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Heat rectifiers would facilitate energy management operations such as cooling or energy harvesting, but
devices of practical interest are still missing. Understanding heat rectification at a fundamental level is key to
helping us find or design such devices. The match or mismatch of the phonon band spectrum of device segments
for forward or reverse temperature bias of the thermal baths at device boundaries was proposed as the mechanism
behind rectification. However, no explicit theoretical relation derived from first principles had been found so far
between heat fluxes and spectral matching. We study heat rectification in a minimalistic chain of two coupled
ions. The fluxes and rectification can be calculated analytically. We propose a definition of the matching that sets
an upper bound for the heat flux. In a regime where the device rectifies optimally, matching and flux ratios for
forward and reverse configurations are found to be proportional. The results can be extended to a system of N
particles in arbitrary traps with nearest-neighbor linear interactions.
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I. INTRODUCTION

Heat rectification is a phenomenon in which the thermal
energy that flows through a device between two reservoirs
depends on the sign of their temperature bias [1–3]. Thus,
an ideal heat rectifier or thermal diode would let heat flow
only in one direction, for the “forward bias,” and act as an
insulator for the “reverse bias” configuration with the bath
temperatures exchanged. Such devices would serve for differ-
ent energy management and thermal control operations, such
as energy harvesting, refrigeration, or to implement thermal-
based transistors, logic gates, and logic circuits [2,4,5].
Proposed physical platforms for their applications go from the
macroscale [1] to the microscale, for example, in nanostruc-
tures [6], trapped ions [7,8], or molecular systems [9–12].

The first experimental observations of this interesting
phenomenon were due to Starr in 1936 [13]. Since then,
much work has been done, but we are far from achieving
useful devices [3,14] in spite of the exploration of many
different factors such as surface roughness or flatness at
material contacts [1], thermal potential barriers [15], temper-
ature dependence of thermal conductivity between different
materials [16], nanostructured asymmetry (i.e., mass-loaded
nanotubes, asymmetric geometries in nanostructures, nanos-
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tructured interfaces) [17], anharmonic lattices [18,19], graded
materials [20], long-range interactions [21], localized impuri-
ties [22,23], or quantum effects [3,24]. For a more extensive
list of references, see the following reviews: Refs. [1–3,6].

Theoretical work started with Terraneo et al. [18]. They
showed thermal rectification in a segmented chain of coupled
nonlinear oscillators in contact with two thermal baths at
different temperatures. The heat rectification was understood
as a consequence of the match or mismatch of the phonon
spectra of the different segments of the one-dimensional chain
when changing the temperature bias [2,18,25,26]. The dif-
ferent dependencies of the segments’ spectra, with respect to
temperature, implied conduction or isolation for the forward
or the reverse bias. Li et al. [25], to describe the efficiency of
the rectifier, analyzed the ratio of heat fluxes |J/J̃| between
the forward, J , and reverse, J̃ , configurations. They found
numerically, for their coupled nonlinear lattices model, a loga-
rithmic relation between this ratio and the ratio of the degrees
of overlap, |J/J̃| ∼ (S/S̃ )δ , with S and S̃ being measures of
the phonon-band overlap in the forward and reverse configu-
rations. Yet this relation was not inferred from first principles.
A theoretical connection between flux and matching, beyond
the numerical findings, has been missing.

Nonlinear forces in the chain result in a temperature de-
pendence of the phonon bands or power spectrum densities,
possibly leading to rectification. However Pereira [27] pointed
out that nonlinear forces are not a necessary condition for
rectification, which only needs some structural asymmetry
and a temperature dependence of some system parameters to
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FIG. 1. Scheme of the model described in Sec. II. Each mass mi

is at temperature τi (i = L and R is the generic index for “left” or
“right”), trapped by a harmonic potential, and connected to a thermal
bath at temperature Ti and friction coefficient γi. The masses interact
by a harmonic potential with each other.

