigneshwar
et al. [17] and Gschwind et al. [18] reported the existence of
different surface phases with increasing coverage: isotropic
phase (IP), nematic phase (NP) and layered-disordered phase
(LDP). In the isotropic phase, the system is disordered and
the k-mers are equally distributed in the three directions of
space. The nematic state is characterized by a big domain
of parallel k-mers oriented along one of the lattice direc-
tions. The k-mers of the other two orientations have smaller,
roughly equal concentrations. In the layered-disordered phase,
the density of rods of one orientation is strongly suppressed,
breaking the system into weakly coupled layers. In each
one of these layers, the rods form local domains (or is-
lands) of parallel k-mers without long-range orientational
order.

The system does not present long-range order (the system
is disordered) at all densities for k � 4 [17]. This can be
visualized for k = 3 in Fig. 2(a), where the configurational
entropy per site calculated by the thermodynamic integration
method (line and spheres) is presented. For comparison, the
figure also includes the curves of (i) the configurational en-
tropy per site calculated from fundamental measure theory
(FMT) [18] (red solid line); (ii) the configurational entropy
per site obtained analytically for a fully aligned system of
3-mers (dashed line); and (iii) the configurational entropy per
site got by the thermodynamic integration method for straight
rigid 3-mers adsorbed on 2D square lattices with two allowed
orientations (line and squares).

In 1944, Guggenheim proposed an interesting method to
calculate the combinatory term in the canonical partition
function [30]. Later, in a valuable contribution, DiMarzio

developed an approximate method of counting the number
of ways, �, to pack together linear polymer molecules of
arbitrary shape and of arbitrary orientations [31]. In the case
of allowing only those orientations for which the molecules
fit exactly onto the lattice and for an isotropic distribution,
the value of � reduces to the value obtained previously by
Guggenheim [30]. In this limit, the configurational entropy

FIG. 2. (a) Configurational entropy per site as function of cov-
erage for straight rigid 3-mers (k = 3) adsorbed on three different
geometries: 3D simple cubic lattices (line and spheres); 2D square
lattices (line and squares) and 1D chains (solid line). Line and
symbols correspond to results obtained by MC simulations (com-
plemented by the thermodynamic integration method), the dashed
line represents analytical results according to expression in Eq. (6)
with k = 3, and the red solid line indicates results from FMT [Di-
Marzio’s theory, Eq. (5) with k = 3]. The system is characterized by
an isotropic phase (IP) over the entire range of values of k [part (b)].
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per site for a system of straight rigid k-mers adsorbed on a
lattice of connectivity γ can be written as

s(k, θ, γ )

kB
=

[
γ

2
− (k − 1)

k
θ

]
ln

[
γ

2
− (k − 1)

k
θ

]
− θ

k
ln

θ

k

− (1 − θ ) ln (1 − θ ) +
(
θ − γ

2

)
ln

γ

2
. (5)

The equivalence of the DiMarzio entropy to exact solutions
on Bethe-like lattices was investigated in Refs. [8,32]. An al-
ternative theoretical route for treating hard particles on lattices
was proposed by Lafuente and Cuesta [33,34]. The authors
extended the Rosenfeld’s FMT [35,36] to lattice models by
constructing a density functional for d-dimensional mixtures
of parallel hard hypercubes on a simple hypercubic lattice. For
the case of rod models in 2D and 3D, the FMT functional and
its bulk properties were worked out in Ref. [37]. It turns out
that lattice FMT is equivalent to DiMarzio’s treatment [31] or
rods on Bethe-like lattices with coordination numbers 4 and 6
(representing 2D and 3D, respectively) [8].

