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Mechanism for giant enhancement of transport induced by active fluctuations
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Understanding the role of active fluctuations in physics is a problem in statu nascendi appearing both as a
hot topic and a major challenge. The reason for this is the fact that they are inherently nonequilibrium. This
feature opens a landscape of phenomena yet to be explored that are absent in the presence of thermal fluctuations
alone. Recently a paradoxical effect has been briefly communicated in which a free-particle transport induced
by active fluctuations in the form white Poisson shot noise can be enormously boosted when the particle is
additionally subjected to a periodic potential. In this work we considerably extend the original predictions and
investigate the impact of statistics of active noise on the occurrence of this effect. We construct a toy model
of the jump-relaxation process that allow us to identify different regimes of the free-particle transport boost
and explain their corresponding mechanisms. Moreover, we formulate and interpret the conditions for statistics
of active fluctuations that are necessary for the emergence of giant enhancement of the free-particle transport
induced by the periodic potential. Our results are relevant not only for microscopic physical systems but also
for biological ones such as, e.g., living cells where fluctuations generated by metabolic activities are active by
default.
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I. INTRODUCTION

Active fluctuations in contrast to thermal ones are in-
herently nonequilibrium, which implies that they are not
constrained by fundamental laws of physics, like the
fluctuation-dissipation theorem [1,2] or detailed balance sym-
metry [3,4], and that they keep the system permanently out
of equilibrium even in the absence of external perturbations.
Solely this feature opens a new landscape of phenomena [5–9]
that, to a large extent, still remains a terra incognita. Under-
standing of the role of active fluctuations in living matter is
emerging as a hot topic and a major challenge for physics
[10]. Fluctuations generated by metabolic activities are active
by default. They can be exploited by various physiological
processes. For instance, biological motors like dynein and
kinesin make use of such noise to enhance their directional
movement along microtubules [11,12]. Other manifestations
include active matter harvesting energy from environment to
generate a self-propulsion [3,13–17] or active bath such as a
suspension of active colloids that surrounds a passive system
[16,18–22,43].

It is commonly expected that when the free particle cou-
pled to thermal bath and subjected to a weak constant bias
is placed inside a periodic potential its velocity will be sig-
nificantly reduced due to the presence of the barriers [23].
However, recently a paradoxical effect has been briefly re-
ported in which a free-particle transport induced by active
fluctuations can be boosted by many orders of magnitude
when the particle is additionally subjected to a periodic po-
tential [24]. It is significant for understanding nonequilibrium
environments such as living cells where it can explain from a
fundamental point of view why spatially periodic structures
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known as microtubules are necessary to generate effective
intracellular transport.

In the present work we considerably extend the original
predictions and investigate in detail the mechanisms of this
effect. In particular, we focus on the impact of statistics of
active fluctuations on the occurrence of giant enhancement
of transport induced by a periodic potential. In doing so we
consider a broad class of probability distributions with raising
level of complexity. Moreover, we construct a toy model of
the jump-relaxation process that allows us to identify different
regimes of the free-particle transport boost as well as un-
derstand and formulate conditions that are necessary for the
emergence of this phenomenon.

The work is organized in the following way. In Sec. II
we introduce the model of a Brownian particle exposed to
active fluctuations in the form of white Poisson shot noise
and additionally subjected to a periodic potential. Next, we
detail on different probability distributions for amplitudes of
active fluctuations and establish the rescaled velocity of the
particle as a main quantity of interest in this work. In Sec. III
we elaborate on the giant boost of the free-particle transport in
a periodic potential, in particular, we analyze the impact of the
spiking frequency of white Poisson shot noise on this effect.
Later, in Sec. IV by resorting to a toy model of the jump-
relaxation process we explain the mechanisms of detected
giant boost in two distinct situations of rare active fluctuations
spikes and a resonance regime. Last, Sec. V provides a brief
summary and final conclusions. In the Appendix we calculate
the mean relaxation time in the considered periodic potential.

II. MODEL

We start our investigation with a free overdamped Brow-
nian particle described by the following simplest Langevin
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equation:

�ẋ =
√

2�kBT ξ (t ), (1)

where x is the particle position and the dot denotes differenti-
ation with respect to time t . � stands for a friction coefficient,
kB is the Boltzmann constant and T describes temperature of
the system. Thermal fluctuations are modeled by white Gaus-
sian noise ξ (t ) of zero mean 〈ξ (t )〉 = 0 and the correlation
function 〈ξ (t )ξ (s)〉 = δ(t − s). The particle diffuses with the
celebrated Einstein free-diffusion coefficient [25]

D = D0 = kBT

�
. (2)

Since thermal fluctuations are symmetric the average velocity
of the system vanishes

〈v〉 ≡ 〈ẋ〉 = 0, (3)

where 〈·〉 stands for the average over its trajectories.
If additionally a constant external force F is applied to the

particle, then its dynamics reads

�ẋ = F +
√

2�kBT ξ (t ). (4)

The diffusive behavior remains unchanged and it is still de-
scribed by the Einstein free-diffusion coefficient D = D0 [25].
However, in such a case due to the symmetry breaking the
particle attains the finite average velocity

〈v〉 = v0 = F

�
. (5)

As the next step let us put this forced particle into a
spatially periodic potential U (x) = U (x + L). The dynamics
of such a system is described by the analogous Langevin
equation

�ẋ = −U ′(x) + F +
√

2�kBT ξ (t ). (6)

When the particle is exposed to the periodic force −U ′(x) its
motion is hampered and consequently the effective diffusion
coefficient is typically reduced as compared to the Einstein
free diffusion D < D0 [25,26]. The same observation holds
true for the particle transport 〈v〉 � v0 [23]. However, for a
critically tilting force F = Fc thermal fluctuations can coop-
erate with the tilted periodic potential to accelerate diffusion
of a particle by many orders of magnitude as compared to
free diffusion D � D0. This mechanism is known as the giant
diffusion effect [27–30] and it serves as a seed for our main
problem of interest in this study.

