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Active Brownian particles in a circular disk with an absorbing boundary
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We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle explor-
ing a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing
with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we
express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the
propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on
time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the
survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced
by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity
of the particle and, to a less extent, also on its rotational diffusivity.
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I. INTRODUCTION

In the past decades, active particles have received in-
creasing attention because of their potential applications in
various fields ranging from biology [1,2], to medicine [3],
and robotics [4,5]. Furthermore, because of their ability to
convert energy into directed motion, active particles provide
an ideal simplified model to investigate, from a statistical
physics perspective, fundamental aspects of nonequilibrium
systems [6–11].

Nowadays, several aspects of active-particle dynamics
have been successfully investigated by an impressive amount
of experimental and theoretical research focusing on both
single particles and their emerging collective behavior [8,10].
However, exactly solvable models, allowing a deeper under-
standing on some basic theoretical aspects, remain rare even
at the single particle level. Exceptions include run-and-tumble
particles in one dimension [12–15], active Brownian particles
(ABPs) in channels [16] or sedimenting in a gravitational
field [17], and ABPs confined in a harmonic well [18,19]. Fi-
nally, in free space, the characterization of the time-dependent
probability distribution of run-and-tumble and ABPs is known
only in the Fourier domain [20–24].

In nature, several processes are naturally characterized in
terms of the time required to reach for the first time a spe-
cific site (or a set of sites). Examples include emission of an
electrical impulse from a neuron [25], execution of buy/sell
orders in financial markets [26,27], chemical processes such
as fluorescence quenching [28], and molecules diffusing in the
interior of the cell and being absorbed at the cell boundaries
[29]. Hence it is important to compute quantities such as
the first-passage time distribution and the survival probability
[30–33]. First-passage probability also plays a pivotal role in
understanding transport properties and escape dynamics of
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nano- and micro-particles or living micro-organisms in dif-
ferent environments [30]. However, while first-passage-time
distribution of passive Brownian particles has been widely
investigated [34–38], less is known about its properties in
the case of self-propelled particles. In fact, first-passage prop-
erties of active particles has been only recently investigated
in a class of one-dimensional models [15,39–42] and as the
probability to hit a wall for a two-dimensional ABP without
translational diffusion [43]. In the latter case, ABP exhibits
anomalous first-passage properties at short times which are a
fingerprint of its nonequilibrium dynamics.

Here, we investigate the behavior of an ABP moving in a
circular region with an absorbing boundary. Taking inspiration
from the approach used to solve the ABP model in a harmonic
well [19], we show that a formally exact series expression for
the probability propagator can be obtained starting from the
basis states of a reference standard Brownian particle model.
Not only do we provide the expression of the propagator, but
by properly integrating the latter, we also find the survival
probability and the first-passage-time distribution.

II. MODEL

The stochastic overdamped motion of a two-dimensional
ABP is completely characterized in terms of the propagator
P(r, ϑ, t |r0, ϑ0) which is the probability to find the particle
at position r and orientation ϑ at lag time t given the initial
position r0 and orientation ϑ0 at time t = 0. In free space, the
Fokker-Planck equation [21,24] reads

∂tP = LP := D∇2P + Drot∂
2
ϑP − vu · ∇P, (1)

and readily provides the formal solution [32]

P(r, ϑ, t |r0, ϑ0) = eLtδ(r − r0)δ(ϑ − ϑ0), (2)

of the propagator given the initial condition

P(r, ϑ, t = 0|r0, ϑ0) = δ(r − r0)δ(ϑ − ϑ0). (3)
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Here, the first and the second term on the r.h.s. of Eq. (1)
respectively encode the translational and rotational diffusion
of the particle, with diffusion coefficients D and Drot, respec-
tively. Finally, the last term corresponds to the self-propulsion
of the particle having fixed modulus v and directed along the
orientation u = (cos ϑ, sin ϑ ).

Here, we are interested in investigating the dynamics of
an ABP conditioned to the presence of a circular absorbing
boundary with radius R and centered in the origin. This coin-
cides with imposing the boundary condition

P(R, ϑ, t |r0, ϑ0) = 0, (4)

and the further requirement that the initial position r0 is cho-
sen inside the boundary r0 = |r0| < R. The radius R fixes the
length unit of the problem. Taking the passive Brownian par-
ticle (v = 0) as a reference, it is convenient to define the time
unit τ as the typical time required by such a particle to reach
the boundary τ := R2/D. The dynamics of the ABP is thus
described only by two independent dimensionless parameters:
The Péclet number Pe = vτ/R assessing the importance of
the self-propulsion with respect to the diffusive motion, and
the “rotationality” γ = Drotτ , measuring the magnitude of
the rotational diffusion. The fraction Pe/γ then describes the
persistence of the particle’s trajectories.

