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Quantum thermal diode dominated by pure classical correlation via three triangular-coupled qubits
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A quantum thermal diode is designed based on three pairwise coupled qubits, two connected to a common
reservoir and the other to an independent reservoir. It is found that the internal couplings between qubits can
enhance heat currents. If the two identical qubits uniformly couple with the common reservoir, the crossing
dissipation will occur, leading to the initial-state-dependent steady state, which can be decomposed into the
mixture of two particular steady states: the heat-conducting state generating maximum heat current and the
heat-resisting state not transporting heat. However, the rectification factor doesn’t depend on the initial state. In
particular, we find that neither quantum entanglement nor quantum discord is present in the steady state, but the
pure classical correlation shows a remarkably consistent behavior as the heat rectification factor, which reveals
the vital role of classical correlation in the system.
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I. INTRODUCTION

Thermal diode, similar to electrical diode [1,2], allows heat
to transport only in a fixed direction and be blocked in the
opposite direction [3]. The asymmetric heat conductance in
the solid-state nanosystem, consisting of highly conductive
carbon and boron nitride nanotubes, is realized experimentally
[4]. Recently, solid-state thermal diodes have been able to
achieve considerable rectification ratio [5–7]. A large num-
ber of asymmetric nanosystems such as monolayer graphene
nanostructures [8] and multiferroic helimagnet [9] have also
been studied in thermal rectification.

Quantum thermal diode [3,10–19] has attracted increasing
interest in quantum thermodynamics [20–25], having been
studied extensively [2,3,26–33], and provides an important
platform to understand the quantum features in microscopic
thermodynamic systems [31,34–37]. In particular, various mi-
croscopic thermal devices have been proposed, such as the
quantum Otto engine [38–40], quantum thermometer [41–43],
thermal memory [44], quantum refrigerator [45–48], quan-
tum transistor [14,19,29,49–58], quantum switch [59–61], and
others. Unidirectional heat transfer is the key performance of
a quantum thermal diode, which is characterized by the rectifi-
cation factor. How to improve the rectification factor is one of
the most important motivations in the design of various ther-
mal diodes. The usual understanding of unidirectional heat
transfer is attributed to the various asymmetries of the system,
for example, the diode system based on coupled two-level
qubits which have different natural frequencies [11], or asym-
metrical coupling such as HSI = �σ z

Lσ x
R [15] with σ k denoting

pseudospin operator of two-level atoms. The asymmetry can
also come from the transition spectra induced by different en-
vironments [19]. It has recently been shown that common heat
reservoirs can enhance the performance of quantum thermal
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devices and sometimes provide additional crossing dissipation
channels [18,62–69]. This could also be significant for the
design of a quantum thermal diode. In addition, as a particular
thermodynamical phenomenon, unidirectional heat transfer
including many other quantum thermodynamical behaviors
has not been well understood from the perspective of the
features of quantum states [12,16,33,39,70]. It remains an
open question of what feature of a quantum state is closely
related to such thermodynamical phenomena.

This paper studies the heat transport and the thermal diode
consisting of three pairwise coupled qubits interacting with
two heat reservoirs of different temperatures [49,53,55]. Our
system is sketched in Fig. 1 where qubits A and C are com-
monly coupled to the left reservoir, and qubit B is in contact
with the right reservoir. We find that the identical qubits A
and C uniformly coupling with qubit B can produce crossing
dissipations, leading to initial-state-dependent steady states.
Moreover, the steady state can also be decomposed into the
mixture of two particular steady states: the heat-conducting
state generating maximum heat current and the heat-resisting
state not transporting heat. It provides the potential to control
the steady state by the initial state. We find that both the inter-
nal couplings of the qubits and the crossing dissipations can
enhance the heat current through the left and right reservoirs,
and the inverse heat currents corresponding to the crossing
dissipations play a versatile role. In particular, we find the
current model can act as a good quantum thermal diode, and
the crossing dissipations aren’t beneficial to the rectification
effect. Importantly, we find that in the system, there’s no quan-
tum correlation (neither quantum entanglement nor quantum
discord) between the system’s left (AC) and right (B) parts;
however, the classical correlation is closely related to the
rectification effect.

This paper is organized as follows. We introduce our model
and present the dynamics in Sec. II. The steady states of
the system and the heat currents between two reservoirs are
presented in Sec. III, and a quantum thermal diode is designed
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FIG. 1. Sketch of the quantum thermal diode. ωμ denotes the nat-
ural frequency of qubit μ and gμν with μ �= ν denotes the coupling
strength between the qubits μ and ν, μ, ν = A, B, and C. Tα is the
temperature of the heat reservoir Bα , and Q̇α is the heat current from
Bα to S for α = L and R.

in Sec. IV. In Sec. V the relationship between the steady-state
mutual information and rectification is studied. The conclu-
sion and discussion are in Sec. VI. Some lengthy expressions
are provided in the Appendixes.

II. THE MODEL AND THE DYNAMICS

Our model includes three qubits connected to two heat
reservoirs, two commonly in contact with a common heat
reservoir (CHR), and the remaining one to another indepen-
dent heat reservoir (IHR), which is shown in Fig. 1. The
total Hamiltonian of the open system can be expressed as
H = HS + HE + HSE , where (h̄ = κB = 1)

HS =
∑

μ

ωμ

2
σ z

μ +
∑
μ,ν

gμν

2
σ z

μσ z
ν , μ, ν = A, B,C (1)

denotes the Hamiltonian of the system, ωμ represents the
natural frequency of qubit μ, and gμν is the coupling strength
between qubits μ and ν. Such an interaction mechanism has
also been employed in some thermal devices as quantum
thermal transistors [49,53] and an optically controlled thermal
gate [55]. HE , the Hamiltonian of the reservoirs, reads

HE =
∑

α

∑
k

ωαka†
αkaαk, α = L, R, (2)

where ωαk is the frequency of the kth mode of the heat reser-
voir Bα , and a†

αk (or aαk) denotes the corresponding creation
(or annihilation) operator. The dipole interaction between the
system and reservoir is given by

HSE =
∑

k

[(
gAkσ

x
A + gCkσ

x
C

)
(a†

Lk + aLk )

+ gBkσ
x
B (a†

Rk + aRk )
]
, (3)

where gμk is the coupling strength, characterizing the coupling
capability between qubit μ and the kth mode of the corre-
sponding reservoir, and the operators σ x

μ and σ z
μ are the Pauli

matrix with σ x
μ = (0 1

1 0) and σ z
μ = (1 0

0 −1). It is obvious

that HS has the diagonal form as HS = ∑8
i=1 λi|i〉〈i|, where

the eigenstates are |1〉 = | + ++〉, |2〉 = | + +−〉, |3〉 = | +
−+〉, |4〉 = | + −−〉, |5〉 = | − ++〉, |6〉 = |−+−〉, |7〉 =

| − −+〉, and |8〉 = | − −−〉, with |±±±〉 = |±〉A ⊗ |±〉B ⊗
|±〉C , and |+〉μ (or |−〉μ) corresponds to the up-spin (or
down-spin) eigenstate of the μth qubit, respectively, and the
eigenvalues λi are shown in Appendix A.