Specifically, we ask whether transport of a particle
dwelling in a periodic potential can be greater than for a free
particle, i.e., 〈v〉 > v0? As pointed out above, this scenario is
ruled out for a constant force since even when F is large, the
particle average velocity is at most equal to the free-particle
velocity 〈v〉 = v0 [23]. For this reason we replace the constant
bias with active nonequilibrium fluctuations η(t ) of equal
mean value, i.e., 〈η(t )〉 = F . The dynamics of such system
is described by the Langevin equation

�ẋ = −U ′(x) + η(t ) +
√

2�kBT ξ (t ). (7)

The spatially periodic potential U (x) = U (x + L) is assumed
to be in the simplest symmetric form

U (x) = E sin

(
2π

L
x

)
, (8)

where the amplitude E is half of the potential barrier height.
We note that since 〈η(t )〉 = F the average velocity reads
〈v〉 = v0 when the particle is free U (x) = 0.

As a model of active nonequilibrium fluctuations η(t ) we
consider white Poisson shot noise [24,31–33]

η(t ) =
n(t )∑
i=1

ziδ(t − ti ), (9)

where {zi} are independent random amplitudes of δ kicks
drawn from the common probability distribution ρ(z). It can
be characterized by its mean ζ = 〈zi〉, variance σ 2 = 〈(zi −
ζ )2〉 and skewness χ = 〈(zi − ζ )3〉/σ 3, to name only a few.
The arrival times ti are determined by the Poisson process, i.e.,
the probability for the emergence of k impulses in the interval
[0, t] is given as

Pr{n(t ) = k} = (λt )k

k!
e−λt . (10)

The parameter λ describes the mean number of δ spikes per
unit time. Active fluctuations η(t ) form white noise of a finite
mean and a covariance given by

〈η(t )〉 = λ〈zi〉, (11)

〈η(t )η(s)〉 − 〈η(t )〉〈η(s)〉 = λ〈z2
i 〉δ(t − s). (12)

For simplicity we also assume that thermal noise ξ (t ) is un-
correlated with nonequilibrium noise η(t ), i.e., 〈ξ (t )η(s)〉 =
〈ξ (t )〉〈η(s)〉 = 0.

A. Dimensionless equation

Analysis of dimensional equations of motion may be
needlessly complicated. In physics only the relation between
characteristic scales of time, length, and energy but not
their absolute values are crucial for disentangling underlying
phenomena. Transforming the equation of interest into its
dimensionless form often can simplify the problem and reduce
the number of parameters. Moreover, the obtained results
are independent of specific experimental setup which makes
them attractive from both theoretical and experimental point
of view. Upon introducing the appropriate length and time
unit the original Eq. (7) can be transformed into the following
dimensionless form:

˙̂x = −Û ′(x̂) + η̂(t̂ ) +
√

2DT ξ̂ (t̂ ), (13)

where the periodic potential reads

Û (x̂) = ε sin x̂ (14)

and ε is half of its dimensionless barrier height. The rescaled
thermal noise ξ̂ (t̂ ) and active fluctuations η̂(t̂ ) possess the
same statistical properties as the corresponding dimensional
ones. In particular, the mean 〈ξ̂ (t̂ )〉 = 0 and the correlation
function 〈ξ̂ (t̂ )ξ̂ (ŝ)〉 = δ(t̂ − ŝ). Similarly, 〈η̂(t̂ )〉 = λ̂〈ẑi〉 and
〈η̂(t̂ )η̂(ŝ)〉 − 〈η̂(t̂ )〉〈η̂(ŝ)〉 = λ̂〈ẑ2

i 〉δ(t̂ − ŝ). We refer the reader
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FIG. 1. Comparison of the probability density functions ρ(z)
for amplitudes {zi} of δ spikes depicted for the same mean 〈zi〉 =
ζ = 3.6. The Erlang distribution ρr (z) is illustrated for n = 10, the
variance of both Gaussian ρG(z) and skew-normal ρs(z) statistics is
σ 2 = 3.1 and the skewness of the latter is χ = 0.99.

to Ref. [24] for more details of the scaling procedure. Since
from here onwards only the dimensionless quantities are used,
we omit the hat notation in the following sections of the paper.

B. Amplitude distributions

In this work we aim to analyze several classes of prob-
ability distribution ρ(z) for amplitudes {zi} of δ spikes with
increasing level of complexity to explain in detail the mecha-
nism of enhancement of the free-particle transport. Moreover,
a comprehensive discussion of a wide range of statistics would
allow us to identify properties of the amplitude distribution
ρ(z) that are required for this effect to occur. The probability
density functions taken into consideration in this study are
presented in Fig. 1, whereas in Table I we list their most
important features for a quick reference. Our selection in
principle allows to capture the following distinct physical
situations: (i) an active particle in contact with a thermal bath;
(ii) a passive particle surrounded by an active bath; (iii) an
active particle immersed in an active bath.

1. Deterministic active noise

We start our analysis with the simplest case in which the
amplitudes {zi} of δ spikes are nonrandom and equal, namely,

ρd (z) = δ(z − ζ ), (15)

but the impulses emerge at random arrival times {ti} described
by the Poisson process. In this study, we limit ourselves to
positive bias 〈η(t )〉 > 0 and consequently ζ > 0.

2. Exponential distribution

Randomness of δ spikes’ amplitudes is a property required
to model active fluctuations. One of the simplest nontrivial
probability density function is the exponential distribution.
It has been widely used in countless contexts not only in
physics but also in chemistry and other branches of exact and
natural sciences [34]. In particular, in our case it can serve as
a model for active fluctuations representing a self-propelling
mechanism of an active particle [16,21]. The corresponding
probability density function reads

ρe(z) = θ (z)

ζ
exp

(
− z

ζ

)
. (16)

It means that at random instants of time ti the particle
is exposed to δ spikes of random nonnegative amplitudes
zi � 0. Such model of active fluctuations can describe, e.g.,
the stochastic release of energy in chemical reactions such as
ATP hydrolysis [35]. The distribution ρe(z) is a monotonically
decreasing function, meaning that the probability of δ spikes
with larger amplitudes is smaller than those with the smaller
ones. Moreover, the variance of exponential distribution σ 2

e =
ζ 2 is dependent on its mean. The skewness of exponential
distribution is χ = 2 so it is also highly asymmetric.