occur. Indeed, the linear regime (i.e., harmonic interactions)
is quite natural and realistic in some systems, such as trapped
ions. Heat transport in trapped ion chains has been studied in
several works [28–31]. Simón et al. [7,8] proposed trapped
ions as an experimentally feasible setting for heat rectifica-
tion. They numerically demonstrated heat rectification first
for linear chains of ions with graded trapping frequencies [7],
and later they demonstrated heat rectification in a minimalistic
two-ion model [8]. For two trapped ions the asymmetry may
be provided by different species and the effective baths are im-
plemented by Doppler cooling lasers that imply a temperature
dependence of the couplings. The model is also quite inter-
esting because the analytical treatment of several quantities,
such as the flux, allows us to find optimal rectification condi-
tions [8]. Moreover trapped ions constitute a well-developed
and tested architecture for fundamental research, quantum
information processing, and quantum technologies such as de-
tectors or metrology. This architecture is, in principle, scalable
in driven ion circuits (see, e.g., Refs. [32]). Controllable heat
rectification in this context would be a useful asset for energy
management in trapped-ion-based technologies.

In this paper we find, for the two-ion linear ion chain, that
a properly defined matching of the phononic spectra is an
upper bound for the thermal flux. In Sec. II, we provide an
overview of the model. In Sec. III, we find a general relation
between the thermal flux and the matching of the spectral
densities. In Sec. IV, matching and the flux are compared
numerically. Finally, in Sec. V, we present the conclusions
and a generalization.

II. PHYSICAL MODEL

The minimalistic two-ion model describes two ions in
individual traps subjected to Doppler cooling lasers [8]
and a mutual Coulomb interaction (see Fig. 1). In the
small-oscillations regime, which is realistic for ions in multi-
segmented Paul traps, the model boils down mathematically to
two harmonically coupled masses: mL and mR (the subscripts
refer to left and right and, when needed, will be described
generically by the index i = R and L). Each mass is confined
into a harmonic potential with spring constants kL and kR

respectively, and in contact with thermal baths at different
temperatures, TL and TR. The two masses are coupled through
a spring with constant k [8]. xL is the position of mass mL, and
xR is the position of mass mR.

Without any coupling to the baths the system Hamiltonian
is

H = p2
L

2mL
+ p2

R

2mR
+ V (xL, xR), (1)

with V (xL, xR) = [kL(xL − xeL )2 + kR(xR − xeR)2 + k(xR −
xL − xe)2]/2, where {xi, pi}i=L,R are the position and momen-
tum of each mass, xeL is the center of the left ion trap, xeR is the
center of the right ion trap, and xe is the natural length of the
linear coupling. Changing coordinates to the displacements
from equilibrium positions of the system, qi = xi − xeq

i , where
xeq

i are the solutions to ∂xiV (xL, xR) = 0, the Hamiltonian can
be written as

H = p2
L

2mL
+ p2

R

2mR
+ k + kL

2
q2

L

+ k + kR

2
q2

R − kqLqR + V
(
xeq

L , xeq
R

)
. (2)

For later use let us define Vi = (k + ki )q2
i /2 and VLR =

−kqLqR. The constant term V (xeq
L , xeq

R ) does not affect the
evolution of the system and so it can be ignored. The baths are
modeled as Langevin baths; therefore, the friction coefficients
γL and γR and the Gaussian white-noise-like forces ξL and ξR

are introduced into the equations of motion,

q̇L = pL

mL
, q̇R = pR

mR
,

ṗL = −(k + kL )qL + kqR − γL

mL
pL + ξL(t ),

ṗR = −(k + kR)qR + kqL − γR

mR
pR + ξR(t ),

(3)

where the following averages over noise realizations
are assumed: 〈ξi(t )〉 = 0, 〈ξL(t )ξR(t ′)〉 = 0, 〈ξL(t )ξL(t ′)〉 =
2DLδ(t − t ′), and 〈ξR(t )ξR(t ′)〉 = 2DRδ(t − t ′). The coeffi-
cients DL and DR obey DL = γLkBTL and DR = γRkBTR, where
kB is the Boltzmann constant.

A compact notation for the equations of motion is

�̇r(t ) = A�r(t ) + L�ξ (t ), (4)

where �r(t ) ≡ (�q,M−1 �p)� = (qL, qR, q̇L, q̇R)� (the superscript
� means “transpose”), M = diag(mL, mR), and

A =
(

02×2 12×2

−M−1K −M−1Γ

)
,

L =
(

02×2,

M−1

)
,

K =
( k+kL

2 −k
−k k+kR

2

)
.

