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To which degree the average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting
Hamiltonians agrees with that of random pure states is a question that has attracted considerable attention in the
recent years. While there is substantial evidence that the leading (volume-law) terms are identical, which and how
subleading terms differ between them is less clear. Here we carry out state-of-the-art full exact diagonalization
calculations of clean spin-1/2 XYZ and XXZ chains with integrability breaking terms to address this question
in the absence and presence of U (1) symmetry, respectively. We first introduce the notion of maximally chaotic
regime, for the chain sizes amenable to full exact diagonalization calculations, as the regime in Hamiltonian
parameters in which the level spacing ratio, the distribution of eigenstate coefficients, and the entanglement
entropy are closest to the random matrix theory predictions. In this regime, we carry out a finite-size scaling
analysis of the subleading terms of the average entanglement entropy of midspectrum eigenstates when different
fractions ν of the spectrum are included in the average. We find indications that, for ν → 0, the magnitude of
the negative O(1) correction is only slightly greater than the one predicted for random pure states. For finite ν,
following a phenomenological approach, we derive a simple expression that describes the numerically observed
ν dependence of the O(1) deviation from the prediction for random pure states.

DOI: 10.1103/PhysRevE.107.064119

I. INTRODUCTION

Entanglement is one of the most fundamental and intrigu-
ing features of quantum mechanics [1,2]. Since the early
2000s, we have learned that in physical Hamiltonians there
are qualitative differences between entanglement in ground
states, which typically exhibit an “area-law” entanglement
entropy [3], and in highly excited energy eigenstates, which
typically exhibit a “volume-law” entanglement entropy [4].
Entanglement has also been conjectured to serve as a diagnos-
tic for quantum chaos and integrability [5]. Using full exact
diagonalization calculations, the average bipartite entangle-
ment entropies of highly excited eigenstates of spin-1/2 XXZ
chains were shown to behave qualitatively differently at and
away from integrability [5]. Specifically, while the average in
both regimes exhibits a leading volume-law term, the coef-
ficient of the volume in that term was found to be maximal
for midspectrum eigenstates in the quantum-chaotic regime
(consistent with findings in earlier works [6,7]; see also
Refs. [8–10]) and lower than maximal and subsystem-fraction
dependent at integrability (as found for quadratic models and
integrable models mappable onto quadratic ones [11–18]).

Following on the previously mentioned studies, our focus
in this work is the entanglement entropy of highly excited
eigenstates of clean spin-1/2 quantum-chaotic interacting
Hamiltonians. We consider chains with L sites (we change L
to carry out scaling analyses) with periodic and open bound-

ary conditions. For pure quantum states |ψ〉, which we will
take to be Hamiltonian eigenstates, we study the (bipartite)
entanglement entropy of a subsystem A (with LA contiguous
sites) after tracing out the complement B (with LB = L − LA

contiguous sites), resulting in

ρ̂A = TrB|ψ〉〈ψ |. (1)

The von Neumann entanglement entropy (in short, the entan-
glement entropy) of subsystem A is

SA = −Tr(ρ̂A ln ρ̂A). (2)

The entanglement entropy of random pure states with the
same Hilbert space in a lattice with L sites (whose spacial
configuration is irrelevant) is a natural counterpart to compare
to the entanglement entropy of eigenstates of quantum-chaotic
interacting Hamiltonians [4]. By now, there is strong evidence
that the leading term in the average entanglement entropy is
the same for midspectrum eigenstates and for random pure
states [4]. An important question is then to which degree the
average entanglement entropy of those midspectrum eigen-
states agrees, beyond the leading volume-law term, with the
average over random pure states.

For spin-1/2 chains with U (1) symmetry (particle-number
conservation in the spinless fermions language) this question
was explored by two of us (L.V. and M.R.) in Ref. [6].
Away from the zero magnetization sector (“half-filling” for
fermions) the main finding was that, when one traces out
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1/2 of the lattice sites, the average entanglement entropy of
random pure states exhibits a first subleading term that scales
with the square root of the number of sites in the lattice.
The numerical calculations then indicated that, remarkably,
the average entanglement entropy of the midspectrum eigen-
states of the quantum-chaotic spin-1/2 chain exhibit the same
subleading term. At zero magnetization, when one traces out
1/2 of the lattice sites, the first subleading term in the average
entanglement entropy of random pure states is O(1) [4]. The
numerical calculations in Ref. [6] indicated that the same is
true about the average entanglement entropy of the midspec-
trum eigenstates, with a value of the constant that is close to
that for random pure states.