The crossing dissipation is inevitable when the common
environment induces two subsystems connected to it to un-
dergo transitions of the same frequency [18,33,63,66–68].
By analyzing the eigenenergy levels of the triangle-coupled
system Eq. (A1), we find that there is crossing dissipation
between the heat reservoir BL and the system when ωA =
ωC = ω and gAB = gBC = g, called the crossing condition, are
satisfied. Following the standard process [71], one can obtain
the Born-Markov-secular master equation for the system’s
reduced density matrix ρ(t ) as

ρ̇(t ) = −i[HS, ρ(t )] +
∑

μ=A,B,C

Lμ[ρ(t )] + LAC[ρ(t )], (4)

the superoperator Lμ[ρ(t )] reads

Lμ[ρ(t )] =
∑
(i, j)

Jμ

( − ω
μ
i j

)[
2V μ

i j ρ(t )V μ
i j

† − {
V μ

i j
†V μ

i j , ρ(t )
}]

+ Jμ

( + ω
μ
i j

)[
2V μ

i j
†
ρ(t )V μ

i j − {
V μ

i j V μ
i j

†
, ρ(t )

}]
,

(5)

and LAC[ρ(t )] denotes the potential crossing dissipator given
by

LAC[ρ(t )] =
∑
(i, j)

JAC
( − ωAC

i j

)[
2V A

i j ρ(t )V C
i j

† − {
V C

i j
†
V A

i j , ρ(t )
}

+ 2V C
i j ρ(t )V A

i j
† − {

V A
i j

†
V C

i j , ρ(t )
}]

+ JAC
( + ωAC

i j

)[
2V A

i j
†
ρ(t )V C

i j − {
V C

i j V A
i j

†
, ρ(t )

}

+ 2V C
i j

†
ρ(t )V A

i j − {
V A

i j V
C
i j

†
, ρ(t )

}]
, (6)

where JAC (±ωAC
i j ) =

√
JA(±ωA

i j )JC (±ωC
i j ), {·, ·} denotes the

anticommutation relation, V μ
i j = | j〉〈i| and ω

μ
i j = λi − λ j rep-

resent the transition operator (or eigenoperator) of the qubit
μ and the eigenfrequency, and

∑
(i, j) means summation over

all dissipators of the qubit μ. A simple calculation can
show that for each qubit, only four eigenoperators, i.e., V A

15,
V A

26, V A
37, V A

48 for qubit A, V B
13, V B

24, V B
57, V B

68 for qubit B,
and V C

12, V C
34, V C

56, V C
78 for qubit C, can be present. A dia-

grammatic sketch of these transitions is given in Fig. 2(a).
Jμ(±ω

μ
i j ) = κμ(ωμ

i j )[±n̄μ(±ω
μ
i j )] denotes the spectral density,

where κμ(ωμ
i j ) = κ is supposed to be the flat spectrum for sim-

plicity in this work. n̄μ(ωμ
i j ) = (eω

μ
i j/Tμ − 1)−1 is the average

photon number with Tμ denoting the temperature of the heat
reservoir connected to the qubit μ. In addition, the dissipators
for the left and right heat reservoirs can be written as

LL[ρ(t )] = LA[ρ(t )] + LC[ρ(t )] + LAC[ρ(t )],

LR[ρ(t )] = LB[ρ(t )]. (7)

Here we must emphasize that LAC[ρ(t )] in Eq. (4) occurs
only under the crossing condition, where the energy levels
|2〉 and |5〉, |4〉 and |7〉 are degenerate. All transitions in-
duced by the two reservoirs are shown in Fig. 2(b). If the
energy levels are not degenerate, LAC[ρ] = 0, which means
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FIG. 2. Energy levels and transitions with ωA = ωC = ω and
gAB = gBC = g. The red solid and dot-dashed lines indicate the qubits
A and C transitions induced by reservoir L, respectively, and the
blue arrows indicate the qubit B transitions induced by reservoir R.
(b) Variational transition diagram with degenerate levels reduced to
a single one due to no transition between degenerate energy levels.

that qubits A and C are in contact with two identical IHRs. In
the following, we use the superscripts I to indicate IHR, and
C, correspondingly, to denote the presence of crossing dissipa-
tions, i.e., the genuine CHR. In order to distinguish between
IHR and CHR, when the crossing dissipation exists, we let
JL(±ωL

i j ) = Jμ(±ω
μ
i j ) for μ = A,C and JR(±ωR

i j ) = JB(±ωB
i j )

to highlight the left (L) and right (R) heat reservoirs.

III. STEADY STATE AND HEAT CURRENTS

A. Steady state

The evolution of the density matrix can be divided into
two independent subspaces. All the relevant matrix elements
in one subspace will vanish for the steady-state case. In the
other subspace, where nonzero matrix elements to be obtained
dominate the steady-state contribution, the relevant evolution
equations are given as follows:

ρ̇11 = −
A
15 − 
B

13 − 
C
12 + 2

√
A+

15C
+
12(ρ25 + ρ52),

ρ̇33 = −
A
37 + 
B

13 − 
C
34 + 2

√
A+

37C
+
34(ρ47 + ρ74),

ρ̇66 = +
A
26 − 
B

68 + 
C
56 + 2

√
A−

26C
−
56(ρ25 + ρ52),

ρ̇88 = +
A
48 + 
B

68 + 
C
78 + 2

√
A−

48C
−
78(ρ47 + ρ74),

ρ̇22 = −
A
26 − 
B

24 + 
C
12

− (
√

A+
15C

+
12 +

√
A−

26C
−
56)(ρ25 + ρ52),

ρ̇55 = +
A
15 − 
B

57 − 
C
56

− (
√

A+
15C

+
12 +

√
A−

26C
−
56)(ρ25 + ρ52),

ρ̇44 = −
A
48 + 
B

24 + 
C
34

− (
√

A+
37C

+
34 +

√
A−

48C
−
78)(ρ47 + ρ74),

ρ̇77 = +
A
37 + 
B

57 − 
C
78

− (
√

A+
37C

+
34 +

√
A−

48C
−
78)(ρ47 + ρ74),

ρ̇25 = 
AC
1,52 − 
AC

25,6 + 2
√

B+
24B+

57ρ47

− (A+
15 + A−

26 + B−
24 + B−

57 + C+
12 + C−

56)ρ25,

ρ̇47 = 
AC
3,74 − 
AC

47,8 + 2
√

B−
24B−

57ρ25

− (A+
37 + A−

48 + B+
24 + B+

57 + C+
34 + C−

78)ρ47, (8)

ρ̇52 = ρ̇∗
25 and ρ̇74 = ρ̇∗

47, where 

μ
i j = 2[Jμ(−ω

μ
i j )ρii − Jμ( +

ω
μ
i j )ρ j j] denotes the net dissipation rate from |i〉 to | j〉 cor-

responding to the qubit μ and ρii indicates the population of
|i〉. μ±

i j is a simplified representation of the spectral density
Jμ(±ω

μ
i j ). The net dissipation rate induced by CHR 
AC

i jk are
nonvanished and can be expressed as


AC
1,25 = 2

√
A−

15C
−
12ρ11 −

√
A+

15C
+
12(ρ22 + ρ55),


AC
3,47 = 2

√
A−

37C
−
34ρ33 −

√
A+

37C
+
34(ρ44 + ρ77),


AC
25,6 =

√
A−

26C
−
56(ρ22 + ρ55) − 2

√
A+

26C
+
56ρ66,


AC
47,8 =

√
A−

48C
−
78(ρ44 + ρ77) − 2

√
A+

48C
+
78ρ88. (9)

If the conditions ωA = ωC = ω and gAB = gBC = g
aren’t satisfied, there is no crossing dissipation. Thus
the above evolution equations will be simplified, by
setting ρ̇52 = ρ̇74 = 0, as |ρ̇I〉 = MI |ρI〉, where |ρI〉 =
[ρI

11, ρ
I
22, ρ

I
33, ρ

I
44, ρ

I
55, ρ

I
66, ρ

I
77, ρ

I
88]T is the column vector of

nonzero diagonal entries of the density matrix and the coef-
ficient matrix MI = MI

A + MI
B + MI

C , which is concretely
expressed in Appendix B. The equations can be analyti-
cally solved, and the steady state can be written as ρI,S =∑8

i=1 ρI
ii|i〉〈i|. However, the explicit form is too tedious, and

we don’t present it here.
The crossing dissipations will be present under the cross-

ing condition, which means that the CHR will take effect.
Through the dynamics of the system Eq. (8), it can be obtained
that the degenerate energy levels have the same population
at steady state, that is, ρC