In order to find an expression for the propagator that is a
solution of Eq. (1), first we make a time-separation ansatz for
the propagator P = E (t )ψ (r, ϑ ) [32]. Inserting into Eq. (1)
and using the dimensionless parameters yields

1

E ∂tE = 1

τψ

[
R2∇2ψ + γ ∂2

ϑψ − Pe R u · ∇ψ
] != −λ, (5)

where the last equal sign holds since the first and second term
of the equation are functions of independent variables, and
therefore can only be equal to each other if their value is
independent of all variables. We can now explicitly write the
solution for the time-dependent component of the propagator
E (t ) = exp(−λt ), and proceed to solve the equation for the
spatial and angular components only, which now reads

Lψ + λψ = 0. (6)

The similarity to a quantum mechanical problem suggests to
tackle the problem in a perturbative approach. We thus split
the Fokker-Planck operator L into an equilibrium contribution
L0 and a nonequilibrium driving L1 according to

L = L0 + PeL1, (7)

where, in polar coordinates r = r(cos ϕ, sin ϕ),

L0ψ = 1

τ

[
R2

r
∂r (r∂rψ ) + R2

r2
∂2
ϕψ + γ ∂2

ϑψ

]
, (8)

L1ψ = 1

τ

[
−R cos(ϑ−ϕ)∂rψ − R

r
sin(ϑ−ϕ)∂ϕψ

]
. (9)

III. SOLUTION OF THE EQUILIBRIUM
REFERENCE SYSTEM

To solve the unperturbed eigenvalue problem

L0ψ = −λψ, (10)

subjected to the initial Eq. (3) and the boundary Eq. (4) con-
ditions, first we decompose the three degree of freedom in
polar coordinates (r, ϕ, ϑ ) into different (n, 
, j) modes with
the ansatz

ψn,
, j (r, ϑ ) = ei
ϕei( j−
)ϑRn,
, j (r). (11)

This ansatz reflects the symmetries of the problem: Eq. (8)
shows that L0 is unchanged under a shift of the orientation
angle ϑ or of the azimuthal angle ϕ of the particle, meaning
that it commutes with the corresponding generators L = −i∂ϕ

and S = −i∂ϑ . Borrowing a quantum mechanics language, we
refer to these generators respectively as “orbital momentum”
and “spin.” Thus, the eigenfunctions ψn,
, j of the passive
reference system (Pe = 0) are simultaneous eigenfunctions
to orbital momentum and spin with eigenvalues 
 and s :=
j − 
, respectively. Here the spin s is conveniently written
in terms of j, i.e., the eigenvalue of the total “angular mo-
mentum” J = L + S. In fact, for the active particle (Pe > 0)
the Fokker-Planck operator L remains invariant only under a
simultaneous rotation of position and orientation, such that in
the full problem j will be a conserved quantum number, sim-
plifying future analytics and numerics. Although the ansatz to
solve the Fokker-Planck equation can often to be taken as real
[32], it is convenient to take a complex ansatz [Eq. (11)], in
analogy to what is done to solve various problems in electro-
dynamics [44].

Inserting Eq. (11) into Eq. (10) yields the radial equation

r2∂2
r Rn,
, j + r ∂rRn,
, j − 
2 Rn,
, j

+ r2

R2
[λτ − γ ( j − 
)2]Rn,
, j = 0, (12)

which, with the substitution z2 = r2

R2 [λτ − γ ( j − 
)2], can be
rewritten as

z2∂2
z Rn,
, j + z∂zRn,
, j + [z2 − 
2]Rn,
, j = 0. (13)

This is a Bessel equation of order 
 with solutions Rn,
, j (z) =
J
(z), where J
(·) is the Bessel function of the first kind of
order 
 [45]. Being the boundary condition [Eq. (4)] is valid
at all times t , it must be satisfied by each eigenfunction ψn,
, j

independently. This implies that
√

λn,
, jτ − γ ( j − 
)2 must
be a root of the Bessel function J
(·) for each value of (n, 
, j),
which yields the discrete spectrum for the eigenvalues λn,
, j :

λn,
, j = 1

τ

[
j2
,n + γ ( j − 
)2

]
, (14)

where j
,n is the nth root of the Bessel function J
.
The explicit expression of the eigenfunctions reads

ψn,
, j (r, ϑ ) = ei
ϕei( j−
)ϑ J


(
j
,n

r
R

)
√

2πRJ
+1(j
,n)
, (15)

where the normalization constant has been chosen such that

〈ψn′,
′, j′ |ψn,
, j〉 = δn,n′ δ
,
′ δ j, j′ . (16)