(5)

Also, �ξ (t ) = [ξL(t ), ξR(t )]� (note that L is a 4 × 2 ma-
trix), Γ = diag(γL, γR), 02×2 is the 2 × 2 matrix with all the
components 0, and 12×2 is the 2 × 2 identity matrix. The
baths are implemented by optical molasses (Doppler cooling
lasers), which sets an effective temperature for each bath,
T (= TL, TR), and effective friction coeffcients, γ (=γL, γR),
which are controlled with the laser intensity I and the fre-
quency detuning δ with respect to the selected internal atomic
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transition,

γ (I, δ) = −4h̄

(
δ + ω0

c

)2( I

I0

)
2δ/�

[1 + (2δ/�)2]2 ,

T (δ) = − h̄�

4kB

1 + (2δ/�)2

(2δ/�)
, (6)

where ω0 is the (angular) frequency of the transition, c is the
speed of light, I0 is the saturation intensity, and � is the decay
rate of the excited state. If � and I are fixed, γ depends on
δ and, thus, indirectly, on the temperature T . In the two-ion
model we deal in general with two different species which
involve two different atomic transitions, so the laser wave-
lengths and the decay rates � depend on the species. Then,
exchanging the temperatures by modifying the detunings,
keeping the laser intensities constant, does not necessarily
imply an exchange of the friction coefficients. Nevertheless, it
is possible to adjust the laser intensities so that the friction co-
efficients get exchanged and this is the assumption in Ref. [8]
and hereafter.

A. Covariance and spectral density

We are mostly interested in quantities such as the fluxes
or particle temperatures in the steady state (s.s.) regime that
is achieved after sufficiently long time. These quantities can
be computed from the “marginal” correlation matrix Ps.s. =
〈�r(t )�r�(t )〉s.s., which in the stationary regime does not depend
on t .

Using the steady-state condition and Novikov’s theorem,
the marginal covariance matrix in the steady state obeys [7,33]

APs.s. + Ps.s. A� = −2LDL�, (7)

where D = diag(DL, DR). This equation may be used to solve
for Ps.s.. Alternatively the Fourier space may also be used.
Ps.s. = Cs.s.(0) is a particular case (τ = 0) of the steady-
state covariance matrix Cs.s.(τ ) = 〈�r(t )�r�(t + τ )〉s.s., which,
according to the Wiener-Khinchin theorem [33]

Cs.s.(τ ) = 〈�r(t )�r�(t + τ )〉s.s. = F−1[S�r (ω)](τ ), (8)

is the inverse Fourier transform of the the spectral density
matrix

S�r (ω) ≡ 〈 �R(ω) �R�(−ω)〉, (9)

where �R(ω) = (XL, XR,WL,WR)� is the Fourier transform
(vector) of �r, namely,

Ps.s. = Cs.s.(0) = 1

2π

∫ ∞

−∞
S�r (ω) dω. (10)

S�r (ω) may be computed as

S�r (ω) = 2(A − iω)−1LDL�(A + iω)−� (11)

(see Refs. [8,33] for further details).
The diagonal matrix elements will be quite relevant for

the analysis of the flux and matching. In particular, the spec-
tral densities SL ≡ S3,3(ω) = 〈WL(ω)WL(−ω)〉 for the left ion
and SR ≡ S4,4(ω) = 〈WR(ω)WR(−ω)〉 for the right ion, where
Wi(ω) is the Fourier transform of q̇i(t ), i = L and R, are
(proportional to) power spectral densities of the kinetic en-
ergies since mi〈q̇iq̇i〉/2 = mi

∫
Sidω/(4π ) [see Eq. (10)]. The

spectral densities SL and SR in terms of velocity transforms
are related to the other diagonal elements S1,1(ω) and S2,2(ω),

given in terms of displacement transforms, using the Fourier
transform of the derivative,

SL = ω2〈XL(ω)XL(−ω)〉,
SR = ω2〈XR(ω)XR(−ω)〉, (12)

a property that we use later on to relate spectral overlap and
flux.