22 = ρC
55 and ρC

44 = ρC
77. Similarly,

the density matrix for the CHR can be written |ρ̇C〉 =
MC |ρC〉 with |ρC〉 = [ρC

11, ρ
C
22, ρ

C
33, ρ

C
44, ρ

C
66, ρ

C
88, ρ

C
25, ρ

C
47]T ,

and MC = MC
L + MC

R , which is shown in Appendix B for
their complex expressions. One can find that the rank of MC

is 6, but the dimension of MC is 8. So the steady states are
not unique and depend on the initial state. In other words, the
steady state of the system can always be written as the mixture
of two particular steady states as

ρC,S = (1 − p)ρC,S
1 + pρC,S

2 , (10)

where ρC,S
1 = ∑2

i=1 ρ̃S
ii |ĩ〉〈ĩ| and ρC,S

2 = ∑8
i=3 ρ̃S

ii |ĩ〉〈ĩ|, the
specific expression of ρ̃S

ii is shown in Appendix B, and {|ĩ〉}
are alternative eigenstates of the system defined as

|1̃〉 = 1√
2

(|5〉 − |2〉), |5̃〉 = 1√
2

(|2〉 + |5〉),

|2̃〉 = 1√
2

(|7〉 − |4〉), |6̃〉 = 1√
2

(|4〉 + |7〉),

|3̃〉 = |1〉, |4̃〉 = |3〉, |7̃〉 = |6〉, |8̃〉 = |8〉. (11)
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In particular, the initial state can also be written as
ρ0 = (1 − p)S1 + pS2 with S1 = ∑2

i, j=1 ai j |ĩ〉〈 j̃| and S2 =∑8
i, j=3 bi j |ĩ〉〈 j̃| representing density matrices in the cor-

responding subspace {|ĩ〉}i=1,2 and {|ĩ〉}i=3,...,8, and p =∑8
i=3〈ĩ|ρ0|ĩ〉 quantifies the fraction. We have obtained the

steady-state density matrices in both CHR and IHR cases to
study our system’s thermodynamic behaviors. In particular, it
allows controlling the steady state of our demand by adjusting
the initial state.

B. Steady-state heat current

The heat current between the heat reservoir and the contact
qubit μ is defined as

Q̇μ = Tr{HSLμ[ρ(t )]}, μ = A, B,C. (12)

Q̇μ < 0 means that heat flows from the qubit μ into its heat
reservoir, and oppositely, it indicates heat flows out of the
reservoir to our system of interest. The heat current for the
reservoir α can be given by

Q̇α = Tr{HSLα[ρ(t )]}, α = L, R, (13)

with Lα[ρ(t )] defined in Eq. (7). Q̇α describes the net heat
current into or out of the reservoir Bα .

In the case of IHR, the steady-state heat current Q̇μ|ρI,S can
be obtained by substituting state ρI,S into Eq. (12), which is
specifically shown in Appendix C. It is obvious that Q̇L|ρI,S =
Q̇A|ρI,S + Q̇C |ρI,S = −Q̇B|ρI,S = −Q̇R|ρI,S corresponds to the
law of conservation of energy.

Similarly, in the case of CHR, one will find that the heat
currents for the steady state ρC,S

1 are

Q̇L|ρC,S
1

= Q̇R|ρC,S
1

= 0, (14)

which means ρC,S
1 blocks heat transfer between the two reser-

voirs and is a heat-resisting state. The heat currents for the
steady state ρC,S

2 , i.e., Q̇α|ρC,S
2

, can also be easily obtained,
which are given in Appendix C. Since the steady state can
be written as the mixture of the two states ρC,S

1 and ρC,S
2 as

Eq. (10), the steady-state heat currents can also be the mixture
of the heat currents of the two particular states. That is, the
steady-state heat current can be expressed as

Q̇α|ρC,S = pQ̇α|ρC,S
2

. (15)

One can see that the heat current depends on the fraction p.
In this sense, one can immediately find that the heat current
Q̇α|ρC,S

2
for the state ρC,S

2 corresponds to the maximal potential
steady-state heat current. Therefore, the steady-state heat cur-
rent can be effectively controlled by the fraction of the initial
states.

To reveal the effect of the system’s structure of our model
on the heat currents, we plot heat current versus the temper-
ature with different internal parameters in Fig. 3. In Fig. 3(a)
we fix the frequencies ωA = 3ω0 and ωB = 5ω0 to show how
the heat currents depend on the frequency ωC . It can be
easily found that the heat current is reduced with increasing
the frequency ωC . Similarly, one can find that the internal
couplings g and gAC can enhance the heat currents, which
are shown in Figs. 3(c) and 3(e), respectively. But compar-
ing the two figures indicates that the enhancement effect of

FIG. 3. Steady-state heat current Q̇L with temperature TL . Q̇L

and Q̇R are of the same magnitude and opposite directions. The
black dashed lines indicate Q̇L = Q̇R = 0 for TL = TR. The left three
figures correspond to ωA = 3ω0 and ωC = 2ω0. The right three fig-
ures correspond to ωA = ωC = ω, where the shaded (outside) and
colored (inside) surfaces represent the steady-state heat current with
and without crossing dissipation. Here ω0 = 1, ω = 3ω0, ωB = 5ω0,
gAB = gBC = gAC = 0.1ω0, κ = 0.001ω0, TR = 21ω0, and p = 1 in
(b), (d), and (f).

the coupling gAC between A and C seems weaker than that
of g. It can be well understood because g characterizes the
contact intensity of the system’s left and right parts, but gAC

characterizes the coupling between the two transport channels
A ↔ B and C ↔ B. Of course, it can be trivially understood
that g = 0 will show zero heat current due to two separate
left and right reservoirs, which case has been verified through
an analytic process in Appendix B. As mentioned previously,
if ωA = ωC = ω and gAB = gBC = g, the crossing dissipations
will occur and will play their role. To illustrate the effect of
CHR, we plot the heat currents with CHR and p = 1 by the
shaded surfaces in Figs. 3(b), 3(d), and 3(f). As a comparison,
we also consider that two identical qubits A and C are in
contact with a heat reservoir L. The colored surfaces in the fig-
ures also plot the corresponding heat currents. The CHR can
be found to enhance the heat currents, and the enhancement
effect becomes significant with the increase of heat currents.

C. Inverse heat current

In the case of CHR, crossing dissipators will exist in the
master equation. Usually the different dissipators determine
different heat transport channels and play different roles in
the heat currents. To refine the effects of these dissipators,
we can define the direct dissipation channel determined by
Ld

L[ρ(t )] = LA[ρ(t )] + LC[ρ(t )] and the crossing dissipation
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channel governed by Lc
L[ρ(t )] = LAC[ρ(t )]. Analogously to

Eq. (12), we can also define the direct heat current (DHC) and
the crossing heat current (CHC) corresponding to direct and
crossing dissipation channels, respectively.

As mentioned previously, ρC,S
1 (or the steady state p = 0)

is a heat-resisting state that blocks the system’s heat transfer.
Since Q̇L|ρC,S

1
= 0, considering DHC and CHC, one can also

divide the vanishing heat current of ρC,S
1 into two parts of the

same magnitude and opposite direction as Q̇d
L|ρC,S

1
= −Q̇c

L|ρC,S
1

,
where the superscript d and c label DHC and CHC, respec-
tively. Analogously, the heat current for the state ρC,S

2 can also
be divided as Q̇L|ρC,S

2
= Q̇d

L|ρC,S
2

+ Q̇c
L|ρC,S

2
. The expressions of

the heat current in the two channels corresponding to the
two substeady states are explicitly shown in Appendix C.
Note that Q̇c

L|ρC,S
2

�= −Q̇d
L|ρC,S

2
is different from the state ρC,S

1 .