In the fully aligned state, the k-mers (trimers in the case of
Fig. 2) align along one of the three directions and the entropy
of this nematic state having density θ can be reduced to the
entropy of a one-dimensional problem [21]:

s1D(k, θ )

kB
=

[
1 − (k − 1)

k
θ

]
ln

[
1 − (k − 1)

k
θ

]

− θ

k
ln

θ

k
− (1 − θ ) ln (1 − θ ). (6)

In addition, the system breaks in 2D layers in the layered
phase and the entropy of this state reduces to the entropy
of straight rigid k-mers adsorbed on 2D square lattices. As
observed in Fig. 2(a), FMT presents an excellent agreement
with the simulation results, showing that FMT is a good
approximation for a state with zero nematic order. MC and
FMT curves are indistinguishable up to θ < 0.7. Above θ ≈
0.7, small differences between MC and FMT predictions are
observed. In addition, the 3D entropy is greater than those
of 2D and 1D systems over the entire range of coverage.
It is important to notice that at no point the curves in this
figure cross or overlap. This finding shows that with k = 3,
and following the principle of maximum entropy, the adsorbed
phase reaches neither nematic nor layered order at any point
when the density varies between 0 and 1. Accordingly, the
system is characterized by an isotropic phase over the entire
range of values of θ [part (b)].

The behavior of these systems changes when reaching
k = 5 and 6 [17]. In these cases, the adsorbed phase presents
disorder at low and intermediate densities, and goes to a high
density layered-disordered phase. Next, this picture will be
analyzed in terms of entropy.

In Fig. 3(a), the configurational entropy per site has been
studied for 3D, 2D, and 1D systems with k = 6. As in the pre-
vious figure, the solid line corresponds to the direct evaluation
of Eq. (6) with k = 6. Line and symbol curves represent MC
simulation data: 3D simple cubic lattices (line and spheres);
and 2D square lattices (line and squares). The inset shows a
zoom of the main figure in the range 0.8 � θ � 1.

The 3D system does not show nematic order for all val-
ues of density and, consequently, the 3D entropy is higher

FIG. 3. (a) Same as Fig. 2(a) but for k = 6. The inset displays the
departure of the theoretical expression [Eq. (6), solid line] from 2D
and 3D simulations (line and symbols) at high coverage. IP and LDP
regions are shown in part (b).

than that from Eq. (6) over the entire range of coverage. At
intermediate and high densities, there is a range of θ for
which the system is characterized by a LDP. In this range,
the coupling between layers is very weak and the 3D config-
urational entropy per site can be well approximated by that
of a 2D system. As it can be observed in the figure, 3D and
2D curves are practically overlapping (within the statistical
errors) between θ ≈ 0.68 and θ = 1. This result provides a
physical interpretation of the IP-LDP transition occurring in
the system. At high densities, it is more favorable for the k-
mers to occupy spontaneously parallel planes, and the system
loses its 3D character and becomes essentially 2D.

The value of the critical density associated to the IP-LDP
phase transition, θIP−LDP, can be estimated from the minimum
value of θ for which occurs the near superposition of the
3D and 2D data. See Fig. 3(b). Here, θIP−LDP(k = 6) ≈ 0.68,
which is consistent with the value reported in Ref. [17]. How-
ever, it is important to emphasize that the calculation of the
entropy of the LDP from the 2D model is an approximation
(especially in the region near the critical densities, where
the phase is not completely 2D). A precise determination of
θIP−LDP requires an extensive work based on MC simulations
and finite-size scaling techniques. This is out of the scope of
the present work.

To conclude with the analysis of the case k = 6, schematic
representations of the different phases that appear on in-
creasing the density are shown in Figs. 4(a) and 4(b):
(a) 3D isotropic phase, IP region in Fig. 3(b); and 3(b)
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FIG. 4. (a) Snapshot of a randomly chosen xy plane in the isotropic phase [IP region in Fig. 3(b)]. (b) The same as in part (a), but for an
xy plane in the layered-disordered phase [LDP region in Fig. 3(b)]. Red and blue squares correspond to units belonging to k-mers lying in the
xy plane. Green squares represent units of k-mers lying in a direction perpendicular to the xy plane. Black squares denote empty sites. The
configurations shown in parts (a) and (b) have been obtained for lattices with k = 6 and L/k = 20.

layered-disordered phase, LDP region in Fig. 3(b). In spite the
fact that the results reported here were obtained for L/k = 60,
we have chosen L/k = 20 (and k = 6) for clarity in Figs. 4(a)
and 4(b).