3. Erlang distribution

Modeling of self-propelling mechanisms of active parti-
cles in terms of white Poisson noise η(t ) with exponentially
distributed amplitudes zi suffers from one drawback. Small δ

spikes are the most likely ones which is not necessarily the
case. Therefore, a nonmonotonic probability density function
ρ(z) must be considered. The generalization of the exponen-
tial statistics called the Erlang distribution [36] fulfills this
condition and reads

ρr (z) = θ (z)zn−1

(ζ/n)n(n − 1)!
exp

(
−nz

ζ

)
, (17)

where n ∈ N. Sum of n exponentially distributed random vari-
ables drawn from the same distribution with mean μ = ζ/n
follows the Erlang distribution. While its variance is still
related to its mean σ 2

r = ζ 2/n the Erlang statistics is non-
monotonic and for n > 1 it possesses maximum at z = (n −
1)ζ/n. It is less asymmetric than the exponential distribution
as its skewness reads χ = 2/

√
n.

4. Gaussian distribution

In all previous cases the amplitudes are nonnegative zi � 0.
However, active fluctuations η(t ) may represent not only self-

TABLE I. Comparison of most important properties of the probability density functions ρ(z) for amplitudes of δ spikes of active
fluctuations η(t ) considered in this study.

Distribution Random Asymmetric Nonmonotonic Bidirectional Independent variance

Deterministic ρd (z) No No No No No
Exponential ρe(z) Yes Yes No No No
Erlang ρr (z) Yes Yes Yes No No
Gaussian ρG(z) Yes No Yes Yes Yes
Skew-normal ρs(z) Yes Yes Yes Yes Yes
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propelling mechanisms but also impact of an active bath such
as suspension of active microswimmers on a passive or active
particle [10,21,22]. In this case η(t ) models random collisions
with the active environment that can result in both positive and
negative δ spikes. To take into account this scenario one has
to consider a bidirectional amplitude distribution ρ(z) allow-
ing impulses in both directions. As one of the most obvious
examples we pick the Gaussian distribution

ρG(z) = 1√
2πσ 2

G

exp

(
− (z − ζ )2

2σ 2
G

)
. (18)

Like the previous one this distribution renders a nonmono-
tonic function. However, unlike the Erlang statistics, here
the variance σ 2

G is a parameter independent of its mean ζ .
Moreover, Gaussian distribution is symmetric around ζ and
its skewness vanishes χ = 0.

5. Skew-normal distribution

In the most general case active fluctuations may have
more than one physical origin. An example is an active
self-propelling particle surrounded by an active bath. The
corresponding probability density ρ(z) for amplitude of δ

spikes obviously should be bidirectional to take into account
collisions supplying and taking energy from the system. How-
ever, to describe the balance between the influence of a
self-propelling mechanism and an active bath an additional
parameter is needed. The amplitude statistics ρ(z) in which
mean, variance and asymmetry can be independently varied
serves as a good candidate to capture the most complex ori-
gin of active fluctuations. Consequently, the last distribution
considered in this work is a skew-normal distribution, which
is a generalization of the Gaussian distribution to nonzero
asymmetry [37–39]

ρs(z) = 2√
2πω2

e− (z−μ)2

2ω2

∫ α[(z−μ)/ω]

−∞
ds

1

2π
e− s2

2 , (19)

where μ is location, ω scale and α shape parameter. These
quantities are defined in terms of statistical moments of the
distribution, i.e., mean ζ , variance σ 2 and skewness χ [40,41]:

α = δ√
1 − δ2

, (20a)

ω =
√

σ 2

1 − 2δ2/π
, (20b)

μ = ζ − δ

√
2σ 2

π (1 − 2δ2/π )
, (20c)

where δ reads

δ = sgn(χ )

√
|χ |2/3

(2/π ){[(4 − π )/2]2/3 + |χ |2/3} . (21)

We note that the skew-normal distribution ρs(z) is non-
monotonic, bidirectional, asymmetric, and possesses variance
which is independent of the mean.

C. Quantities of interest

The most basic quantity characterizing the directed trans-
port of the considered Brownian particle is the average
velocity

〈v〉 = lim
t→∞

〈x(t )〉 − 〈x(0)〉
t

= lim
t→∞

〈x(t )〉
t

, (22)

where 〈·〉 stands for the average over ensemble of thermal
and active noise realizations. In this study we investigate how
the free-particle transport is modified when it is subjected
to a periodic potential. For this reason, our main quantity of
interest is the rescaled velocity 〈v〉/v0, where

v0 = 〈η(t )〉 = λ〈zi〉 = λζ (23)

is the average velocity of a free particle exposed to active
fluctuations η(t ).

III. GIANT BOOST OF THE FREE-PARTICLE TRANSPORT

Unfortunately the general Fokker-Planck-Kolmogorov-
Feller integrodifferential equation corresponding to Eq. (13)
cannot be solved analytically in a closed way [31]. The re-
sults in literature have been attained only for some selected
special cases [42–44]. For this reason we performed precise
computer simulations using CUDA environment on modern
desktop graphics processing units (GPUs) [45]. This approach
allowed us to simulate 216 system trajectories at once and
accelerated the computation by several orders of magnitude
as compared to standard methods. The ensemble averaging
was performed over thermal and active noise realizations as
well as over initial condition x(0) distributed uniformly over
the spatial period L = 2π of the potential U (x).

We start our investigation with the dependence of the
rescaled velocity 〈v〉/v0 on the barrier height ε of the periodic
potential U (x) for different active fluctuations η(t ) amplitude
distributions ρ(z). This characteristic is depicted in Fig. 2. In
both panels we fix the statistical bias or equivalently the free
transport velocity 〈η(t )〉 = v0 = 1. However, we distinguish
two cases. In panel (a) the mean amplitude 〈zi〉 = ζ of active
fluctuations is larger than the distance ζc = L/2 = π from
minimum to maximum of the potential U (x), i.e., ζ > ζc. It
means that on average when the δ spike arrives the particle is
taken over the potential barrier. However, in panel (b), ζ < ζc

and statistically the δ-kick does not transport the particle over
the potential barrier.

Unless stated otherwise from now on we use the following
parameters: For the Erlang distribution ρr (z) n = 10. Both the
Gaussian ρG(z) and skew-normal ρs(z) statistics have variance
σ 2 = 3.1. Moreover, the latter possesses the asymmetry χ =
0.99. Thermal noise intensity is set to DT = 0.01.