Accordingly, the total heat current Q̇α can also be divided in
DHC and CHC as

Q̇d/c
L = (1 − p)Q̇d/c

L

∣∣
ρ

C,S
1

+ pQ̇d/c
L

∣∣
ρ

C,S
2

, (16)

which is also proportional to the fraction p.
DHC or CHC opposite to the direction of the net heat

current (NHC) is referred to as the inverse heat current (IHC)
[33,72], which could play some subtle role in the heat transfer.
To show this, we set the left reservoir BL as the hot (and
cold) terminal, respectively, and plot DHC, CHC, and NHC
in Fig. 4. It is obvious in Fig. 4(a) that the NHC is conserved,
that is, Q̇L = −Q̇R for both TL > TR and TR > TL, and the
NHC linearly depends on the fraction p. But DHC and CHC
compete for the dominant role played in the NHC, which can
be seen from Fig. 4(b) and Fig. 4(c) that DHC and CHC have
variant directions. In particular, from Fig. 4(c) one can find
that Q̇d

L = 0 and Q̇c
L = 0 at the points

pd =
Q̇d

L

∣∣
ρ

C,S
1

Q̇d
L

∣∣
ρ

C,S
1

− Q̇d
L

∣∣
ρ

C,S
2

, pc =
Q̇d

L

∣∣
ρ

C,S
1

Q̇d
L

∣∣
ρ

C,S
1

+ Q̇c
L

∣∣
ρ

C,S
2

. (17)

pd (c) corresponds to the point of the vanishing heat current
in the direct dissipation (or crossing dissipation) channel.
Namely, at the point p = pd , Q̇d

L = 0 and Q̇c
L = Q̇L, and at

the point p = pc, Q̇c
L = 0 and Q̇d

L = Q̇L. Thus one can easily
see that the dissipative channels play different roles in NHC
in different ranges of p. Let’s first focus on the case TL > TR

(blue lines). When p < pd , CHC plays a dominant role in the
NHC, but Q̇d

L serves as the inverse heat current. When p > pc,
DHC plays a dominant role in NHC, and Q̇c

L is the inverse heat
current. However, when p ∈ [pd , pc], Q̇d

L > 0 and Q̇c
L > 0 and

there is no IHC between the system and the bath. In the case
of TL < TR (red lines), the phenomena are quite similar to the
case of TL > TR. The differences are that NHCs change the
directions due to exchanging the hot and the cold terminals as
shown in Fig. 4(a), and the points pd and pc exchange their
relative positions, which would result in NHC being dom-
inated by DHC and CHC in p ∈ [0, pc] and p ∈ [pd , 1]. In
Fig. 4(d), one can see that the heat current always flows from
the hot end to the cold end and the total heat current is zero
due to the conservation of energy. It is apparent that TL = TR

means the thermal equilibrium, so there is no heat current.
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(b) (c)

(d) (e)

FIG. 4. Heat currents vs the fraction p in (a)–(c) and the temper-
ature TL in (d)–(e). Here Q̇d

L + Q̇c
L = Q̇L . Panel (c) is the enlarged

view of the region around the “cross point” in (b). The gray lines
in (d) and (e) correspond to TL = TR. In (a) and (d), Q̇α, α = L, R,

with dotted-dashed line and dotted line represent the NHC between
two reservoirs. In (b), (c), and (e), Q̇d

L with dashed lines and Q̇c
L with

solid lines denote the DHC and CHC. TL > TR means TL = 100ω0

and TR = 21ω0, and TL < TR means TR = 100ω0 and TL = 21ω0. The
other parameters are taken as the same as Fig. 3.

It is interesting that, if either reservoir approaches 0 K, the
NHC also vanishes. A detailed mathematical derivation is
given by Eqs. (C5) and (C6). Figure 4(e) indicates that the
heat currents between BL and the system in the two channels
are not sensitive to the temperature. The robustness of Q̇d (c)

L
to TL increases with the decrease of the fraction p, which
is quite clear at the range of TL → 0. Since NHC increases
with p increasing, p = 0 means that NHC vanished, which is
reasonable even if there is a temperature gradient between the
two reservoirs.

Figure 5(a) [or Fig. 5(b)] depicts pc and pd depending on
the temperature TL (or TR) with the other terminal fixed to be
constant temperature 21ω0. It is easy to see that pc and pd

greatly depend on the temperature for TL(R) < 10ω0. How-
ever, pc is insensitive to the temperature for TL(R) > 10ω0.
In addition, one can also find that pc and pd demonstrate
different behaviors with the temperature when the temperature
of the two terminals exchanged [corresponding to Fig. 5(a)
and Fig. 5(b)]. In fact, pc and pd also depend on the other
parameters of the system, such as atomic natural frequency
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FIG. 5. pd and pc vs the temperature of one terminal. The inset
in (a) is a local magnification around TL/ω0 ∈ [10, 100]. In both
figures we set the fixed temperature 21ω0 to the other terminal. The
other parameters are taken the same as Fig. 3.

ω(ωB) and interatomic coupling strength g(gAC ), which are
given in Appendix D.

IV. QUANTUM THERMAL DIODE

Electric diodes, important electric devices, allow the
electric current to conduct only in one direction. Simi-
larly, quantum thermal diodes can allow only unidirectional
transport of the heat current between two reservoirs. The recti-
fication performance can be characterized by the rectification
(asymmetry) factor defined as

Rα =
∣∣∣∣∣

∣∣Q̇ f
α

∣∣ − ∣∣Q̇r
α

∣∣
Max

[
Q̇ f

α, Q̇r
α

]
∣∣∣∣∣, (18)

where Q̇ f
α denotes the forward heat current defined by Q̇α

for given TL and TR, and Q̇r
α denotes the reverse heat cur-

rent defined by Q̇α with exchanging the TL and TR for Q̇ f
α .

The energy conservation implies RL = RR = R. R ∈ [0, 1],
where R = 1 means the perfect diode and R = 0 means the
vanishing rectification.

In general, the diode function comes from the asymmetry
of the quantum system, such as the differences of the cou-
pling gμν between qubits, of the natural frequencies ωμ) of
qubits, or of the interaction strength κ

μ
i j between qubits and

the environment. An intuitive illustration is shown in Fig. 6,
where we use the blue dashed line to mark the rectification
factor for TL = 0.4ω0 and TL = 6ω0, and the red dashed line
to mark the case for ωA = ωC = ω. Here we suppose qubits A
and C are connected to separate but identical independent heat
reservoirs and ωB = 5ω0 and ωC = 2ω − ωA. In addition, we
let ω take ω0, 3ω0, 5ω0, 7ω0, 10ω0, and 12ω0 in Figs. 6(a)–
6(f), respectively. We found that for ω < 2ωB as shown in
Figs. 6(a)–6(e), the greater the frequency difference of the
two qubits connected with the left heat reservoir is, the better
the rectification. For ω > 2ωB, one can find from Fig. 6(f)

FIG. 6. Rectification factor R vs ωA and TL . The blue dotted lines
correspond to TL = 0.4ω0 and 6ω0, the red dashed lines correspond
to ωA = ωC = ω, and the green solid lines correspond to the case
in the presence of the crossing dissipation LAC (ρ ). Here ωC = 2ω −
ωA, ω0 = 1, κ = 0.001ω0, p = 1, TR = 2ω0, ωB = 5ω0, gAB = gBC =
gAC = 0.1ω0, and ω = ω0, 3ω0, 5ω0, 7ω0, 10ω0, 12ω0 in (a)–(f).

that ωA = ωC = ω corresponds to the best rectification effect.
Comparing the red dashed lines in each picture, one can find
that the larger difference in frequencies of qubits in contact
with the left and right thermal reservoirs will lead to a better
rectification effect.