We continue studying the case of large k-mers (k � 7).
When this condition is satisfied, previous simulation results
[17,18] indicate that the system passes through a nematic
phase at intermediate concentrations before reaching the high
density layered-disordered phase. Thus, the adsorbed layer is
in a disordered isotropic phase at low density, shows nematic
order at intermediate density, and goes to a layered-disordered
phase at high density. As discussed above, the system breaks
up into very weakly interacting 2D planes in the LDP. In
each plane, the formation of local arrangements (or domains)
of parallel k-mers is observed. These domains show mixed
orientations, signaling that the long-range orientational order
is lost at the high coverage regime. In Ref. [17], the authors
also observe the presence of a layered-nematic phase between
the nematic and layered-disordered phases. In the layered-
nematic phase, the system breaks up into layers, with nematic
order in each layer, but very weak correlation between the
ordering directions of different layers. Vigneshwar et al [17]
argued that the layered-nematic phase is a finite-size effect,
and in the thermodynamic limit, the nematic phase will have
higher entropy per site.

In Fig. 5, the configurational entropy per site has been
studied for a system with k = 7. The solid line represents
analytical results according to expression in Eq. (6) (with
k = 7). Line and symbols correspond to results produced by
MC simulations: 3D simple cubic lattices (line and spheres)
and 2D square lattices (line and squares).

For low coverage, the system is isotropic in the sense
that the number of k-mers is the same along the d1, d2, and
d3 directions, and no orientational order is presented [see

Fig. 6(a)]. Then, the 3D entropy is higher than the correspond-
ing ones for 2D square lattices and 1D chains, as it can be seen
in Fig. 5(a) (data in the range 0 � θ � 0.4 are not shown for
the sake of clarity).

When the surface coverage is increased, there is a range
of densities for which 3D and 1D curves are almost indistin-
guishable [see Fig. 5(a)]. This is consistent with the presence
of nematic order at intermediate values of θ . In this range,
the system is characterized by a big domain of parallel k-mers
[see Fig. 6(b)] and the configurational entropy per site can
be well approximated by Eq. (6). Finally, as the coverage
approaches 1, the configurational entropy of the 3D system
departs from the corresponding one to the nematic phase,
showing the loss of orientational order in the adsorbed phase.
In addition, and as was previously observed for k = 6, 3D and
2D entropy curves coincide at high density, which suggests
the appearance of the LDP in the system [see Fig. 6(c)]. We
will return to this point when we discuss the behavior of the
configurational entropy per site at full coverage.

The entropy analysis performed in Fig. 5 provides a phys-
ical interpretation for the three phases (IP, NP, and LDP)
predicted in Refs. [17,18]. This scenery also provides an easy
way to estimate the critical densities associated with the IP-NP
and NP-LDP phase transitions, θIP-NP and θNP-LDP, respec-
tively. As stated in Ref. [15], θIP-NP can be estimated from
the minimum value of θ which occurs the near superposition
of the 1D and 3D data, while the coverage where 1D and
3D curves separate should be indicative of θNP-LDP. In this
case, the intersection point between 1D and 3D curves is
located around 0.75 [see Fig. 5(a)], and the point where 1D
and 3D curves separate is located around 0.92 [see Fig. 5(b)].
These values are not very different from the corresponding
values obtained for 2D square lattices: θIP-NP ≈ 0.751 [10] and
θNP-LDP = 0.917(5) [20].
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FIG. 5. Configurational entropy per site as function of coverage
for straight rigid 7-mers (k = 7) adsorbed on three different geome-
tries: 3D simple cubic lattices (line and spheres); 2D square lattices
(line and squares) and 1D chains (solid line). Line and symbols
correspond to results obtained by MC simulations (complemented
by the thermodynamic integration method) and solid line represents
analytical results according to expression in Eq. (6) with k = 7.
The results obtained for low-intermediate density (0.4 � θ � 0.9)
and high density (0.85 � θ � 1) are shown in parts (a) and (b),
respectively. In part (a), the nematic order parameter Qmax is plotted
as a function of the surface coverage θ (red solid circles, right axis).
IP (white), NP (light red and dark gray) and LDP (light gray) regions
are shown in the figure.