In Fig. 2 we observe in accordance to common intuition
that when the potential barrier vanishes ε → 0 the rescaled
velocity 〈v〉/v0 → 1, i.e., the directed transport is the same as
for the free particle, regardless of the value of mean ampli-
tude ζ , cf. Figs. 2(a) and 2(b). When the barrier ε increases
the rescaled velocity 〈v〉/v0 starts to diverge from its value
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FIG. 2. The rescaled average velocity 〈v〉/v0 versus the barrier
height ε of the periodic potential U (x) for different active fluctuations
η(t ) amplitude distributions ρ(z). In both panels 〈η(t )〉 = v0 = 1,
however in (a) ζ = 3.6, λ = 1/3.6, whereas in (b) ζ = 1/30 and λ =
30. In the inset of panel (b) we show giant boost of the free-particle
transport which occurs for small v0 = 0.01. Other parameters are: In
the Erlang distribution ρr (z) n = 10, the variance of both Gaussian
ρG(z) and skew-normal ρs(z) statistics is σ 2 = 3.1, and the skewness
of the latter is χ = 0.99. Thermal noise intensity is set to DT = 0.01.

characteristic for the free particle. In particular, if the mean
amplitude ζ > ζc, see Fig. 2(a), then the rescaled velocity
〈v〉/v0 tends to different constant values depending on ac-
tive fluctuations amplitude statistics ρ(z). Both increase as
well as decrease of the free-particle transport is possible.
The largest enhancement is observed for the deterministic
distribution ρd (z) followed by much smaller one detected
for the Erlang ρr (z) and Gaussian ρG(z) statistics. However,
active fluctuations η(t ) with δ spikes distributed according to
the exponential ρe(z) and skew-normal ρs(z) density decrease
the transport when the free particle is additionally subjected
to the periodic force U (x).

The situation is radically different in Fig. 2(b) where the
mean amplitude is smaller than half of the spatial period of po-
tential ζ < ζc. Then only active fluctuations η(t ) with δ spikes
distributed according to the skew-normal ρs(z) density lead
to amplification of the free-particle transport if the latter is
additionally exposed to the periodic potential U (x). Note that
the enhancement of rescaled velocity 〈v〉/v0 is almost an order
of magnitude greater than for the deterministic distribution

ρd (z) in Fig. 2(a). Moreover, in the inset we show that if ini-
tially the free-particle transport induced by active fluctuations
η(t ) is smaller, e.g., v0 = 0.01, the boost in rescaled velocity
when the particle dwells in the periodic potential U (x) can be
enormous 〈v〉/v0 = 1000 � 1 [24]. The reader should also
note that for the skew-normal distribution ρs(z) the velocity
〈v〉/v0 reaches plateau when the potential barrier ε → ∞.
Such giant transport boost is significant for understanding
nonequilibrium environments such as living cells where it can
explain from fundamental point of view why spatially periodic
structures known as microtubules are necessary to generate
impressively effective intracellular transport. The goal of the
present paper is to explain the mechanism of this effect in
depth.

Impact of the spiking frequency λ

In doing so we now focus on the impact of the mean spik-
ing frequency λ on the boost of free-particle transport driven
by active fluctuations η(t ) when the system is additionally
subjected to the periodic potential U (x). Since the average
velocity of free particle v0 = 〈η(t )〉 = λζ we distinguish two
cases where the mean spiking rate λ is varied. In the first
one the mean amplitude of active fluctuations δ kicks is fixed
ζ = const. However, it implies that when the spiking rate
λ is changed the free-particle transport v0 = λζ varies as
well. In the second case the latter characteristic is constant
v0 = const., so the mean amplitude ζ changes together with
the spiking rate λ. It seems that it is more adequate option
when discussing the free-particle transport boost, however,
the first scaling provides important additional insights into the
preconditions for this effect to emerge and therefore we start
our discussion with it.

1. Fixed mean amplitude ζ = const.

In Fig. 3 we present how the rescaled velocity 〈v〉/v0

changes when the mean spiking rate λ is varied for the fixed
mean amplitude ζ of δ impulses and different statistics ρ(z).
Moreover, solid lines correspond to the barrier height ε = 40
whereas the dashed ones to ε = 100. In the same way as
before, in Fig. 3(a) the mean amplitude is supercritical ζ =
3.6 > ζc while in Fig. 3(b) it is subcritical ζ = 1/30 < ζc.
Note that the free-particle transport v0 = λζ changes here
together with the spiking rate λ. There are a number of im-
portant observations that comes from the inspection of Fig. 3.
First, the largest free-particle boost occurs in the limit of rare
δ spikes λ → 0. However, it is gigantic 〈v〉/v0 � 1 only for
the skew-normal ρs(z) amplitude statistics provided that its
mean ζ is significantly smaller than the distance between the
minimum and maximum of the periodic potential ζ < ζc. The
free-particle transport boost observed in the limit of rare δ

spikes λ → 0 is robust with respect to variation of the poten-
tial barrier height ε. Second, when the the δ impulses are very
frequent, i.e., for λ → ∞, there is no free transport enhance-
ment regardless of the amplitude statistics ρ(z) and its mean
amplitude ζ . Third, when the spiking frequency λ is moderate
the potential barrier height ε modifies the rescaled velocity
of the particle. In particular, when ε grows the characteristics
〈v〉/v0 is shifted toward larger λ and consequently transport
boost starts to be detected for greater frequencies λ.
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FIG. 3. The rescaled average velocity 〈v〉/v0 versus the mean
spiking rate λ depicted for different amplitude statistics ρ(z) with
fixed mean ζ = const. Solid lines correspond to the barrier height
ε = 40 of the periodic potential U (x) and dashed ones to ε = 100.
In panel (a) results for ζ = 3.6 > ζc are shown while in panel (b) for
ζ = 1/30 < ζc. Other parameters are the same as in Fig. 2.