Here we introduced the Kubo scalar product

〈φ|ψ〉 :=
∫

r�R
dr

∫ 2π

0
dϑ φ(r, ϑ )∗ψ (r, ϑ ), (17)
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and resorted on the relation [45]∫ R

0
dr r J


(
j
,n

r

R

)
J


(
jl,n′

r

R

)
= R2

2
[J
+1(j
,n)]2 δn,n′ . (18)

The isomorphism between |ψ〉 and ψ (r, ϑ ) is made explicit
by introducing generalized position and orientation states
|rϑ〉 such that ψ (r, ϑ ) = 〈rϑ |ψ〉. Using the orthogonality
condition [Eq. (16)] it is easy to see that the operators
|ψn,
, j〉〈ψn,
, j | are a set of orthogonal projectors and thus we
can write the following identity relation∑

n,
, j

|ψn,
, j〉〈ψn,
, j | = 1, (19)

where we introduced a compact notation for the summation

∑
n,
, j

:=
∞∑

n=1

∞∑

=−∞

∞∑
j=−∞

. (20)

Note that the sum over the index n is running only over
strictly positive integer numbers because of the convention
of counting nontrivial roots of the Bessel functions. Finally,
note also that by making use of the completeness relation for
Bessel function [45]

∞∑
n=1

J
(j
,nz) J
(j
,nz0)

[J
+1(j
,n)]2
= 1

2z
δ(z − z0), (21)

the eigenfunctions of the equilibrium reference system fulfill
the completeness relation∑

n,
, j

ψn,
, j (r, ϑ )ψn,
, j (r0, ϑ0)∗ = δ(r − r0)δ(ϑ − ϑ0). (22)

The previous completeness relation [Eq. (22)] allows us to
find a solution for the propagator in the equilibrium reference
system starting from its formal expression [Eq. (2)]

P(0)(r, ϑ, t |r0, ϑ0) =
∑
n,
, j

{eL0tψn,
, j (r, ϑ )}ψn,
, j (r0, ϑ0)∗

=
∑
n,
, j

〈rϑ |eL0t |ψn,
, j〉〈ψn,
, j |r0ϑ0〉

=
∑
n,
, j

e−λn,
, j t ψn,
, j (r0, ϑ0)∗ ψn,
, j (r, ϑ ).

(23)

Note that, from the second line of the previous equation and
using the identity relation [Eq. (19)], one can also write

P(0)(r, ϑ, t |r0, ϑ0) = 〈rϑ |eL0t |r0ϑ0〉, (24)

meaning that the propagator is the projection of the general-
ized position and orientation state |rϑ〉 over the time evolution
of the initial state |r0ϑ0〉.

IV. SOLUTION FOR ABP PARTICLES

One readily shows that the equilibrium operator L0 is
Hermitian 〈φ|L0ψ〉 = 〈L0φ|ψ〉, with respect to the Kubo
scalar product [Eq. (17)] and consequently its eigenvalues
λn,
, j are real, and left and right eigenfunctions coincide:
|ψL

n,
, j〉 = |ψR
n,
, j〉 = |ψn,
, j〉. However, the full operator L

does not reflect this property, in particular L1 is anti-Hermitian
〈φ|L1ψ〉 = −〈L1φ|ψ〉. Correspondingly, in the following one
has to be careful that the eigenvalues of the full operator λPe

n,
, j

are in general complex, and the left eigenfunctions |ψPe,L
n,
, j〉,

are distinct from the right ones |ψPe,R
n,
, j〉.

If properly normalized, the perturbed left and right eigen-
functions constitute a biorthonormal basis with identity
relation ∑

n,
, j

∣∣ψPe,R
n,
, j

〉〈
ψPe,L

n,
, j

∣∣ = 1, (25)

which directly yields the propagator of the full problem

P(r, ϑ, t |r0, ϑ0) = 〈rϑ |eLt |r0ϑ0〉
=

∑
n,
, j

〈rϑ |eLt
∣∣ψPe,R

n,
, j

〉〈
ψPe,L

n,
, j |r0ϑ0
〉

=
∑
n,
, j

e−λPe
n,
, j t ψPe,L

n,
, j (r0, ϑ0)∗ ψPe,R
n,
, j (r, ϑ ).