B. Expressions for the flux

We find now expressions for the flux, starting with the local
energy for the left particle, defined as

HL = 1

2mL
p2

L + VL(qL ) + 1

2
VLR(qL, qR). (13)

Differentiating with respect to time, we find the continuity
equation

ḢL = pL ṗL

mL
+ dVL(qL )

dqL
q̇L + 1

2

∂VLR(qL, qR)

∂qL
q̇L

+ 1

2

∂VLR(qL, qR)

∂qR
q̇R. (14)

Using the equations of motion (4) in Eq. (14), and simplifying,
we get

ḢL = pL

mL
Fext − 1

2

∂VLR(qL, qR)

∂qL
q̇L

+ 1

2

∂VLR(qL, qR)

∂qR
q̇R, (15)

where Fext = − γL

mL
pL + ξL(t ) includes the dissipative and the

stochastic contributions. The first term in Eq. (15) due to the
external force is the incoming flux of energy from the bath
Jin = pLFext/mL. The second and third terms are the energy
flux from particle R to particle L,

JLR = −1

2

∂VLR(qL, qR)

∂qL
q̇L + 1

2

∂VLR(qL, qR)

∂qR
q̇R. (16)

In the steady state, 〈ḢL〉 = 0 and so the incoming flux and the
flux of energy from the left particle to the right particle obey
−〈Jin〉 = 〈JLR〉. Then, the steady-state flux can be computed
in two different ways. We calculate 〈JLR〉 first. Substituting
VLR = −kqLqR in Eq. (16), we get

JLR = 1
2 k(qRq̇L − qLq̇R). (17)

Since we are interested in average values, we define

J = −〈JLR〉 = k

2
[〈qLq̇R〉 − 〈(qRq̇L )〉]. (18)

We apply the Wiener-Khinchin theorem to Eq. (18) to find
the heat flux in the steady state:

J = k

4π

∫
[〈XL(ω)WR(−ω)〉 − 〈XR(ω)WL(−ω)〉]dω

= ki

4π

∫
ω[〈(XR(ω)XL(−ω))〉 − 〈XL(ω)XR(−ω)〉]dω

= −k

2π

∫
ω Im [〈(XR(ω)XL(−ω))〉]dω, (19)

where in the second line we have used the Fourier trans-
form property Wi(ω) = iωXi(ω). Since the positions are real,
Xi(ω) = Xi(−ω).
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An alternative expression for the flux may be computed
from the incoming flux,

Jin = pL

mL

[
− γL

mL
pL + ξL(t )

]
. (20)

Averaging,

〈Jin〉 = −
〈
p2

L

〉
m2

L

γL + 〈pLξL(t )〉
mL

. (21)

Since the left particle temperature is

τL(t ) =
〈
p2

L(t )
〉

mLkB
, (22)

Equation (21) and Novikov’s theorem (see Refs. [7,8] for a
full calculation) give

〈Jin〉 = kB
γL

mL
(TL − τL ). (23)

For the steady state, J = 〈Jin〉 is equal to the alternative ex-
pression (19).

C. Rectification

We use as a measure of rectification the coefficient

R = ||J| − |J̃||
max(|J|, |J̃|) , (24)

which is bounded between 0 and 1, 0 � R � 1. Keep in
mind that to exchange the baths from forward to reverse bias
implies here to exchange the temperatures and the friction
coefficients. A parametric exploration was done over the space
formed by the following parameters of the model, mL, mR, k,
kL, kR, γL, and γR, to maximize R [8].

In Ref. [8] it was found that the region for maximal recti-
fication for fixed masses could be described analytically, and
in the weak-dissipation regime (γL/mL 
 √

k/mL, γR/mR 
√
k/mR) it is a straight line in the kL, kR plane [8],

k + kR

mR
= k + kL

mL
. (25)

On the maximum-rectification line (25) the rectification only
depends on the mass and friction coefficient ratios a and g,

R =
{

1 − a+g
1+ag if a > 1, g > 1 or a < 1, g < 1,

1 − 1+ag
a+g if a > 1, g < 1 or a < 1, g > 1,

(26)

where

a = mR/mL, g = γR/γL. (27)

Increasing a or g increases the asymmetry of the system
and the rectification. From Eq. (26) we can represent R in
terms of a and g (see Fig. 2). The fastest way of increas-
ing R is following the diagonal dotted line a = g. For this
reason, we mostly use the condition a = g and sweep over
the parameter C ≡ a = g. R grows with C towards 1, but
there are physical limitations to make these ratios arbitrarily
large. In particular changing a is limited by the masses of
the available ions. In numerical examples and calculations
hereafter, we always fulfill Eq. (25) and fix the following
values: in the forward configuration k = 1.17 fN/m, kL = 1
fN/m, γL = 6.75 × 10−22 kg/s, and mL = 24.305 a.u. (for
Mg+), whereas γR, mR, and kR are set to satisfy chosen values
of g and a. Similarly kR is set to satisfy Eq. (25). For the