2. Fixed mean bias 〈η(t )〉 = v0 = const.

Behavior of the rescaled velocity 〈v〉/v0 is radically dif-
ferent when the condition of fixed mean 〈η(t )〉 = v0 = const.
is imposed. It means that the mean amplitude ζ of δ spikes
changes together with the spiking rate λ. We present this case
in Fig. 4. Now the rescaled velocity 〈v〉/v0 is no longer a
monotonic function of the spiking rate λ. When δ kicks are
scarce λ � 1 the transport is roughly speaking equivalent to
motion of the free particle 〈v〉/v0 = 1. However, in this pa-
rameter regime characteristic oscillatory behavior is detected
as λ grows, see the inset. However, if the spiking rate is very
large λ → ∞ and consequently small δ impulses are very
frequent, then the transport ceases to exist 〈v〉/v0 = 0 except
of two bidirectional amplitude distributions with variance σ 2

independent of mean ζ , i.e., Gaussian ρG(z) and skew-normal
ρs(z) statistics for which it is equal to the velocity of free parti-
cle 〈v〉/v0 = 1. The most important finding is that only for the
skew normal distribution ρs(z) of amplitudes as the spiking
rate λ of δ kicks grows there exist a well pronounced maxi-
mum in the studied characteristics. The optimal λ for which
the free-particle transport boost is maximal depends on the
potential barrier height ε and increases when U (x) is steeper.

FIG. 4. The rescaled average velocity 〈v〉/v0 versus the mean
spiking rate λ depicted for different amplitude statistics ρ(z) with
fixed mean bias 〈η(t )〉 = v0 = 1. Solid lines correspond to the barrier
height ε = 40 of the periodic potential U (x) and dashed ones to
ε = 100. Other parameters are the same as in Fig. 2.

Moreover, the magnitude of the free transport amplification
grows together with ε and can be enormous 〈v〉/v0 � 1.

IV. THE MECHANISM

In this section we want to explain in detail what is the
mechanism standing behind the giant enhancement of free-
particle transport induced by active fluctuations when the
latter is additionally subjected to the periodic potential. For
this purpose let us first note that in the presented parame-
ter regime thermal noise intensity DT = 0.01 is significantly
smaller than the potential barrier height ε as well as mean
statistical bias of active fluctuations 〈η(t )〉 = v0 = 1. There-
fore, without loss of generality we neglect thermal noise ξ (t )
and discuss a phenomenological description of the simplified
dynamics in terms of the jump-relaxation process. While this
picture is strictly valid only in the limit of rare spikes λ → 0
it will allow us to gain a physical intuition on which we will
later base.

A. Jump-relaxation process

In Fig. 5 we present the schematic representation of the
four elementary realizations of the particle jump-relaxation
process. Initially the particle resides at the potential minimum.
When a δ spike arrives it is transported over the distance
�xP = zi and then during the relaxation toward the nearest
potential minimum it covers the interval �xR. The total par-
ticle displacement in the jump-relaxation process reads �x =
�xP + �xR. Depending on the magnitude of amplitude zi the
particle may or may not overcome the potential barrier ε. If
0 < zi < ζc = π [scenario (I)], then the distance is �x = 0.
For ζc < zi < L = 2π [scenario (II)] the total displacement is
�x = L = 2π . If −ζc < zi < 0 [scenario (III)], then �x = 0,
whereas when −L < zi < −ζc [scenario (IV)] the distance is
�x = −L = −2π . We limit our consideration to the interval
[−L, L] since further displacement in either direction can be
effectively reduced to the above four classes of realizations.

When the periodic potential is switched off U (x) = 0 the
relaxation part �xR in the total distance vanishes �x = �xP
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FIG. 5. Schematic representation of the four (I)–(IV) elementary realizations of the particle jump-relaxation process as a phenomenological
description of the simplified dynamics with neglected thermal noise contribution. The bottom ones are possible only for the bidirectional
amplitude distributions ρ(z) allowing for both positive and negative δ spikes, i.e., for the Gaussian ρG(z) and skew-normal ρs(z) statistics.

and consequently the free-particle motion can be represented
as a jump process alone. Analysis of the full displacement �x
for the jump and jump-relaxation process presented in Table II
reveals that for positive statistical bias 〈η(t )〉 = v0 > 0 the
transport is boosted when the particle is subjected to a peri-
odic potential and scenario (II) or scenario (III) takes place.
However, the movement is slowed down in scenarios (I) and
(IV). We note that cases (III) and (IV) are possible only for
bidirectional amplitude statistics, namely the Gaussian ρG(z)
and skew-normal distribution ρs(z), which allow for both pos-
itive zi > 0 and negative zi < 0 δ spikes.

Knowing solely the amplitude distribution ρ(z) it is possi-
ble to determine the probability of each scenario in a single act
of δ-spike action. For instance, the probability for occurrence
of the second case reads

PII = Pr{ζc = π < zi < L = 2π} =
∫ L

ζc

ρ(z) dz. (24)

The analogous expressions for the remaining scenarios can be
written down by changing the bottom and upper integration
limit accordingly. In Fig. 6 we present the four probabilities
PI, PII, PIII, and PIV as a function of the mean amplitude ζ for
different variants of the active fluctuations δ-spike statistics
ρ(z). Since for the deterministic distribution ρd (z) there is
only one amplitude zi = ζ the probability PI or PII equals
either 0 or 1. The exponential statistics ρe(z) is monotonically
decreasing function and consequently for this case the prob-
ability PI is always larger than PII. The Erlang distribution
ρr (z) does not possess this property. However, both of these
statistics have variance determined by the amplitude mean
σ 2 ∝ ζ 2 and therefore for small ζ the probability PI is close
to one. We note that for nonmonotonic distributions the most
probable scenario changes together with the mean amplitude
ζ . In particular, for the case of the Gaussian ρG(z) and skew-
normal ρs(z) statistics the probabilities presented in Fig. 6 are

TABLE II. Analysis of the total particle displacement �x for the jump process (free particle) and jump-relaxation process (particle in a
periodic potential) driven by active fluctuations η(t ) in each scenario presented in Fig. 5. The net difference between the particle in a periodic
potential and free one tells that for positive statistical bias 〈η(t )〉 = v0 > 0 scenarios (II) and (III) boost the transport, whereas scenarios (I)
and (IV) decrease it.