To further show the effect of the CHR on the rectification
factor, let us focus on the green lines in Fig. 6. As mentioned
above, the steady state in the presence of the crossing dissipa-
tion depends on the initial state; nevertheless, the rectification
factor doesn’t since the heat current is proportional to the
fraction p. Therefore, in Fig. 6 we mainly address the steady
state ρC,S

2 (p = 1) corresponding to the maximum heat current.
It is shown in Figs. 6(a) and 6(b) that the green lines are under
the dashed lines, which indicates that the common heat reser-
voir has an inhibitory effect on the rectification effect when
ω < ωB. But the green lines in Fig. 6(c) with ω ≈ ωB show
that CHR boosts the rectification effect. The boosting effect
of CHR can be maintained even for ωB < ω < 2ωB as shown
in Figs. 6(d) and 6(e). However, with the increasing of the
frequency ω, ω > 2ωB as shown in Fig. 6(f), the enhancement
effect of CHR is kept only for the nonequilibrium region, i.e.,
the temperature region except near TL = TR. To sum up, when
ω < 2ωB in the absence of CHR, the rectification factor is
large for ωA, greatly deviating from ωC . When ω > 2ωB in
the presence of CHR, ωA = ωC will make a large rectification
factor. However, the coupling strength gμν between qubits has
no obvious effect on the rectification factor in the absence of
CHR. To give an intuitive understanding of the quantum ther-
mal diode, let’s consider the transitions between the various
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FIG. 7. A principle diagram for the quantum thermal diode in the
presence of crossing dissipations. A simple transition cycle (|8〉 →
|4〉 → |2〉 → |6〉 → |8〉) is taken as an example. Panels (a) and
(b) correspond to ω > ωB and ω < ωB, respectively.

eigenstates {|ĩ〉}, which is illustrated in Fig. 2(b) implying four
nonrepeating transition cycles:

|8〉 → |4〉 → |2〉 → |6〉 → |8〉,
|8〉 → |4〉 → |3〉 → |1〉 → |2〉 → |4〉 → |8〉,
|8〉 → |4〉 → |3〉 → |1〉 → |2〉 → |6〉 → |8〉,
|8〉 → |2〉 → |3〉 → |1〉 → |2〉 → |6〉 → |8〉. (19)

Figure 7(a) corresponds to ω > ωB; the transitions |8〉 ↔ |4〉
and |6〉 ↔ |2〉 induced by the left reservoir require the larger
energy. When the temperature changes, the left reservoir will
no longer induce the transition |6〉 ↔ |2〉 easily, so this cycle
cannot be completed and results in a difference in forward heat
current and reverse one. When ω < ωB as shown in Fig. 7(b),
the transitions |2〉 ↔ |4〉 (or |5〉 ↔ |7〉) and |6〉 ↔ |8〉 induced
by the right reservoir require a large amount of energy, and the
transition cycle cannot be completed when the temperature
TR is low. When the frequencies of qubits are close to each
other, i.e., ω ≈ ωB, the transition rates of both reservoirs are
nearly the same, which explains why the closer the qubits are
to resonance, the worse the rectification effect is.

The thicker arrows in Fig. 7 indicate transitions between
degenerate energy levels, which means there’s a higher proba-
bility of transitions between these levels. Since only transition
|6〉 ↔ |8〉 induced by the right reservoir does not involve the
degenerate energy level in this cycle, when ωB is slightly
larger than ω, the inverse cycle corresponding to Fig. 7(a) is
easier to complete than the positive cycle corresponding to
Fig. 7(b). Therefore, the system corresponding to Fig. 7(b)
will have greater asymmetry, i.e., better rectification. So the
rectification at ω < ωB is slightly greater than that at ω > ωB.

V. STEADY-STATE MUTUAL INFORMATION

In order to study the property of the steady state, we’d
like to briefly introduce quantum entanglement, quantum dis-
cord (quantum correlation), classical correlation, and quantum
mutual information. Quantum entanglement is usually consid-
ered as the most popular quantum correlation in a quantum
system. For a bipartite (L and R) system, a separable quantum

state can be written as

ρLR =
∑

k

pkρ
k
L ⊗ ρk

R,
∑

k

pk = 1, pk > 0, (20)

where ρk
L and ρk

R denote the local density matrices. If the
quantum state cannot be written as Eq. (20), it is entangled
[64,66,68,73–77].

However, quantum entanglement is not the unique quan-
tum correlation in a quantum system. Quantum discord [78]
is thought to be another type of quantum correlation different
from quantum entanglement. It is defined by the discrepancy
of two classically equivalent quantum mutual informations,
or by the difference between the total correlation and the
classical correlation. As we know, the total correlation is well
described by the quantum mutual information

I (ρLR) = S(ρL ) + S(ρR) − S(ρLR), (21)

where S(ρ) = −Trρ log ρ denotes the von Neumann entropy.
The classical correlation is characterized by the most residual
information after all potential measurements since measure-
ments destroy quantum correlation. In this sense the classical
correlation is defined by

C(ρLR) = S(ρL ) − inf{
V R

k

} S
(
ρLR

∣∣{V R
k

})
, (22)

where S(ρLR|{V R
k }) = ∑

k pkS(ρLR|V R
k ) denotes the condi-

tional entropy and the infimum is taken over all potential
measurements {V R

k } performed on the subsystem R. Thus the
quantum discord is defined by

Q(ρLR) = I (ρLR) − C(ρLR). (23)

It should be emphasized that quantum discord Q(ρLR) is
usually asymmetric under exchanging the subsystems L and
R. If we exchange L and R, one will obtain the other dis-
cord denoted by Q(ρRL ). With these definitions, one can find
that Q(ρLR) = 0 for the quantum-classical states of the form
ρLR = ∑

k ρk
L ⊗ |k〉R〈k|, and Q(ρRL ) = 0 for the classical-

quantum states of the form ρRL = ∑
k |k〉L〈k| ⊗ ρk

R, where
{|k〉} denotes the local basis of the corresponding subsystem.
In particular, it is shown that the states of the form

ρRL =
∑
k,k′

|k〉L〈k| ⊗ |k′〉R〈k′| (24)

with {|k′〉R} representing the basis of subsystem R is
classical-classical states which haven’t any quantum correla-
tion [79–81] with Q(ρLR) = Q(ρRL ) = 0. In this sense, one
can obviously obtain I (ρLR) = C(ρLR) for the states given in
Eq. (23); namely, the total correlation of the states Eq. (23) is
equal to the classical correlation.

Turning to our system, we regard atoms A and C in contact
with the left common reservoir as subsystem L and atom B as
subsystem R. so the composite system is 4 ⊗ 2-dimensional.
In the absence of the CHR, the steady state can be given as

ρI,S = (
ρI

11|++〉L〈++|+ρI
22|+−〉L〈+ − |

+ ρI
55| − +〉L〈−+|+ρI

66| − −〉L〈− − |) ⊗ |+〉R〈+|
+ ρI

33|++〉L〈++|+ρI
44|+−〉L〈+ − |

+ ρI
77| − +〉L〈−+|+ρI

88| − −〉L〈− − |) ⊗ |−〉R〈−|,
(25)
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and in the presence of CHR, the steady state Eq. (10) can be
given as

ρC,S = [(
ρC

22 + ρC
25

)|ψ+〉L〈ψ+| + (
ρC

22 − ρC
25

)|ψ−〉L〈ψ−|
+ ρC

11|++〉L〈++| + ρC
66|−−〉L〈−−|] ⊗ |+〉R〈+|

+ [(
ρC

44 + ρC
47

)|ψ+〉L〈ψ+| + (
ρC

44 − ρC
47

)|ψ−〉L〈ψ−|
+ ρC

33|++〉L〈++| + ρC
88|−−〉L〈−−|] ⊗ |−〉R〈−|,

(26)

where |ψ±〉L = 1√
2
(| + −〉L ± | − +〉L ) represents the maxi-

mally entangled state of atoms A and C.
It is obvious that both ρI,S and ρC,S have the same form as

Eq. (24), hence ρI,S and ρC,S are not only separable but also
classically correlated. In particular, the classical correlation
between L and R can be calculated based on Eq. (22) and
Eq. (23) by the mutual information as

C(ρI,S ) = I (ρI,S ) = −
8∑

i=1

(
ρI

ii

)
log

(
ρI

ii

)
,

C(ρC,S ) = I (ρC,S ) = −
2∑

i=1

[
(1 − p)ρ̃S

ii

]
log

[
(1 − p)ρ̃S

ii

]

−
8∑

i=3

(
pρ̃S

ii

)
log

(
pρ̃S

ii

)
, (27)

where ρI
ii is determined by Eq. (8) and ρ̃S

ii is given in Ap-
pendix B.