(26)

To explicitly compute the full propagator [Eq. (26)], it
is then necessary to calculate the perturbed eigenvalues and
left and right eigenfunction. To this scope, one has first to
explicitly evaluate the action of the perturbation L1 on the
eigenstates of L0. Starting from Eqs. (9) and (15) is it possible
to show that

L1|ψn,
, j〉 =
∞∑

n′=1

[c+
n′,n,
|ψn′,
+1, j〉 + c−

n′,n,
|ψn′,
−1, j〉], (27)

with weights

c±
n′,n,
 = j
,n j
±1,n′(

j2
,n − j2
±1,n′
) J
±1(j
,n) J
(j
±1,n′ )

J
+1(j
,n) J
+1±1(j
±1,n′ )
, (28)

(see Appendix A for further details).
Now, considering the finite-dimensional subspace of equi-

librium eigenfunctions such that 0 < n � nmax, |
| � 
max,
and | j| � jmax, the action of L = L0 + PeL1 is completely
characterized by a square matrix of dimension nmax(2
max +
1)(2 jmax + 1), which has to be diagonalized numerically to
obtain its eigenvalues λPe

n,
, j and left and right eigenvectors

〈ψPe,L
n,
, j | and |ψPe,R

n,
, j〉 for any given Péclet number. Since the
perturbation doesn’t couple states with j′ 	= j, the action of
L is more conveniently characterized by defining different
matrices Aj for different j channels, each with dimension
nmax(2
max + 1) and elements defined by

[Aj]n′−1+nmax(
′+
max ),n−1+nmax(
+
max )

= 〈ψn′,
′, j |(L0 + PeL1)|ψn,
, j〉. (29)

The perturbed eigenvectors are then a linear combination of
the equilibrium eigenstates∣∣ψPe,R

n,
, j

〉 =
∑
n′,
′

aR,n′,
′
n,
, j |ψn′,
′, j〉, (30)

〈
ψPe,L

n,
, j

∣∣ =
∑
n′,
′

aL,n′,
′
n,
, j 〈ψn′,
′, j |. (31)

The computational time required to diagonalize these ma-
trices increases rapidly with the dimension of the considered
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FIG. 1. Numerical eigenvalues λn,
, j of the Fokker-Planck opera-
tor L = L0 + PeL1 as a function of the Péclet number Pe, for γ = 4,
nmax = 3, 
max = 2, and j = 1. Transparency of lines and exceptional
points highlighted with red circles better show when real components
merge and imaginary ones bifurcate.

subspace. However, the decaying exponentials in time in the
expression of the propagator, Eq. (26), ensures convergence.
In the unperturbed case Pe = 0, the eigenvalues [Eq. (14)]
are real and an increasing function of n, |
|, and | j − 
|.
With increasing activity, more and more eigenvalues become
complex quantities, and their original order in the real plane
may change, see Fig. 1. Consequently, the numerical cutoffs
nmax and 
max must be chosen accordingly. Figure 1 suggests
that for small enough value of the activity, for which the
finite cutoff spectrum remains real, a perturbative approach
adopting only real eigenfunctions would also solve the prob-
lem. Interestingly enough, eigenvalues move to the complex
plane in pairs: With increasing Péclet number, two real eigen-
values merge and bifurcate to a pair of complex conjugates
for even larger activity. These branching points, called ex-
ceptional points [46], often originate in parameter-dependent
eigenvalue problems and occur in a great variety of physical
problems including mechanics, electromagnetism, atomic and
molecular physics, quantum phase transitions, and quantum
chaos. They even occur in other problems concerning active
particles [22,23]. The exceptional points are highlighted with
red circles in the upper panel of Fig. 1. Note also that in line
with the noncrossing rule between eigenvalues of a Hermitian
matrix representing a quantum observable [47], crossings be-
tween the real components of the eigenvalues occur only when
at least one of the eigenvalues participating to the crossing has
already become a complex quantity.

To corroborate our findings, we benchmark the time evolu-
tion of the spatial probability distribution starting from some
given initial condition as obtained from numerics against that
obtained by direct stochastic simulations, see Fig. 2. The
radial probability density, given the initial position r0 and
averaged over a uniform distribution of the initial direction
ϑ0, defined by

P(r, t |r0)=r
∫ 2π

0

dϑ0

2π

∫ 2π

0
dϑ

∫ 2π

0
dϕ P(r, ϑ, t |r0, ϑ0), (32)

is reported in Fig. 3. Note that in the previous expression,
normalization has been chosen such that

∫ R
0 drP(r, t |r0) rep-

resents the probability that at time t the particle has not yet
reached the absorbing boundary at r = R.

A remark on stochastic simulations is in order: due to the
presence of the absorbing boundary, the discretization time
step should be smaller than what is usually adopted for stan-
dard simulations of an ABP in free space. In particular, with
increasing time, convergence of results in the proximity of
the boundary becomes more and more sensitive to the value
of the discretization time step. See Appendix B for more
details.