Total displacement �x Scenario I Scenario II Scenario III Scenario IV

Free particle �xF �xP �xP −|�xP| −|�xP|
Particle in a periodic potential �xP �xP − |�xR| �xP + |�xR| −|�xP| + |�xR| −|�xP| − |�xR|
Net difference �xP − �xF −|�xR| |�xR| |�xR| −|�xR|
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FIG. 6. The probabilities PI, PII, PIII, and PIV for occurrence of the corresponding scenario in the jump-relaxation process, see Fig. 5, as
a function of the mean amplitude ζ for different variants of the active fluctuations δ-spike statistics ρ(z). The parameters are: For the Erlang
distribution ρr (z) n = 10, the variance of both the Gaussian ρG(z) and skew-normal statistics ρs(z) σ 2 = 3.1, and the skewness of the latter is
χ = 0.99.

only shifted as ζ grows. Last, PIII and PIV are nonzero only for
the Gaussian ρG(z) and skew-normal ρs(z) distributions.

What is crucial for the boost of free-particle transport
driven by active fluctuations in a periodic potential is however
not a magnitude of the individual probabilities PI, PII, PIII,
and PIV but the balance between them. As we revealed in
the analyzed case the second and the third scenario boost the
free-particle transport whereas the first and the fourth decrease
it. Therefore, we now want to analyze the difference

�P = P+ − P− = (PII + PIII ) − (PI + PIV). (25)

This quantity is depicted in Fig. 7 versus the mean am-
plitude ζ of different δ-spikes statistics ρ(z). A number of
very important conclusions for our further analysis come
from the inspection of this panel. First and foremost,
for vanishing mean amplitude ζ → 0 the balance �P is
positive—indicating potential for the free-particle transport
boost—only for the skew-normal statistics ρs(z). However,
the difference �P is always negative only for the exponential
distribution ρe(z) due to its monotonically decreasing form.
As typically �P < 0 when ζ < ζc the free-particle transport
is expected to be hampered in this regime when the periodic
potential is switched on. In contrast, if ζ > ζc, then usually
the difference �P > 0 and the transport boost can emerge.

The average velocity of the particle in the jump-relaxation
process by definition can be expressed as

〈v〉 = �x

τ
= �xP + �xR

τP + τR
, (26)

where τP is a waiting time for the arrival of δ spike of active
fluctuations η(t ) and τR is a time interval in which the particle
covers the distance �xR toward the potential minimum until
the next δ spike emerges and the sequence is repeated, see
Fig. 5.

FIG. 7. The difference �P = P+ − P− = (PII + PIII ) − (PI +
PIV) between the probabilities P+ and P− for the occurrence of the
jump-relaxation processes that are constructive and destructive for
the free-particle transport boost in a periodic potential, respectively.
�P is shown versus the mean amplitude ζ of different δ-spikes
statistics ρ(z). The parameters are the same as in Fig. 6.
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B. Regimes of the free-particle transport boost

The mean waiting time expresses the characteristic
timescale of active fluctuations η(t ) and it is determined by
the inverse of their spiking frequency 〈τP〉 = 1/λ. How-
ever, the average relaxation time describes the characteristic
timescale of the periodic potential U (x) and is proportional to
the inverse of its barrier height 〈τR〉 ∝ 1/ε; see the Appendix.
The relation between these two characteristic timescale of
the problem is crucial for understanding of the free-particle
transport boost in the periodic potential, in particular the gi-
ant one. There are three distinct regimes: (i) the rare spikes
〈τP〉 � 〈τR〉, (ii) the frequent impulses 〈τP〉 � 〈τR〉, and (iii)
the resonance 〈τP〉 ≈ 〈τR〉 which we now analyze one by one.

1. Rare spikes 〈τP〉 � 〈τR〉
Our assumption in the jump-relaxation process that ini-

tially the particle resides in the potential minimum is strictly
satisfied only when the average waiting time between the
successive δ spikes is much larger than the typical relaxation
time 〈τP〉 � 〈τR〉. In such a case the latter timescale can be
neglected and the average velocity of the particle reads

〈v〉 = 〈�x〉
〈τP〉 = λ(〈�xP〉 + 〈�xR〉) = λ(ζ + 〈�xR〉). (27)

Consequently, the rescaled velocity is

〈v〉
v0

= λ(ζ + 〈�xR〉)

λζ
= 1 + 〈�xR〉

ζ
. (28)

It means that to optimize free transport boost the average
distance 〈�xR〉 should be maximized with the mean amplitude
ζ simultaneously being minimized. Since for the studied pe-
riodic potential U (x) the relaxation is limited by the distance
between its minimum and maximum 〈�xR〉 � ζc = L/2 we
get the upper bound for the enhancement

〈v〉
v0

� 1 + ζc

ζ
= 1 + L

2ζ
. (29)

This result tells that in the regime of rare spikes 〈τP〉 � 〈τR〉
the free-particle transport boost emerges since active fluctua-
tions η(t ) allows the particle to exploit the spatial periodicity
L of the potential U (x). This upper bound can be reached for
the deterministic amplitude statistics ρd (z) when ζ → ζ+

c and
then according to Eq. (29) the maximal rescaled velocity reads
limζ→ζ+

c
〈v〉/v0 = 2.

Let us now come back to Fig. 3 and reinterpret the results
shown there in terms of the above discussion. The limit of
rare spikes 〈τP〉 � 〈τR〉 is realized when the frequency λ → 0.
In both panels of Fig. 3 in this regime the rescaled velocity
〈v〉/v0 attains its plateau. In plot (a) for which ζ = 3.6 > ζc

the free-particle transport boost 〈v〉/v0 > 1 occurs for the
deterministic ρd (z), the Erlang ρr (z) as well as the Gaussian
ρG(z) distributions, whereas for the skew-normal ρs(z) and
exponential ρe(z) statistics it is hampered 〈v〉/v0 < 1. These
facts can be predicted a priori from the inspection of Fig. 7
where for ζ = 3.6 the difference �P is positive for ρd (z),
ρr (z), and ρG(z) while for ρs(z) and ρe(z) it is negative.
Moreover, the order of the rescaled velocity 〈v〉/v0 plateaus
in Fig. 3(a) from the largest to the smallest is the same as

the sequence of the probability difference �P for ζ = 3.6 in
Fig. 7.