To describe the symmetry of the classical correlation (or
quantum mutual information) induced by exchanging the tem-
perature of the two heat reservoirs, we, similar to the heat
current Q̇ f /r

α , define an asymmetric factor of mutual informa-
tion AI as

AI =
∣∣∣∣

|I f | − |Ir |
Max[I f , Ir]

∣∣∣∣, (28)

where the superscripts f and r denote the forward and reverse
mutual information. In Fig. 8 we depict the rectification factor
R and AI as a function of temperature TL. One can find that
AI has a good consistency with the R, and CHR has the same
effect on both of them. When ω < ωB, as shown in Fig. 8(b),
the common heat reservoir inhibits both R and AI . On the
contrary, when ω > ωB, as shown in Fig. 8(d), the common
heat reservoir contributes to these two quantities. Neverthe-
less, it is shown in Figs. 8(a) and 8(c) that I f = Ir �= 0 for
TL = TR, which is different from the heat currents.

The beautiful consistency can also be well understood
based on the transition depicted in Fig. 7. In fact, one can find
that Fig. 7 illustrates the asymmetric transition cycles induced
by exchanging the reservoirs, which mainly determines the
asymmetric transition rates. Thus a rough view is that the
asymmetric transitions will further result in asymmetric popu-
lations, which determine the mutual information. In particular,
the steady-state density matrices don’t have any quantum cor-
relation, which greatly simplifies the mathematical form of
the state and makes the transition asymmetry to be greatly
preserved in the asymmetry of populations.
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0.5
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FIG. 8. Forward and reverse mutual information denoted by dot-
ted lines and dashed-dotted lines, respectively, vs temperature in
(a) and (c). Rectification factor R and asymmetric factor AI vs
temperature TL in (b) and (d). Solid and dashed lines indicate the
system contact with CHR or not. The inset in (b) shows an en-
larged view at TL/ω0 ∈ [3, 4]. Here ω0 = 1, κ = 0.001ω0, TR = ω0,
g = gAC = 0.1ω0, p = 1, ωA = ωC = ω = ω0, ωB = 5ω0 in (a) and
(b) and ωA = ωC = ω = 5ω0, ωB = 1ω0 in (c) and (d).

Before we end, we give a general understanding of the pure
classical correlation in the steady state. Under the energy rep-
resentation, for the case of IHR where there are no degenerate
energy levels, the evolution of the density matrix is divided
into two independent groups, separately corresponding to the
diagonal elements and the off-diagonal elements [82]. During
the evolution, the off-diagonal elements decay to zero, so the
steady state is diagonal, which includes only the classical
correlation. In the case of CHR, there exist degenerate energy
levels. Similar to the case of IHR, the density matrix will
also evolve to a diagonal steady state except for its degenerate
subspace. Even though there could exist off-diagonal elements
in the subspace, one can always find a proper local unitary
operation to eliminate the off-diagonal elements. As a result,
one can arrive at a diagonal steady state, which has only
classical correlations. Note that the local operation on the
subsystem L does not affect the classical correlation between
L and R.

VI. CONCLUSIONS AND DISCUSSION

In this paper we study the effects of three pairwise coupled
qubits systems on heat transport between two heat reservoirs
with temperature gradients. We find that energy levels of the
system will degenerate, and crossing dissipation LAC (ρ) will
occur when two qubits A and C with the same natural fre-
quency are coupled to another qubit C with the same strength,
i.e., ωA = ωC = ω and gAB = gBC = g. We find that the cross-
ing dissipation always increases the heat current, but the effect
on the rectification greatly depends on the frequencies and the
internal couplings of the qubits. In particular, we show that
in the presence of crossing dissipations, the steady-state heat
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current depends on the initial states, which provide a potential
to adjust heat current by initial states, but the rectification
factor is independent of the initial state of the system. The
inverse current is also present in different dissipative channels
at different temperature ranges in the presence of the crossing
dissipations. Finally, we find that neither quantum entangle-
ment nor quantum discord is present in the steady state, but
the mutual information, i.e., the pure classical correlation has
consistent asymmetric behavior with the heat rectification fac-
tor, which shows the important role of the classical correlation
in the system.

Finally, we’d like to present the practical scenario for
its potential usefulness. Suppose we own identical qubits
with only σz-type couplings allowed: how can we realize the
rectification? It is obvious that the bipartite coupling with

HSI = �σ z
Lσ z

R won’t produce any rectification effect due to
the symmetric structure [11]. We also find that the chain-type
coupling won’t contribute any rectification effect either. In this
sense, our model provides an alternative method to realize a
rectifier in the scenario. In addition, although we have shown
the consistent behavior between classical correlation and the
rectification effect, it will still be an interesting question
whether or what features of quantum states are closely related
to various quantum thermodynamical behaviors.
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APPENDIX A: EIGENVALUES, EIGENOPERATORS, AND EIGENFREQUENCIES

Here we present some complicated expressions mentioned in the main text. To give the global master equation, one needs to
calculate the eigenvalues of the system’s Hamiltonian. Corresponding to the computational bases, we can give the eigenvalues
as

λ1 = 1
2 (+ωA + ωB + ωC + gAB + gBC + gAC ), λ2 = 1

2 (+ωA + ωB − ωC + gAB − gBC − gAC ),

λ3 = 1
2 (+ωA − ωB + ωC − gAB − gBC + gAC ), λ4 = 1

2 (+ωA − ωB − ωC − gAB + gBC − gAC ),

λ5 = 1
2 (−ωA + ωB + ωC − gAB + gBC − gAC ), λ6 = 1

2 (−ωA + ωB − ωC − gAB − gBC + gAC ),

λ7 = 1
2 (−ωA − ωB + ωC + gAB − gBC − gAC ), λ8 = 1

2 (−ωA − ωB − ωC + gAB + gBC + gAC ). (A1)

Thus we can further calculate the eigenoperators and eigenfrequencies for the master equation as follows. Let the eigenopera-
tors and eigenfrequencies, respectively, denote by {V μ

m , m = 1, . . . , 4} and ω
μ
i j for qubit μ and the subscript m label the different

eigenfrequencies. A simple calculation can give

V A
1 = V A

15 = |5〉〈1|, ωA
15 = ωA + gAB + gAC, V A

2 = V A
26 = |6〉〈2|, ωA

26 = ωA + gAB − gAC,

V A
3 = V A

37 = |7〉〈3|, ωA
37 = ωA − gAB + gAC, V A

4 = V A
48 = |8〉〈4|, ωA

48 = ωA − gAB − gAC,

V B
1 = V B

13 = |3〉〈1|, ωB
13 = ωB + gAB + gBC, V B

2 = V B
24 = |4〉〈2|, ωB

24 = ωB + gAB − gBC,

V B
3 = V B

57 = |7〉〈5|, ωB
57 = ωB − gAB + gBC, V B

4 = V B
68 = |8〉〈6|, ωB

68 = ωB − gAB − gBC,

V C
1 = V C

12 = |2〉〈1|, ωC
12= ωC + gBC + gAC, V C

2 = V C
34 = |6〉〈5|, ωC

34 = ωC + gBC − gAC,

V C
3 = V C

56 = |4〉〈3|, ωC
56= ωC − gBC + gAC, V C

4 = V C
78 = |8〉〈7|, ωC

78 = ωC − gBC − gAC . (A2)

Note that the eigenoperator is V μ
i j corresponds to the positive eigenfrequency, i.e., ω

μ
i j > 0, otherwise V μ

i j
† corresponds to the

negative eigenfrequency.