A. Recursive analytical solution

It is instructive to introduce a second approach that, fol-
lowing the framework of perturbation theory in quantum
mechanics, allows obtaining the propagator as a combination
of the unperturbed eigenfunctions weighted by factors that
depend only on time and the initial conditions. These func-
tions consist of a power series in the Péclet number where the
coefficient of the qth order term can be computed in an exact
iterative scheme. In order to obtain these recursive relations,
we start by rewriting the propagator [Eq. (26)] as

P(r, ϑ, t |r0, ϑ0) =
∑
n,
, j

Mn,
, j (r0, ϑ0, t ) ψn,
, j (r, ϑ ), (33)

where

Mn,
, j (r0, ϑ0, t ) := 〈ψn,
, j |eLt |r0ϑ0〉. (34)

Inserting the previous expression into the Dyson equation,
familiar from quantum theory [48], for the time evolution
operator

eLt = eL0t + Pe
∫ t

0
ds eL0(t−s) L1 eLs, (35)

one obtains a useful integral relation for the functions M
appearing in the propagator

Mn,
, j (r0, ϑ0, t )

= e−λn,
, j t 〈ψn,
, j |r0ϑ0〉 + Pe
∫ t

0
ds

[
e−λn,
, j (t−s)

×
∑

n′,
′, j′
〈ψn,
, j |L1|ψn′,
′, j′ 〉Mn′,
′, j′ (r0, ϑ0, s)

]
. (36)

Such a relation may be explicitly calculated since the action
of the perturbation L1 on the equilibrium eigenfunctions is
known, see Eq. (27). In particular, if we make a power-series
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FIG. 2. Spatial probability distribution at different times t starting with initial condition r0 = 0.2R, ϕ0 = 0, and ϑ0 = π/2. Comparison
between simulations, numerics, and analytics up to second order perturbation theory (q = 2) for Pe = 4 and γ = 0.8. For the simulations,
statistics have been collected from 107 independent particles. For the numerics and the analytics, nmax = 8, 
max = jmax = 7.

FIG. 3. Radial probability distribution at different times t starting with initial condition r0 = 0, averaged over ϑ0. Normalization is such
that

∫ R
0 P(r, t ) dr = S(t ), with S(t ) the survival probability of the particle at time t . Comparison between simulations, numerics, and analytics

up to second order perturbation theory (q = 2). For the simulations, statistics have been collected from 107 independent particles. For the
numerics, nmax = 8, 
max = jmax = 7.
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expansion in Pe

Mn,
, j (r0, ϑ0, t ) =
∞∑

q=0

PeqM (q)
n,
, j (r0, ϑ0, t ), (37)

Eq. (36) allows calculating the qth order contribution once the
(q − 1)th terms have been evaluated as

M (q)
n,
, j (r0, ϑ0, t ) =

∫ t

0
ds e−λn,
, j (t−s)

×
∑

n′

[
c+

n,n′,
−1M (q−1)
n′,
−1, j (r0, ϑ0, s)

+ c−
n,n′,
+1M (q−1)

n′,
+1, j (r0, ϑ0, s)
]
, (38)

starting with the 0th order given by

M (0)
n,
, j (r0, ϑ0, t ) = e−λn,
, j tψn,
, j (r0, ϑ0)∗. (39)

The previous scheme is particularly efficient to compute the
M functions at the first few orders but this evaluation becomes
quickly tedious with increasing order q. An integrated version
of Eq. (38) is reported in Appendix C for q = 1 and q = 2.
The spatial and the radial probability density obtained from
implementing the previous scheme up to the second order
are reported in Figs. 2 and 3, respectively. Some differences
with respect to the results obtained by numerical simulation
are observed. In fact, the analytical solution truncated at a
given order q represents a situation which is neither a truly
active particle (retrieved in the limit of q → ∞) nor a passive
Brownian particle (q = 0). In contrast to intuition, in general
it is not even a situation located somewhere in between these
two limiting cases because the series in Eq. (33) presents
contribution terms of both signs, with the signs depending
on a complex interplay between the values of the quantum
numbers (n, 
, j) and of the order q and the time t at which
the M’s coefficients are computed. Furthermore, the longer
the time t , the higher should be the order q and the cutoffs
nmax, 
max, and jmax. This is because the propagator contains
terms proportional to all exponentials exp(−λn,
, jt ), and in
the long-time regime t → ∞ for each channel j, the dom-
inant contribution comes from the lowest eigenvalue λn,
, j .
However, each coefficient Mn,
, j (r0, ϑ0, t ) contains terms pro-
portional to exp(−λn,
, jt ), provided that the order at which
it is calculated is large enough.