FIG. 2. Rectification, R, given by Eq. (26) as a function of the
ratios a and g. The arrows give the gradient direction.

reverse configuration of bath temperatures we interchange the
friction coefficients, γ̃L = γR and γ̃R = γL, but the masses and
spring constants do not change with respect to the ones for
the forward configuration. The calculations of spectra using
Eq. (11) depend on these values and on the bath temperatures
(by the dependence on the temperature of the coefficients DL

and DR).
In Fig. 3 the rectification is depicted versus g when a = g

(blue solid line), and for a constant (red dashed line), which
gives smaller rectification.

D. Spectral densities and rectification: Example

In Ref. [8], the spectra of the ions SL and SR for several
sets of parameters exhibiting large and small rectification were
studied. Indeed the system presented large rectification if, for
a bath configuration, there was a good match between the

FIG. 3. Rectification for different values of g = γR/γL . The blue
solid line gives the maximal rectification, which is found when a = g
[see Eq. (25)]. For the red dashed line the mass ratio is kept constant,
a = 1.648 (corresponding to Ca+ and Mg+ ions). The blue squares
correspond to the values of C = 1 (the two ions and the friction
coefficients are equal, so R ∼ 0) and C = 10, R ∼ 0.8. The spectra
for C = 10 are depicted in Fig. 4.
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FIG. 4. Spectral densities for both ions multiplied by their
masses, mLSL (red dashed line) and mRSR (blue solid line) vs ω

for C = 10 corresponding to forward and reverse configurations.
TL = T̃R = 2 mK and TR = T̃L = 1 mK. (T̃i are the temperatures of
the reverse configuration.) The vertical lines are the real part of the
frequencies of the dissipative normal modes of the system [8]. The ar-
eas are proportional to the particle kinetic energies (or temperatures).
The rectification coefficient is R ≈ 0.8: in the forward configuration
the spectra match well, while in the reverse configuration there is a
clear mismatching.

phonon spectra of the ions and mismatch when the baths were
exchanged.

Figure 4 shows the spectra mLSL and mRSR for C = 10, i.e.,
for high rectification, R ∼ 0.8 (see Fig. 3). For forward bias
there is almost perfect matching between the spectral densities
but a mismatch for the reverse configuration. This is a clear
example of the qualitative relation between flux and spectral
matching. In the following section we give this relation a more
quantitative form.

III. RELATIONS BETWEEN SPECTRAL
MATCHING AND HEAT FLUX

The matching M or overlap between the spectral densities
has to be defined. A relevant definition would be one related
to the flux, by a direct dependence or by an inequality. We
may expect as an ansatz a form depending on the product of
the spectra,

M =
∫

F [SL(ω)SR(ω); ω] dω. (28)

The following discussion presents a natural, simple choice for
the function F .

We need to average over realizations of the noise. First,
we define XR j (ω) and XL j (ω) as the Fourier transforms of

the displacements qL j (t ) and qR j (t ), respectively, in the jth
realization. We separate real and imaginary parts,

XR j (ω) = a j + b ji,

XL j (ω) = c j + d ji. (29)

Notice that XL j (−ω) = c j − d ji because the displacements
are real. Therefore,

〈XR(ω)XL(−ω)〉 =
N∑
j

a jc j + b jd j + i(c jb j − a jd j )

N
, (30)

where N is the number of realizations, which is supposed to
be very large. We are only interested in the imaginary part of
Eq. (30) according to the flux expression (19). The square of
the imaginary part is

(c jb j − a jd j )
2 = a2

j d
2
j + b2

jc
2
j − 2a jc jb jd j

� a2
j c

2
j + b2

jd
2
j + b2

jc
2
j + a2

j d
2
j

= (
a2

j + b2
j

)(
c2

j + d2
j

)
. (31)

From this inequality we conclude that

|(c jb j − a jd j )| �
√

a2
j + b2

j

√
c2

j + d2
j . (32)