The value θNP-LDP ≈ 0.92 agrees also with a previous result
in Ref. [17] θNP-LDP = 0.914(1), reinforcing the arguments
that the NP-LDP transition is essentially driven by the 2D
transition within a layer [17]. The same does not happen with
the value estimated from the limit between IP and NP regions
θIP-NP ≈ 0.75, which differs widely from previous reported
estimate θIP-NP ≈ 0.556 [17].

It is important to emphasize that the calculation of the
entropy of the nematic phase from the 1D model is an ap-
proximation, especially in the region near the IP-NP critical
density, where the phase is not completely aligned. This could
be the reason of the difference observed in θIP-NP. To explore
this point, it is helpful to calculate the nematic order parameter
Qi [18]:

Qi = Ni − Nj+Nk

2

N
(7)

where Ni is the number of rods oriented in the direction di (i ≡
1, 2, 3; N = N1 + N2 + N3); and (i jk) is a cyclic permutation
of (123).

The curve of Qmax = maxi(Qi ) as a function of the surface
coverage θ is shown in Fig. 5(a) (red solid circles, right axis).

The data were obtained for k = 7, L/k = 60, r0 = 106 MCs,
and r = 106 MCs. The behavior of Qmax is indicative of the
formation of a nematic phase. As found in Ref. [18], Qmax is
around 0.2 in the IP-NP critical point. In this case, Qmax ≈ 0.2
at θ ≈ 0.56, which is consistent with previous determinations
of θIP-NP [17,18].

The results discussed in the last paragraph allow us to
conclude that, in the case of 3D lattices, the alignment at
the transition point from the IP phase to the NP phase is
low and, consequently, the 1D model does not provide a
good approximation to determine θIP-NP. On the other hand,
Qmax > 0.9 in the region where 1D and 3D curves separate,
which is consistent with the good prediction of θNP-LDP shown
in Fig. 5(b).

Future investigations will be directed to elucidate the struc-
ture of the nematic phase at low values of Qmax. This task,
which is beyond the scope of the present paper, should in-
clude more extensive MC calculations and the use of FMT
(combined with the nematic order parameter obtained from
the simulations).

As mentioned in Sec. I, the relaxation time increases
rapidly as the density of the adsorbed k-mers increases and,
consequently, MC simulations at high density are very time
consuming and may produce artifacts related to inaccurate
equilibrium states. The problem is also a much demanding
problem from the theoretical point of view: if some sort of
correlation exists, like particles that occupy several k contigu-
ous lattice sites, the statistical problem becomes exceedingly
difficult. For these reasons, it has been difficult to character-
ize and study the high-coverage states of adsorbed straight
rigid k-mers. In the limit case of θ → 1, Dhar and Rajesh
[13] showed that the configurational entropy per site of fully
packed k-mers on d-dimensional hypercubic lattices follows
the law,

s(k, θ = 1)

kB
= k−2 ln k (k → ∞). (8)

Based on a perturbative series expansion, the authors conjec-
tured that Eq. (8) holds for all d � 2.