V. SURVIVAL PROBABILITY AND FIRST-PASSAGE-TIME
DISTRIBUTION

Once the propagator is known, the survival probability
at time t , given some initial conditions (r0, ϑ0), is readily
obtained by integrating over the final position and orientation

S(t |r0, ϑ0) =
∫ R

0
r dr

∫ 2π

0
dϑ

∫ 2π

0
dϕ P(r, ϑ, t |r0, ϑ0).

(40)

Since∫ R

0
r dr

∫ 2π

0
dϑ

∫ 2π

0
dϕ ψn,l, j (r, ϑ ) = 2

√
2πR

δ j,0δ
,0

j0,n
,

(41)

FIG. 4. Survival probability S(t ) = S(t |r0, ϑ0) as a function of
time for Pe = 4 and γ = 0.8 and with initial condition r0 = 0. Com-
parison between simulations, numerics, and analytics (q = 2). For
the simulations, statistics have been collected from 105 indepen-
dent particles. For the numerics, nmax = 8, 
max = jmax = 7. Inset:
Survival probability as a function of time and ϑ0 as obtained from
numerics for remaining initial conditions r0 = 0.4R and ϕ0 = 0.

and using Eqs (26), (30), and (31), one obtains

S(t |r0, ϑ0) = 2
√

2πR
∑
n,


e−λPe
n,
,0t

×
∑
n′,
′

aL,n′,
′
n,
,0 ψn′,
′,0(r0, ϑ0)

∑
n′′

aR,n′′,0
n,
,0

j0,n
. (42)

Alternatively, starting from Eq. (33), the survival also reads

S(t |r0,ϑ0) = 2
√

2πR
∑

n

Mn,0,0(r0, ϑ0, t )

j0,n
. (43)

See Fig. 4 for a comparison between the results at different
Péclet numbers obtained by numerics and by direct stochas-
tic simulations. As expected, due to their activity and the
persistence of their motion, active particles tend to meet the
boundary and be absorbed more often than passive particles,
thus leading to a survival probability which is decaying faster.
Clearly, when r0 	= 0 the survival probability depends on the
relative angle between the initial azimuth ϕ0 and the initial
direction of the self-propulsion ϑ0, and shows a slower decay
when ϑ0 = π + ϕ0, see inset of Fig. 4.

Finally, we can also compute the first-passage-time distri-
bution for a given initial condition as

F (t |r0, ϑ0) = −dS(t |r0, ϑ0)

dt
. (44)

Such a distribution becomes sharper with increasing activity
and decreasing rotational diffusivity. However, the rotational
diffusivity influences the first-passage-time distribution to an
extent that also depends on the activity, see Fig. 5. Figures 4
and 5 also report results obtained from the recursive analytical
solution up to second order in perturbation, see dashed lines.
As expected, while in the passive case these results coincide
with those obtained by numerics, their quality degrades with
increasing Péclet number.
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FIG. 5. First-passage-time distribution F (t ) = F (t |r0, ϑ0) with
initial condition r0 = 0. Comparison between simulations and nu-
merics. For the simulations, statistics have been collected from 107

independent particles. For the numerics, nmax = 10, 
max = jmax = 9.

VI. CONCLUSIONS

We have derived an exact series solution for the probability
propagator of a two-dimensional ABP living in a circular
region with absorbing boundary. Such a solution is obtained
by adopting standard passive Brownian motion as a refer-
ence system and dealing with the activity of the particle in
a perturbative approach. The propagator is then expressed in
terms of the left and right eigenvectors, which can be easily
computed by direct diagonalization of the matrix form of the
Fokker-Planck operator, multiplied by an exponentially de-
caying factor with a rate given by the corresponding perturbed
eigenvalue. Using Dyson’s approach, we also show that the
propagator can be alternatively expressed as a combination
of the unperturbed eigenfunctions weighted by factors that
depend only on time and the initial conditions, and that can
be computed in an exact iterative scheme. In principle, other
geometries of the boundary may be considered using a similar
framework. However, the choice of a circular domain implies
that the total angular momentum is conserved, thus simplify-
ing the analytics and the numerics.

Integration of the propagator over the coordinates at time
t allows obtaining the spatial probability density (integration
over the self-propulsion orientation ϑ), the radial probability
distribution (integration over ϑ and the azimuth ϕ), and the
survival probability (integration over ϑ , ϕ, and the radius
r). Derivation of the latter with respect to time also directly
provides the first-passage-time distribution, which displays a
strong dependence on the activity of the particle and, to a
lesser extent, on its rotational diffusivity.