APPENDIX B: ANALYTICAL STEADY STATES

For the case that the left heat reservoir is IHR, the coefficient matrix in the dynamic |ρ̇I〉 = MI |ρI〉 as MI = MI
A + MI

B +
MI

C , where

MI
A = MA

15 ⊗ m+ ⊗ m+ + MA
26 ⊗ m+ ⊗ m− + MA

37 ⊗ m− ⊗ m+ + MA
48 ⊗ m− ⊗ m−,

MI
B = m+ ⊗ MB

13 ⊗ m+ + m+ ⊗ MB
24 ⊗ m− + m− ⊗ MB

57 ⊗ m+ + m− ⊗ MB
68 ⊗ m−,

MI
C = m+ ⊗ m+ ⊗ MC

12 + m+ ⊗ m− ⊗ MC
34 + m− ⊗ m+ ⊗ MC

56 + m− ⊗ m− ⊗ MC
78, (B1)

with Mμ
i j = 2(

−Jμ(−ω
μ
i j ) Jμ( + ω

μ
i j )

Jμ(−ω
μ
i j ) −Jμ( + ω

μ
i j )

), m+ = (1 0
0 0), and m− = (0 0

0 1). The steady state can be expressed as ρI,S = ∑8
i=1 ρI

ii|i〉〈i|,
where ρI

ii = ρI
i

NI is the normalized nonzero matrix element in the steady state with the normalization coefficient NI = ∑8
i=1 ρI

i ,
which is not given here because of its lengthy form.
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When there is no connection between the left and right subsystems, i.e., gAB = gBC = 0, there are A±
15 = A±

37, A±
26 = A±

48,
B±

13 = B±
24 = B±

57 = B±
68, C±

12 = C±
34, and C±

56 = C±
78, and the nonzero matrix elements of steady state are

ρI
1

∣∣
g=0 = B+

13[A+
26C

+
13(A+

15 + C−
56) + A+

15C
+
56(A−

26 + C+
12)], ρI

2|g=0 = B+
13[A+

26C
−
56(A−

15 + C−
12) + A+

15C
−
12(A+

26 + C+
56)],

ρI
3

∣∣
g=0 = B−

13[A+
26C

+
13(A+

15 + C−
56) + A+

15C
+
56(A−

26 + C+
12)], ρI

4|g=0 = B−
13[A+

26C
−
56(A−

15 + C−
12) + A+

15C
−
12(A+

26 + C+
56)],

ρI
5

∣∣
g=0 = B+

13[A−
15C

+
12(A+

26 + C+
56) + A−

26C
+
56(A+

15 + C−
12)], ρI

6|g=0 = B+
13[A−

26C
−
12(A+

15 + C−
56) + A−

15C
−
56(A−

26 + C+
12)],

ρI
7

∣∣
g=0 = B−

13[A−
15C

+
12(A+

26 + C+
56) + A−

26C
+
56(A+

15 + C−
12)], ρI

8|g=0 = B−
13[A−

26C
−
12(A+

15 + C−
56) + A−

15C
−
56(A−

26 + C+
12)]. (B2)

We immediately get Q̇α|g=0 = 0.
When ωA = ωC and gAB = gBC = g, namely, qubits A and C connect the genuine CHR, the coefficient matrix Mα is

MC
L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4L−
12 4L+

12 0 0 0 0 4L+
12 0

2L−
12 −2L+

12 − 2L−
26 0 0 2L+

26 0 −2L+
12 − 2L−

26 0

0 0 −4L−
34 4L+

34 0 0 0 4L+
34

0 0 2L−
34 −2L+

34 − 2L−
48 0 2L+

48 0 −2L+
34 − 2L−

48

0 4L−
26 0 0 −4L+

26 0 4L−
26 0

0 0 0 4L−
48 0 −4L+

48 0 4L−
48

2L−
12 −2L+

12 − 2L−
26 0 0 2L+

26 0 −2L+
12 − 2L−

26 0

0 0 2L−
34 −2L+

34 − 2L−
48 0 2L+

48 0 −2L+
34 − 2L−

48

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B3)

and

MC
R = m+ ⊗ MR

12 ⊗ m+ + m+ ⊗ MR
24 ⊗ m− + m− ⊗ m− ⊗ MR

24 + m− ⊗ m+ ⊗ MR
68; (B4)

there are only six linearly independent equations in the corresponding matrix equations.
The steady state of the system, which is dependent on the initial state, is a linear combination of two particular steady states,

i.e., ρC,S = (1 − p)ρC,S
1 + pρC,S

2 . In ρC,S
1 there are

ρ̃S
11 = R+

24

R+
24 + R−

24

, ρ̃S
22 = R−

24

R+
24 + R−

24

.