The absolute value of the imaginary part of the correlation
function in Eq. (30) is

| Im [〈XR(ω)XL(−ω)〉]| =
∣∣∣∣∣∣

N∑
j

c jb j − a jd j

N

∣∣∣∣∣∣ (33)

and, from Eq. (32), it obeys∣∣∣∣∣∣
N∑
j

c jb j − a jd j

N

∣∣∣∣∣∣ �
N∑
j

√
a2

j + b2
j

√
c2

j + d2
j

N
. (34)

Now, we apply the Cauchy-Bunyakovsky-Schwarz inequality,⎛
⎝ n∑

j=1

α jβ j

⎞
⎠

2

�

⎛
⎝ n∑

j=1

α2
j

⎞
⎠

⎛
⎝ n∑

j=1

β2
j

⎞
⎠, (35)

to the right-hand side of Eq. (34), with
√

a2
j + b2

j = α j and√
c2

j + d2
j = β j , to find

N∑
j

√
a2

j + b2
j

√
c2

j + d2
j

N

� 1

N

√√√√√
⎛
⎝ N∑

j

a2
j + b2

j

⎞
⎠

⎛
⎝ N∑

j

c2
j + d2

j

⎞
⎠. (36)

Because

〈XR(ω)XR(−ω)〉 = 1

N

N∑
j

(
a2

j + b2
j

)
,

〈XL(ω)XL(−ω)〉 = 1

N

N∑
j

(
c2

j + d2
j

)
, (37)
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we find from Eq. (36) the following inequality for the inte-
grand in Eq. (19),

|Im [〈XR(ω)XL(−ω)〉]|
�

√
〈XL(ω)XL(−ω)〉〈XR(ω)XR(−ω)〉. (38)

Since 〈Xi(ω)Xi(−ω)〉 is related to Si(ω) = 〈Wi(ω)Wi(−ω)〉 by
Eq. (12), expression (38) can be written as

ω2|Im [〈XR(ω)XL(−ω)〉]| �
√

SL(ω)SR(ω), (39)

or using Eq. (19), and taking into account that | ∫ f (x)dx| �∫ | f (x)|dx,

|J| � k

2π

∫
1

|ω|
√

SL(ω)SR(ω) dω, (40)

which sets an upper limit for the heat flux. This relation
prompts us to define the function F in Eq. (28) and the
matching as

M = k

2π

∫
1

|ω|
√

SL(ω)SR(ω) dω. (41)

This measure of the matching (41) allows for direct compar-
ison between J and M since they have the same dimensions,
while with other proposed definitions we can only compare
their ratios [2]. When so defined, the spectral density matching
sets an upper bound for the flux, |J| � M.

In Ref. [25] Li et al., to quantify the overlap between the
power spectra between left and right segments, introduced

S =
∫ ∞

0 SL(ω)SR(ω)dw∫ ∞
0 SL(ω)dw

∫ ∞
0 SR(ω)dw

(42)

and demonstrated the correlation between the heat fluxes
and the overlaps of the spectra. They found numerically
the relation |J/J̃| ∼ (S/S̃ )δ , with δ = 1.62 ± 0.10, in their
model, two weakly linearly coupled, dissimilar anharmonic
segments, exemplified by a Frenkel-Kontorova chain segment
and a neighboring Fermi-Pasta-Ulam chain segment.

Next, we evaluate the flux and the matching for different
parameter configurations for the two-ion model to test the
inequality |J| � M and also to look for a relation similar to
the one found by Li et al. [25] but for the matching expression
introduced here.

IV. FLUX AND MATCHING FOR THE TWO-ION MODEL

We compute the heat flux and the matching (41) for the
two-ion model solving Eqs. (23) and (7) for different parame-
ter configurations. We only consider the maximal rectification
region given by the condition (25).

In Fig. 5 the flux and the matching are displayed as a
function of C = g = a. As predicted by Eq. (40) the matching
is above the flux. Both quantities behave similarly and the
difference tends to a constant as C increases. Also, R tends
to 1, as seen in Fig. 3. The forward and reverse configurations
show very different curves (a sign of rectification) as we are
following the line of fastest growth of R.