Our results may be exploited to calculate other relevant
observables, such as the mean first-passage time and other
moments of the first-passage-time distribution [30]. Further-
more, they can be generalized to chiral ABP [49] by adding
a drift term to the dynamics of the orientation of the par-
ticle or to a dynamics with resetting events [36,37,50] by
including in the model a probability for instantaneously re-
turning to the initial condition after a certain time. Finally, our

findings may also serve as a starting point to investigate target-
search [51–54] problems in complex environments involving
absorbing boundaries. However, it must be mentioned that
generalizing our approach to account for one of the most inter-
esting aspects of ABPs’ dynamics, namely their accumulation
in the presence of rigid boundaries [10], remains an extremely
challenging problem hindered by the fact that in these cases
the evolution of the particle position is coupled to that of the
self-propulsion direction in a way that depends on the position
itself.

The approach allowing to derive our solution takes inspi-
ration from the one recently adopted to solve the ABP model
in a harmonic trap [19] and, in principle, can be adopted to
solve other problems in which it is possible to solve the eigen-
value problem of the reference passive system. Possible topics
worth further investigation include escape rate kinetics [55]
and statistics of the path times for particles crossing an energy
barrier [56,57]. However, it is worth mentioning that, in the
current problem, as it often happens in parameter-dependent
eigenvalues problems, changing the activity of the particle
also induces a change in the eigenvalue spectrum of the
Fokker-Planck operator, with exceptional points [46] arising.
According to Eq. (26), crossing these points by increasing the
Péclet number implies that the propagator develops oscillating
components because of the nonzero imaginary parts of the
eigenvalues sharing the exceptional point. In contrast, in the
case of the harmonic oscillator, the Fokker-Planck operator
of the passive Brownian particle and of the ABP are isospec-
tral. Since both problems are invariant under simultaneous
rotations of the self-propulsion direction and the azimuthal
angle, the isospectral property of the harmonic oscillator is
surprising and induces one to think that the harmonic potential
problem should have some extra hidden symmetry, see the last
remark in Ref. [19].
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APPENDIX A: ACTION OF L1 ON THE EQUILIBRIUM
EIGENFUNCTION |ψn,�, j〉

Here, we now explicitly evaluate the action of the perturba-
tion L1 on the eigenstates of L0 obtained from the eigenvalue
problem

L0|ψn,
, j〉 = −λn,
, j |ψn,
, j〉. (A1)

From the explicit expressions of the perturbation L1 and of
the eigenfunction ψn,
, j (r, ϑ ), Eqs. (9) and (15), and using
the following properties of the Bessel functions

d

dz
J
(z) = J
−1(z) − J
+1(z)

2
, (A2)




z
J
(z) = J
−1(z) + J
+1(z)

2
, (A3)
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one readily obtains

L1ψn,
, j (r, ϑ ) = 1

τ

j
,n
2
√

2πRJ
+1(j
,n)

×
{

ei(
+1)ϕei( j−
−1)ϑ J
+1

(
j
,n

r

R

)

− ei(
−1)ϕei( j−
+1)ϑ J
−1

(
j
,n

r

R

)}
. (A4)

In order to write this expression as a linear superposition of
eigenstates of L0, we use the completeness relation, Eq. (21),
and Lommel’s integral relation [45]∫ 1

0
dzzJ
±1(j
±1,mz) J
±1(j
,nz)

= ± j
±1,m J
±1(j
,n) J
(j
±1,m)

j2
,n − j2
±1,m

, (A5)

to obtain

J
±1

(
j
,n

r

R

)
=

∫ 1

0
d
( r0

R

)
J
±1

(
j
,n

r0

R

)
δ
( r0

R
− r0

R

)

= 2
∞∑

m=1

J
±1
(
j
±1,m

r
R

)
[J
±1+1(j
±1,m)]2

×
∫ 1

0
d
( r0

R

)( r0

R

)
J
±1

(
j
±1,m

r

R

)
J
±1

(
j
,n

r0

R

)

= ±2
∞∑

m=1

j
±1,m J
±1(j
,n) J
(j
±1,m)(
j2
,n − j2
±1,m

)
[J
±1+1(j
±1,m)]2

× J
±1

(
j
±1,m

r

R

)
. (A6)

Finally, collecting the previous equation with Eq. (A4) we
recover the action of the perturbation given in Eqs. (27)
and (28).

APPENDIX B: DEPENDENCE ON DISCRETIZATION
TIME STEP OF STOCHASTIC SIMULATIONS

Due to the presence of the absorbing boundary, the sim-
ulation results are more sensitive to the discretization time
step than standard simulations in free space, particularly in
the proximity of the boundary, see Fig. 6 for an overview of
results obtained for the radial probability density at different
values of dt .