The normalized matrix element of the second state ρC,S
2 is ρ̃S

ii = ρ̃S
i

Ñ2
, i = 3, . . . , 8, where

ρ̃S
3 = 4L+

35L+
46L+

57L+
68R+

34 + 4L+
35L−

46L+
57L+

68R+
56 + 4L+

35L−
46L+

57L−
68R+

78 + 2L+
35L+

46L+
57R+

34R+
78 + 2L+

35L−
46L+

57R+
56R+

78

+ 2L+
35L+

46L+
68R+

34R−
78 + 2L+

35L−
46L+

68R+
56R−

78 + 2L+
35L+

57L+
68R+

34R+
56 + 2L+

35L+
57L−

68R+
34R+

78 + 2L+
46L+

57L+
68R+

34R−
56

+ 2L+
46L−

57L+
68R+

34R−
78 + L+

35L+
57R+

34R+
56R+

78 + L+
35L+

68R+
34R+

56R−
78 + L+

46L+
57R+

34R−
56R+

78 + L+
46L+

68R+
34R−

56R−
78,

ρ̃S
4 = 4L+

35L+
46L+

57L+
68R−

34 + 4L−
35L+

46L+
57L+

68R−
56 + 4L−

35L+
46L−

57L+
68R−

78 + 2L+
35L+

46L+
57R−

34R+
78 + 2L−

35L+
46L+

57R−
56R+

78

+ 2L+
35L+

46L+
68R−

34R−
78 + 2L−

35L+
46L+

68R−
56R−

78 + 2L+
35L+

57L+
68R−

34R+
56 + 2L+

35L+
57L−

68R−
34R+

78 + 2L+
46L+

57L+
68R−

34R−
56

+ 2L+
46L−

57L+
68R−

34R−
78 + L+

35L+
57R−

34R+
56R+

78 + L+
35L+

68R−
34R+

56R−
78 + L+

46L+
57R−

34R−
56R+

78 + L+
46L+

68R−
34R−

56R−
78,

ρ̃S
5 = 4L−

35L+
46L+

57L+
68R+

34 + 4L−
35L−

46L+
57L+

68R+
56 + 4L−

35L−
46L+

57L−
68R+

78 + 2L−
35L+

46L+
68R+

34R−
78 + 2L−

35L−
46L+

68R+
56R−

78

+ 2L−
35L+

46L+
57R+

34R+
78 + 2L−

35L−
46L+

57R+
56R+

78 + 2L−
35L+

57L+
68R+

34R+
56 + 2L−

35L+
57L−

68R+
34R+

78 + 2L−
46L+

57L+
68R−

34R+
56

+ 2L−
46L+

57L−
68R−

34R+
78 + L−

35L+
57R+

34R+
56R+

78 + L−
35L+

68R+
34R+

56R−
78 + L−

46L+
57R−

34R+
56R+

78 + L−
46L+

68R−
34R+

56R−
78,

ρ̃S
6 = 4L+

35L−
46L+

57L+
68R−

34 + 4L−
35L−

46L+
57L+

68R−
56 + 4L−

35L−
46L−

57L+
68R−

78 + 2L+
35L−

46L+
57R−

34R+
78 + 2L−

35L−
46L+

57R−
56R+

78

+ 2L+
35L−

46L+
68R−

34R−
78 + 2L−

35L−
46L+

68R−
56R−

78 + 2L−
35L+

57L+
68R+

34R−
56 + 2L−

35L−
57L+

68R+
34R−

78 + 2L−
46L+

57L+
68R−

34R−
56

+ 2L−
46L−

57L+
68R−

34R−
78 + L−

35L+
57R+

34R−
56R+

78 + L−
35L+

68R+
34R−

56R−
78 + L−

46L+
57R−

34R−
56R+

78 + L−
46L+

68R−
34R−

56R−
78,

ρ̃S
7 = 4L−

35L+
46L−

57L+
68R+

34 + 4L−
35L−

46L−
57L+

68R+
56 + 4L−

35L−
46L−

57L−
68R+

78 + 2L−
35L+

46L−
57R+

34R+
78 + 2L−

35L−
46L−

57R+
56R+

78

+ 2L+
35L−

46L−
68R−

34R+
78 + 2L−

35L−
46L−

68R−
56R+

78 + 2L−
35L−

57L+
68R+

34R+
56 + 2L−

35L−
57L−

68R+
34R+

78 + 2L−
46L−

57L+
68R−

34R+
56

+ 2L−
46L−

57L−
68R−

34R+
78 + L−

35L−
57R+

34R+
56R+

78 + L−
35L−

68R+
34R−

56R+
78 + L−

46L−
57R−

34R+
56R+

78 + L−
46L−

68R−
34R−

56R+
78,
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ρ̃S
8 = 4L+

35L−
46L+

57L−
68R−

34 + 4L−
35L−

46L+
57L−

68R−
56 + 4L−

35L−
46L−

57L−
68R−

78 + 2L−
35L+

46L−
57R+

34R−
78 + 2L−

35L−
46L−

57R+
56R−

78

+ 2L+
35L−

46L−
68R−

34R−
78 + 2L−

35L−
46L−

68R−
56R−

78 + 2L−
35L+

57L−
68R+

34R−
56 + 2L−

35L−
57L−

68R+
34R−

78 + 2L−
46L+

57L−
68R−

34R−
56

+ 2L−
46L−

57L−
68R−

34R−
78 + L−

35L−
57R+

34R+
56R−

78 + L−
35L−

68R+
34R−

56R−
78 + L−

46L−
57R−

34R+
56R−

78 + L−
46L−

68R−
34R−

56R−
78, (B5)

where α±
i j is the spectral density Jα (±ωα

i j ), and the normaliza-
tion coefficient Ñ2 = ρ̃S

3 + ρ̃S
4 + ρ̃S

5 + ρ̃S
6 + ρ̃S

7 + ρ̃S
8 .

It’s intuitively easy to understand that the heat current is
zero when g = 0 since g describes the conduction of the left
and right subsystems. In terms of analytic expressions, there is
ω̃L

35 = ω̃L
46, ω̃L

57 = ω̃L
68, and ω̃R

34 = ω̃R
12&56 = ω̃R

78 when g = 0,
and the unnormalized matrix elements can be expressed as

ρ̃S
3

∣∣
g=0 = L+

35L+
57R+

34, ρ̃S
4 |g=0 = L+

35L+
57R−

34,

ρ̃S
5

∣∣
g=0 = L−

35L+
57R+

34, ρ̃S
6 |g=0 = L−

35L+
57R−

34,

ρ̃S
7

∣∣
g=0 = L−

35L−
57R+

34, ρ̃S
8 |g=0 = L−

35L−
57R−

34. (B6)

When we substitute the above equation into the heat cur-
rent (C2), it’s easy to get Q̇α|ρ̃S,g=0 = 0 since Q̇α|ρ̃S

1
= 0 and

Q̇α|ρ̃S
2 ,g=0 = 0.

APPENDIX C: ANALYTICAL STEADY-STATE HEAT
CURRENTS

When the left reservoir is IHR, the heat transport between
the system composed of three atoms and the environment can
be expressed analytically as

Q̇A|ρI,S = −(
ωA

15

A
15 + ωA

26

A
26 + ωA

37

A
37 + ωA

48

A
48

)
,

Q̇B|ρI,S = −(
ωB

13

B
13 + ωB

24

B
24 + ωB

57

B
57 + ωB

68

B
68

)
,

Q̇C |ρI,S = −(
ωC

12

C
12 + ωC

56

C
56 + ωC

34

C
34 + ωC

78

C
78

)
. (C1)

FIG. 9. pd and pc vs the atomic frequency ω (and ωB) and the
temperature T̃ in (a) and (b) [and (c) and (d)]. Colored (upper)
and shaded (lower) surfaces correspond to T̃ = TL with TR = 21ω0,
and T̃ = TR with TL = 21ω0, respectively. Here ω0 = 1, g = gAC =
0.1ω0, κ = 0.001ω0, ωB = 5ω0 in (a) and (b), and ω = 3ω0 in (c)
and (d).

When the left reservoir is CHR, the heat current from the heat
reservoir Bα to the system can be written as

Q̇L|ρC,S
2

= −2
(
ωL

12

L
12 + ωL

26

L
26 + ωL

34

L
34 + ωL

48

L
48

)

− 4
[
ωL

26JL
( − ωL

26

) − ωL
12JL

( + ωL
12

)]
ρ̃S

55

− 4
[
ωL

48JL
( − ωL

48

) − ωL
34JL(+ωL

34)
]
ρ̃S

66,

Q̇R|ρC,S
2

= −(
ωR

13

R
13 + 2ωR

24

R
24 + ωR

68

R
68

)
. (C2)

When crossing dissipation is considered, the system has
two independent steady states. The state ρC,S

1 blocks the heat
current, and the heat currents for this state in the independent
and the crossing dissipation channel are, respectively,

Q̇d
L|ρC,S

1
= 4

{
ρ̃S

11

[
ωL

12JL
( + ωL

12

) − ωL
26JL

( − ωL
26

)]

+ ρ̃S
22

[
ωL

34JL
( + ωL

34

) − ωL
48JL

( − ωL
48

)]}
,

Q̇c
L

∣∣
ρC,S

1
= −Q̇d

L

∣∣
ρC,S

1
. (C3)

The steady state ρC,S
2 allows the maximum heat current, and

the heat current for this state in the two channels can be
expressed as

Q̇d
L

∣∣
ρ

C,S
2

= 2
(
ωL

12

L
12 + ωL

26

L
26 + ωL

34

L
34 + ωL

48

L
48

)
,

Q̇c
L

∣∣
ρ

C,S
2

= 4
{[

ωL
12JL

( + ωL
12

) − ωL
26JL

(−ωL
26

)]
ρ̃S

55

+ [
ωL

34JL
( + ωL

34

) − ωL
48JL

( − ωL
48

)]
ρ̃S

66

}
. (C4)

When TL = 0, there is nL(ωL
i j ) = 0 for any eigenfrequency

ωL
i j . So the system will evolve to the state ρC,S

2 = ρ̃S
77|7̃〉〈7̃| +

FIG. 10. pd and pc vs the atomic coupling strength g (and gAC)
and the temperature T̃ in (a) and (b) [and (c) and (d)]. gAC = 0.1ω0

in (a) and (b) and g = 0.1ω0 in (c) and (d). What the colored (upper)
and shaded (lower) surfaces denote and all the other taken parameters
are the same as for Fig. 9.
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ρ̃S
88|8̃〉〈8̃|. In this state, the heat currents in two channels van-

ish, that is,

Q̇d
L

∣∣
ρ

C,S
2 ,TL=0 = −Q̇c

L

∣∣
ρ

C,S
2 ,TL=0 = 0. (C5)

When TR = 0, we have nR(ωR
i j ) = 0 and ρ̃S

11 = ρ̃S
33 = ρ̃S

44 =
ρ̃S

77 = 0, so Eq. (C4) can be simplified as

Q̇d
L

∣∣
ρ

C,S
2 ,TR=0 = −Q̇c

L

∣∣
ρ

C,S
2 ,TR=0 = 4κ

(
ωL

26ρ̃
S
55 + ωL

48ρ̃
S
66

)
. (C6)

So the total heat current of the system also disappears
for TR = 0.

APPENDIX D: THE DEPENDENCE OF pd(c)

ON THE PARAMETERS OF THE SYSTEM

We have plotted pd (or pc) versus various parameters of the
system in Fig. 9 and Fig. 10. It is shown that the frequencies
of either the atoms A and C connected to CHR or the atom
B connected to IHR have almost no effect on pc and pd .
Figures 10(a) and 10(b) indicate that g has a small effect on
pd and a negligible effect on pc. When T̃ has a relatively large
value, pd (or pc) tends to a constant, which shows a negligible
effect of exchanging the hot and the cold terminals or not.
However, if T̃ is small, exchanging the two terminals will
indicate a significant effect on pd and pc.
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