Recently, MC simulation [15] and transfer-matrix [16]
studies corroborated the validity of Eq. (8) for fully packed
rods on 2D square lattices.1 The same has not happened so
far for k-mers in dimensions greater than 2 (d > 2). With
these ideas in mind, we now propose to get s(k, θ → 1)/kB

for straight rigid kmers adsorbed on 3D simple cubic lattices.
In the calculations, the curve of μ(θ ) was integrated following
the procedure described in Sec. II. It is important to mention
that, because of the weak first-order character of the IP-NP
phase transition that occurs for k � 7 [18], a (probably very
small) jump is expected in the entropy. However, as will be
shown in the following analysis, the thermodynamic integra-
tion method provides accurate values of the entropy at full
coverage. The results are shown in Fig. 7 for 2 � k � 8.

1For the case of dimers (k = 2), the entropy per site at full cov-
erage has been exactly calculated for the square lattice, s(k = 2,

θ = 1)/kB = G/π = 0.29156 . . . [38]. In addition, a precise es-
timate s(k = 3, θ = 1)/kB = 0.158520(15) has been obtained for
trimers on square lattices [39].
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FIG. 6. (a) Snapshot of a randomly chosen xy plane in the isotropic phase [IP region in Fig. 5(a)]. (b) The same as in part (a), but for an xy
plane in the nematic phase [NP region in Figs. 3(a) and 3(b)]. (c) The same as in part (a), but for an xy plane in the layered-disordered phase
[LDP region in Fig. 5(b)]. Red and blue squares correspond to units belonging to k-mers lying in the xy plane. Green squares represent units
of k-mers lying in a direction perpendicular to the xy plane. Black squares denote empty sites. The configurations shown in parts (a)–(c) have
been obtained for lattices with k = 7 and L/k = 20.

Spheres represent MC results of this work for 3D simple
cubic lattices; open squares correspond to MC data reported
in Ref. [15] for 2D square lattices and solid line corresponds
to Eq. (8). Numerical and theoretical values are also compiled
in Table I.

The data in Fig. 7 show two different regimes. In the range
2 � k � 4, notorious differences are observed between MC
data and theoretical results from Eq. (8). As the k-mer size
increases, the differences between the MC values and those
predicted by Eq. (8) diminish. In the case k = 5, the relative
difference between MC results and the asymptotic prediction
differ less than 9 %. For k � 6, these differences are less
than the relative simulation errors. In other words, theoretical
and simulation results coincide, within the statistical uncer-

tainty, in the range k � 6. These findings represent the first
numerical validation of the expression obtained in Ref. [13]
for d-dimensional lattices with d > 2.

Another valuable conclusion can be extracted from the data
in Fig. 7. For k � 5, 3D MC results are coincident with the re-
sults reported in Ref. [15] for 2D square lattices. This finding
is consistent with the picture that at high densities and k � 5,
the LDP is formed on the lattice. In these conditions, the
system will break to two-dimensional layers, with only weak
interaction between different layers. As shown in Figs. 3–5,
2D and 3D configurational entropy per site coincide in the
high-coverage regime, demonstrating that the 3D problem
becomes essentially two-dimensional in the LDP. In this way,
the study of configurational entropy developed here physically
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FIG. 7. Configurational entropy per site for straight rigid k-mers
at full coverage (θ = 1) as a function of k (2 � k � 8). Open squares
correspond to MC data reported in Ref. [15] for 2D square lattices.
Spheres represent MC results obtained in this work for 3D simple
cubic lattices. The line indicates theoretical results from Eq. (8) [13].

explains of the apparently surprising fact that the behavior of
entropy per site of straight rigid rods at full coverage is su-
peruniversal, and Eq. (8) holds on d-dimensional hypercubic
lattices for all d � 2. This is important since the validity of
Eq. (8) has been conjectured and has not yet been rigorously
proved [13].

IV. CONCLUSIONS

In the present work, we have addressed the critical proper-
ties of straight rigid k-mers deposited on a simple cubic lattice.
The adsorption process was analyzed in terms of the con-
figurational entropy of the adsorbed phase. The results were
obtained by combining Monte Carlo simulations in the grand
canonical ensemble and thermodynamic integration method.