The magnitude of 〈v〉/v0 plateau can be calculated from
Eq. (28). For instance, for the deterministic distribution ρd (z)
we obtain the closed analytical expression

〈v〉
v0

= 1 + L − ζ

ζ
= L

ζ
, (30)

which for L = 2π and ζ = 3.6 yields 〈v〉/v0 = 1.74 as it is
shown in Fig. 3(a). It follows that in the regime of rare spikes
λ → 0 the origin of free-particle transport boost lies in a profit
from the spatial period L of the potential U (x) rather than
its barrier height ε. It is also confirmed by the fact that in
such regime an increase of ε in Fig. 3 does not change the
magnitude of the rescaled velocity 〈v〉/v0.

In Fig. 3(b) we can notice that the free-particle transport
boost in the limit of rare spikes λ → 0 may be much greater
than the upper bound 〈v〉/v0 = 2 for the deterministic ρd (z)
amplitude distribution. It is so for the skew-normal statis-
tics ρs(z) for which the plateau reads 〈v〉/v0 ≈ 12. Since the
average distance of the particle relaxation is bounded from
above 〈�xR〉 � ζc = L/2 it can happen only for smaller mean
amplitude ζ . However, when ζ < ζc amplitude distributions
that allow for only positive δ spikes possess negative balance
�P < 0 between the probabilities for beneficial and detrimen-
tal jump-relaxation processes, c.f. Fig. 7. The same is true also
for the bidirectional and symmetric statistics such as the Gaus-
sian distribution ρG(z). The giant free-particle transport boost
〈v〉/v0 is therefore possible exclusively for the bidirectional
and asymmetric amplitude distributions like the skew-normal
ρs(z) density. It is worth to note also the role of variance σ 2

independence. If ζ → 0, then the potential barrier crossing
events are possible when σ 2 is not a function of ζ . Therefore,
only the Gaussian ρG(z) and skew-normal ρs(z) statistics lead
to the nonzero rescaled transport velocity 〈v〉/v0 in Fig. 3(b).

If the constraint of fixed mean bias 〈η(t )〉 = v0 = λζ =
const. is imposed, then the mean amplitude ζ must follow
ζ = v0/λ. In the regime of rare spikes λ → 0 implies ζ → ∞.
Since 〈�xR〉 � ζc = L/2 from Eq. (28) it follows that there
is no free-particle transport boost 〈v〉/v0 = 1 regardless of
δ-spikes amplitude statistics as it is shown in Fig. 4.

2. Frequent spikes 〈τP〉 � 〈τR〉
When the mean waiting time between the successive δ

spikes is much smaller than the average relaxation time
〈τP〉 � 〈τR〉 the particle is constantly agitated by active fluc-
tuations η(t ). It implies that the particle does not have enough
time to slide down the potential and therefore the relaxation
process can be neglected 〈�xR〉 = 0. The limit of frequent
spikes 〈τP〉 � 〈τR〉 is realized when the frequency λ → ∞.
One can conclude from the inspection of Figs. 3 and 4 that
in such a case the free-particle transport boost does not occur.
For amplitude distributions ρ(z) that allow only for positive
δ spikes the rescaled velocity either equals zero or tends to
one. The first situation emerges when the mean amplitude of δ

impulse is smaller than the distance between the minimum and
maximum of the potential ζ < ζc. The second scenario takes
place if ζ > ζc. The exception is the bidirectional amplitude
statistics such as the Gaussian ρG(z) and the skew-normal
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distribution ρs(z) for which even when ζ < ζc the rescaled
velocity 〈v〉/v0 = 1 due to the fact that their variance σ 2

is a parameter independent of its mean ζ and therefore the
potential barrier crossing events are still possible.

3. Resonance 〈τP〉 ≈ 〈τR〉
As it is often the case in physics, phenomena occurring

at the border of two separate physical realms are the most
intriguing ones. It is not different this time. When the mean
waiting time between δ spikes and the average relaxation
time are matched 〈τP〉 ≈ 〈τR〉 we detect the resonance be-
havior in which the giant boost of the free-particle transport
emerges.

From our toy model of the jump-relaxation process we
learned that when the δ spikes are rare 〈τP〉 � 〈τR〉 the free-
particle transport enhancement occurs due to the fact that
active fluctuations η(t ) allow the particle to exploit the spatial
periodicity L of the potential U (x) when it relaxes toward
the minimum. If δ spikes are too frequent 〈τP〉 � 〈τR〉, then
the transport boost ceases to exist, because the particle is
constantly agitated by active noise η(t ) and it cannot take
advantage of the periodic structure U (x). However, if δ spikes
are rare, then the particle wastes time in the potential mini-
mum until the next impulse arrives and therefore the transport
is not optimal. Since the transition between the rare and
frequent δ spikes is continuous there must exist the corre-
sponding impulse frequency λmax for which the transport is
optimized in the periodic potential with a given barrier height
ε. It translates to a situation when the particle does not waste
time in the potential minimum but instead it exploits the
relaxation and immediately after that the next δ spike arrives.

Our claims are confirmed in Fig. 4 where the giant boost
of the free-particle transport 〈v〉/v0 � 1 occurs for the skew-
normal statistics ρs(z) in the resonance case 〈τP〉 ≈ 〈τR〉. This
fact must be contrasted with the rare spikes regime 〈τP〉 �
〈τR〉 in which free-particle transport can be amplified but to
a much lesser extent 〈v〉/v0 > 1 even for the carefully opti-
mized deterministic amplitude distribution ρd (z). Moreover,
as we explained above when δ spikes are scarce in time
the free-particle transport boost emerges because the particle
utilizes the spatial periodicity L of the potential. In contrast,
for the resonance regime 〈τP〉 ≈ 〈τR〉 the particle exploits
the potential steepness ε rather than its period L to achieve
transport enhancement.

When ε grows the average relaxation time 〈τR〉 ∝ 1/ε

decreases and consequently 〈τP〉 = 1/λ must be reduced to
maintain 〈τP〉 ≈ 〈τR〉. It is indeed the case since if ε increases
the optimal frequency λmax for which the free transport boost
is maximal gets larger. In Fig. 8 we present comparison of
λmax with the mean 〈τR〉 and median τM relaxation time (see
the Appendix) all depicted as a function of the potential bar-
rier ε. When the latter increases initial divergence between
them quickly dies out and these characteristic times become
equivalent in the giant transport regime which proves the
resonance-like behavior. However, 1/λmax is slightly smaller
than 〈τR〉. It follows from the potential U (x) profile for which
the particle relaxation is much slower near the minima. It turns
out that getting close to them is more optimal than insistently
trying to reach them.