FIG. 5. Flux and matching versus C = a = g. TL = 1 mK and
TR = 0.1 mK. Other parameters are as explained in Sec. II C.

Since experimentally it is not feasible to have a continuum
for the mass ratio a, in Fig. 6 we have also plotted J and M
fixing the masses for Ca+ and Mg+ ions and sweeping over
g. Both quantities behave similarly, except in the region for
very low g, but this region is not really interesting since it
corresponds to a very low R. Forward and reverse curves are
now closer to each other, corresponding to a smaller R (see
again Fig. 3).

In Fig. 7 we depict the ratios of the heat fluxes |J/J̃|, and
of the two definitions of matching, S/S̃ and M/M̃, versus C.
The heat flux ratio |J/J̃| can be compared to the analytical ex-
pression found from Eqs. (24) and (26), |J/J̃| = (1 + C2)/2C,
which is approximately linear in C for C > 1 as shown in
Fig. 7.

The ratio M/M̃ is also approximately linear in C, except
for very low C, with a proportionality factor that depends on
the ratio of the bath temperatures (see Fig. 8). In our model,
S/S̃ is also approximately linear in C, giving as a result the

FIG. 6. Flux and matching versus g with a constant mass ratio a.
TL = 1 mK and TR = 0.1 mK. Other parameters are as explained in
Sec. II C.
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FIG. 7. Forward to reverse ratios |J/J̃|, S/S̃ , and M/M̃ versus
C. TL = 2 mK and TR = 1 mK. The blue squares show the results of
|J/J̃| using the analytical expression |J/J̃| = (1 + C2)/2C.

linear relation |J/J̃| ∼ S/S̃ instead of the logarithmic relation
found in Ref. [25]. S/S̃ correlates better than M/M̃ to the heat
fluxes ratio. Still, S does not have units of flux and, unlike M,
it does not provide a bound.

Thus, sweeping over C = a = g, a very simple linear rela-
tion is found numerically between the ratios J/J̃ and M/M̃ for
our model,

|J/J̃| ∼ M/M̃, (43)

with a proportionality factor that depends on the ratio between
temperatures TL/TR, as shown in Fig. 8.

FIG. 8. Flux ratio J/J̃ vs the matching ratio M/M̃ for different
temperature intervals. The line points depend parametrically on C.
The slope depends on the ratio of temperatures TL/TR. Dots and lines
of the same color indicate same temperatures’ ratio but different
values of the temperatures (in mK) as indicated in the legend. For
instance, blue dots correspond to TL = 1 mK and TR = 0.5 mK and
the blue line corresponds to TL = 2 mK and TR = 1 mK; both cases
verify TL/TR = 2.

FIG. 9. N-particle linear chain with interaction between nearest
neighbors.

V. DISCUSSION

Using a simple, but experimentally feasible, model of two
ions interacting with laser-induced heat baths, we have defined
the power spectrum overlap or “spectral matching” of the ions
so that it provides an upper bound to the flux. In fact, forward
to reverse flux ratios are proportional to matching ratios for
the parameter conditions where rectification is optimal. These
findings put on a sounder basis the relation between heat
rectification and the spectral match or mismatch for forward
and reverse bath temperatures.

The results can be generalized to any N-particle chain with
linear interactions between nearest neighbors and two thermal
baths at the boundaries [5,18,22,25]. The trap potentials could
be anharmonic. For the N-particle chain in the steady state,
〈Ḣi〉 = 0 (see Fig. 9), where Hi is the local energy for the ith
particle. Thus, the energy flux from particle i − 1 to particle
i equals the flux from particle i to particle i + 1, namely,
Ji−1,i = Ji,i+1. The flux that crosses the chain J is

J = Ji,i+1, (44)

where i can be 1, 2, 3, . . . , N − 1. Equations (13) to (19) and
the arguments in Sec. III for ions L and R are valid as well for
particles i and i + 1; therefore,

|Ji,i+1| � Mi,i+1, (45)

where Mi,i+1 is the matching (41) between the spectral densi-
ties of ions i and i + 1. Therefore,

|J| � Mi,i+1, (46)

where i can be 1, 2, 3, . . . , N − 1. Equation (46) is the gen-
eralization of our results for an N-particle linear chain and it
states that the flux through the chain is bounded by the spectral
matching of nearest-neighbor particles.
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