Special attention was devoted to the study of the configura-
tional entropy per site at full coverage s(k, θ = 1)/kB. Using
MC simulations and thermodynamic integration method, the
dependence of s(k, θ = 1)/kB on k-mer size was got (in the
range 2 � k � 8) and compared with the recently reported
expression: s(k, θ = 1)/kB = k−2 ln k (k → ∞) [13]. The
comparison analysis revealed that, for k � 6, simulation and
theoretical results coincide within the statistical uncertainty.
The MC study presented here represents the first numerical
validation of the theoretical prediction of Rajesh and Dhar
[13] for d-dimensional lattices with d > 2 and allows for an
accurate determination of its validity range.

The configurational entropy per site of the adsorbed phase
was also calculated over the entire coverage range (0 � θ �
1). For each value of k (2 � k � 8), the results obtained
for 3D simple cubic lattices were compared with those cor-
responding to 1D lattices and 2D square lattices with two
allowed orientations. The comparison between 1D, 2D and
3D entropy curves allowed us to explore the different phases
(and orientational transitions) that appear on the surface with
increasing the density of adsorbed k-mers. Based on this study
(and previous research), the following conclusions can be
drawn.

In the range 2 � k � 4, the 3D entropy is greater than those
of 2D and 1D systems over the entire range of coverage. This

means that, according to the maximum entropy principle, the
adsorbed layer is characterized by an isotropic phase (where
the k-mers are equally distributed in the three directions of
space) and reaches neither nematic nor layered order at any
point when the density varies between 0 and 1. MC data were
also compared with FMT, which in this case is equivalent
to the DiMarzio’s theory for an isotropic distribution of rods
[31]. The excellent agreement between simulation and theo-
retical results indicates that FMT is a good approximation for
a state with zero nematic order.

For k � 5, the adsorbed layer goes to a LDP at high densi-
ties. In this regime, 3D and 2D entropy curves are practically
overlapping, indicating that the coupling between layers is
very weak and the 3D configurational entropy per site can be
well approximated by that of a 2D system. Clearly, it is more
favorable for the k-mers (with k � 5) to occupy spontaneously
parallel planes, and the system loses its 3D character and be-
comes essentially 2D. In other words, our results demonstrate
that the layered-disordered phase is essentially a 2D phase.
This finding is the key to understanding the main character-
istics of the system at full coverage and allows us to obtain
a physical interpretation of the superuniversal behavior of the
configurational entropy per site of fully packed large rods on
d-dimensional hypercubical lattices.

With k = 5 and k = 6, the LDP is preceded by an isotropic
phase with similar characteristics to that observed for k � 4,
and occurring at low and intermediate densities. For higher
values of k (k � 7), a nematic phase appears between the low-
coverage IP and the high-coverage LDP.

Finally, the critical densities separating the different ad-
sorbed phases were estimated from the entropy analysis. The
values obtained for the critical points associated to the IP-LDP
transition (k = 5, 6) and to the NP-LDP transition (k � 7) are
consistent with previous determinations in the literature [17].
For the IP-NP transition (k � 7), the value of the critical den-
sity estimated from the intersection point between 1D and 3D
entropy curves is higher than the calculated one in Ref. [17].
The study of the nematic order parameter Q [18] revealed
that the alignment at the transition point from the IP phase
to the NP phase is low and, consequently, the 1D model of
the nematic phase does not provide a good approximation to
determine θIP-NP.

Future efforts will be done following two directions: (1)
using information theory [10,11] and finite size scaling anal-
ysis, to develop a complete study of the phase transitions
occurring in the adsorbed layer with increasing density; and
(2) to extend the present analysis to the problem of cuboids
on d-dimensional hypercubical lattices, where a much richer
phase diagram is expected.
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