FIG. 8. The characteristic time 1/λmax between the consecutive
δ impulses of active fluctuations η(t ) corresponding to the rescaled
velocity 〈v〉/v0 maxima in Fig. 4 for the skew-normal ρs(z) ampli-
tude distribution, the average 〈τR〉 and median τM of the relaxation
time all depicted as a function of the potential barrier height ε. The
parameters are the same as in Fig. 6.

Moreover, for 〈η(t )〉 = v0 = λζ = const. the growth of λ

must be compensated by a decrease of the mean amplitude ζ .
As we revealed only the skew-normal δ-spikes statistics ρs(z)
possesses positive difference �P > 0 between the construc-
tive and destructive jump-relaxation processes for vanishing
ζ → 0. This fact explains why in the resonance regime 〈τP〉 ≈
〈τR〉 the free-particle transport enhancement is observed only
for the skew-normal amplitude distribution ρs(z). It leads to
a nontrivial and counter-intuitive conclusion that in periodic
systems active fluctuations with randomly distributed positive
and negative δ spikes can induce significantly greater directed
transport than for active noise of equal average but with only
positive amplitudes, even the carefully tuned deterministic
ones.

V. CONCLUSIONS

In this work we thoroughly investigated a paradoxical
effect in which a free-particle transport induced by active
fluctuations in the form of white Poisson shot noise can be
boosted by many orders of magnitude when the particle is
additionally subjected to a periodic potential. In doing so we
focused on the impact of active noise amplitude statistics as
well as its spiking rate on the occurrence of this phenomenon.
By resorting to a toy model of the jump-relaxation process
we identified different regimes of the free-particle transport
boost and explained in detail their corresponding mechanisms.
Our study of various active fluctuations amplitude statistics
allowed us to understand and formulate conditions that are
necessary for the emergence of giant enhancement of the
free-particle transport induced by the periodic potential.

In particular, as we revealed the boost of free-particle
transport can occur in two distinct physical regimes related to
the characteristic timescale between two successive δ spikes
of active fluctuations. When δ impulses are rare the effect
emerges due to the fact that the particle with the help of
active noise can exploit the spatial periodicity of the poten-
tial. However, when the mean waiting time between δ spikes
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and the average relaxation time in the periodic potential are
matched the resonance occurs in which the free particle driven
by active fluctuations can make use of the potential barrier
rather than its period to maximally enhance its transport. The
magnitude of boost depends noticeably on the free-particle
transport velocity. When the latter is already large there is
little or no gain by placing the system in the periodic potential.
If the directed motion of free particle induced by active noise
is slow, then the velocity can be enormously boosted when the
system is additionally subjected to the periodic potential.

However, there are nontrivial constraints on the statistics of
δ-spike amplitudes which must be fulfilled for this paradoxical
effect to emerge. Our study of selected parameter regimes
reveals that for the symmetric periodic potential it occurs
in the resonance case for the skew-normal distribution that
is bidirectional, i.e., allows for both positive and negative δ

spikes, its variance forms an independent parameter as well
as the distribution is asymmetric. The combination of these
features generates an unique property which is missing for
other considered amplitude statistics. It is a positive difference
between the probabilities for the jump-relaxation processes
accelerating and slowing down the transport in the periodic
potential in the regime when the mean amplitude vanishes.
It must be contrasted with other distributions, in particu-
lar those with only positive δ spikes, for which destructive
jump-relaxation processes dominate and the free transport
enhancement does not emerge.

Our results are relevant not only for microscopic phys-
ical systems but also biological ones such as, e.g., living
cells which are prototype of nonequilibrium system exposed
to both thermal and active noise. Therefore, our strategy
of exploiting periodic potential for giant enhancement of
free-particle transport driven by active fluctuations may in-
spire new designs of ultrafast and efficient biologically
inspired micro and nanoscale machines. Since we considered
a paradigmatic model of nonequilibrium statistical physics
that embodies numerous realizations including, e.g., a col-
loidal particle in an optically generated periodic potential
[46,47] or real biological motors [11,12] we anticipate stim-
ulating followup works of both theoretical and experimental
origin.
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APPENDIX: THE RELAXATION TIME τR

In the absence of all fluctuations the particle relaxation
time toward the potential U (x) minimum is described by the
equation

ẋ = −U ′(x). (A1)

The time τR(xA, xB) which the particle needs to move from the
point xA to xB reads

τR(xA, xB) = −
∫ xB

xA

dx

U ′(x)
. (A2)

Since the potential U (x) = ε sin x is periodic we restrict our
consideration to the interval xA, xB ∈ ( π

2 , 3π
2 ). Note that both

the minimum and maximum are excluded because the time
required to leave the maximum or reach the minimum is
infinite. Then the above formula yields

τR(xA, xB) = − 1

2ε
ln

∣∣∣∣1 + sin x

1 − sin x

∣∣∣∣
∣∣∣∣∣
xB

xA

. (A3)

After the arrival of δ spike, the particle can jump at any
random position xA and then during the interval τR(xA, xB) it
is relaxing toward the neighboring potential minimum. The
process ends at another random position xB where the next δ

spike emerges. For this reason it is more adequate to consider
the average relaxation time 〈τR〉 which reads

〈τR〉 =
∫ x0+L/2

x0

∫ x0+L/2
xA

τR(xA, xB)dxBdxA∫ x0+L/2
x0

∫ x0+L/2
xA

dxBdxA

, (A4)

where x0 and L is the potential minimum and its spatial period,
respectively. Plugging here Eq. (A3) we get

〈τR〉 = 1.70

ε
. (A5)

Median of the relaxation time τR(xA, xB) cannot be calculated
in a closed analytic form and therefore must be determined
numerically directly from simulations of the underlying de-
terministic dynamics of the system. The result reads

τM = 1.35

ε
. (A6)
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