The reason for this sensitiveness lies in the fact that, given
two points that are both close to the boundary but still inside

FIG. 6. Radial probability distribution (for Pe = 4 and γ = 0.8,
with initial condition r0 = 0, and averaged over ϑ0) as obtained from
numerics and from stochastic simulations assuming different values
of dt . Upper panel t = 0.02τ , lower panel t = 0.1τ . Inset: examples
of two trajectories (Red dt = 10−4τ , Blue dt = 10−2τ ) connecting
the same points A and B in the proximity of the boundary.

the disk, a fine-grained trajectory connecting these two points
has more chances to cross the boundary, thus not counting in
the overall statistics, than a more coarse-grained trajectory.

APPENDIX C: NUMERICAL COMPUTATION
OF THE FUNCTIONS M (q)

n,�, j

To compute numerically the coefficients M (q)
n,
, j (r0, ϑ0, t ),

having an integrated version of Eq. (38) is convenient. Un-
fortunately, eventual degeneracies in the eigenvalue spectrum
cause difficulties in deriving an integrated recursive scheme
valid at each order. Here, we give expression for q = 1 and
q = 2 as obtained by Eq. (38) starting from the zeroth order

M (0)
n,
, j (r0, ϑ0, t ) = e−λn,
, j tψn,
, j (r0, ϑ0)∗. (C1)

For the sake of compactness, in the rest of this section, we
suppress the dependence on the initial conditions of the M
coefficients. Introducing the characteristic function

χ
n′,
′, j′
n,
, j =

{
0 if λn,
, j = λn′,
′, j′ ,

1 otherwise, (C2)

we can write

M (1)
n,
, j (t ) =

∑
n′

c+
n,n′,
−1ψ

∗
n′,
−1, j

[(
1 − χ

n′,
−1, j
n,
, j

)
te−λn,
, j t + χ

n′,
−1, j
n,
, j

e−λn′ ,
−1, j t − e−λn,
, j t

λn,
, j − λn′,
−1, j

]

+
∑

n′
c−

n,n′,
+1ψ
∗
n′,
+1, j

[(
1 − χ

n′,
+1, j
n,
, j

)
te−λn,
, j t + χ

n′,
+1, j
n,
, j

e−λn′ ,
+1, j t − e−λn,
, j t

λn,
, j − λn′,
+1, j

]
, (C3)
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and

M (2)
n,
, j (t ) = e−λn,
, j t

∑
n′

∑
n′′

[
c+

n,n′,
−1c+
n′,n′′,
−2ψ

∗
n′′,
−2, jF

n′,
−1,n′′,
−2
n,
, j (t ) + c+

n,n′,
−1c−
n′,n′′,
ψ

∗
n′′,
, jF

n′,
−1,n′′,

n,
, j (t )

+ c−
n,n′,
+1c+

n′,n′′,
ψ
∗
n′′,
, jF

n′,
+1,n′′,

n,
, j (t ) + c−

n,n′,
+1c−
n′,n′′,
+2ψ

∗
n′′,
, jF

n′,
+1,n′′,
+2
n,
, j (t )

]
, (C4)

with

F n′,
′,n′′,
′′
n,
, j (t ) = (

1 − χ
n′′,
′′, j
n′,
′, j

)[(
1 − χ

n′,
′, j
n,
, j

) t2

2
+ χ

n′,
′, j
n,
, j

1 + e(λn,
, j−λn′,
′ , j )t (λn,
, jt − λn′,
′, jt − 1)

(λn,
, j − λn′,
′, j )2

]

+χ
n′′,
′′, j
n′,
′, j

[(
1 − χ

n′,
′, j
n,
, j

)e(λn,
, j−λn′′ ,
′′ , j )t − 1 − λn,
, jt + λn′′,
′′, jt )

(λn,
, j − λn′′,
′′, j )2

+ (
1 − χ

n′′,
′′, j
n,
, j

)e(λn,
, j−λn′,
′ , j )t − 1 − λn,
, jt + λn′,
′, jt )

(λn,
, j − λn′,
′, j )2

+χ
n′,
′, j
n,
, j χ

n′′,
′′, j
n,
, j

1

λn′,
′, j − λn′′,
′′, j

(
e(λn,
, j−λn′′ ,
′′ , j )t − 1

λn,
, j − λn′′,
′′, j
− e(λn,
, j−λn′,
′ , j )t − 1

λn,
, j − λn′,
′, j

)]
. (C5)
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