The leading terms of the average entanglement entropy of
random pure states with fixed total magnetization Sz, magneti-
zation per site sz = Sz/L, or, equivalently, at spinless fermions
filling n = sz + 1/2, were fully derived in Ref. [4] using meth-
ods introduced in Ref. [19]:

〈SA〉n = − [n ln n + (1 − n) ln(1 − n)] LA

−
√

n(1 − n)

2π

∣∣∣∣ln
(

1 − n

n

)∣∣∣∣δ f , 1
2

√
L

+ f + ln(1 − f )

2
− 1

2
δ f , 1

2
δn, 1

2
+ o(1), (3)

where LA � L
2 , and o(1) is used for terms that vanish in the

thermodynamic limit. In Eq. (3), f = LA/L stands for the
“subsystem fraction.” To obtain the results for LA> L

2 ( f > 1
2 ),

one just needs to replace LA → L − LA in Eq. (3).
It is important to remark that because of the U (1) sym-

metry, in Eq. (3) there is an O(1) “mean-field” correction to
the average entanglement entropy of random pure states at all
values of the magnetization and subsystem fractions, which
was derived in Ref. [6],

S(1)
MF = f + ln(1 − f )

2
. (4)

The fact that this is the only O(1) correction to the leading
volume-law term away from f = 1/2 was proved later in
Ref. [4]. At f = 1/2, and only at zero magnetization, the
additional −1/2 correction is the same as that found by Page
in the absence of U (1) symmetry [20]. In the latter case, the
average entanglement entropy over random states reads

〈SA〉 = LA ln 2 − 1
2δ f , 1

2
+ o(1). (5)

Recent works have attempted to identify the reasons
behind, and quantify the differences, between the average
entanglement entropy over random pure states and over
Hamiltonian eigenstates in the absence of U (1) symme-
try [21–24]. In Ref. [21], Huang conjectured (and provided
some numerical evidence) that the average entanglement en-
tropy over all eigenstates of local quantum-chaotic interacting
Hamiltonians has the form

S̄A = LA ln 2 + ln(1 − f )

2
− 2

π
δ f ,1/2. (6)

This formula was derived under an assumption of chaoticity
and locality of the Hamiltonian. The result in Eq. (6) coincides

with the one obtained in Ref. [4] for the average entanglement
entropy of random pure states in the presence of U (1) sym-
metry when all (properly weighted) magnetization sectors are
included in the average.

Following on Ref. [21], and on numerical results reported
in Ref. [22], Huang conjectured (and provided some numer-
ical evidence) that the average entanglement entropy over
midspectrum eigenstates of (local) quantum-chaotic interact-
ing Hamiltonians at f = 1/2 has the form [23]

S̄
(ν)
A = L − 1

2
ln 2 + 2[e−(erf−1ν)2 − 1]

νπ

+ [e−(erf−1ν)2 + 2ν − 2]erf−1ν

2ν
√

π
, (7)

where ν is the fraction of the Hilbert space over which one
carries out the average. For ν = 1, one recovers Eq. (6), while
for ν = 0+ one obtains

S̄
(0+ )
A = L

2
ln 2 − ln 2

2
− 1

4
, (8)

which coincides with the result in Eq. (3) at f = 1/2 and
n = 1/2, i.e., Eq. (8) is identical to the result for the average
over random pure states with fixed magnetization sz = 0 at
f = 1/2. Building on these findings, in Ref. [25] it was ar-
gued that at ν = 0+ energy conservation in quantum-chaotic
local Hamiltonians [26] plays a similar role to that of U (1)
symmetry in random pure states.

In this work, we study the subleading corrections to the
average entanglement entropy of midspectrum eigenstates in
quantum-chaotic interacting spin-1/2 chains without U (1)
symmetry [21–25] and with U (1) symmetry [6]. We carry out
state-of-the-art numerical calculations of clean spin-1/2 XYZ
and XXZ models with integrability breaking terms in chains
with periodic and open boundary conditions. Using various
quantum chaos indicators, we first scan a wide range of pa-
rameters for those models and introduce the concept of the
maximally chaotic regime. Namely, a regime in Hamiltonian
parameters in which, for the chain sizes that are accessible
to full exact diagonalization calculations, the quantum-chaos
indicators considered are closest to the random matrix theory
predictions. It is in this regime that we find that the mid-
spectrum energy eigenstates exhibit the greatest entanglement
entropy. We then carry out finite-size scaling analyzes of the
average eigenstate entanglement entropy in the maximally
chaotic regime.

The paper is organized as follows. In Sec. II, we introduce
the models under consideration and discuss details about our
numerical calculations. The maximally chaotic regime is iden-
tified in Sec. III. The results for the finite-size scaling analyzes
of the average entanglement entropy of midspectrum energy
eigenstates are presented in Sec. IV. We summarize our results
in Sec. V.

II. MODELS

We study the clean spin-1/2 XYZ chain (ĤXYZ) with
nearest- (Ĥ1) and next-nearest- (Ĥ2) neighbors interactions in
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a magnetic field (ĤF ):

ĤXYZ = Ĥ1 + Ĥ2 + ĤF ,

Ĥ1 = J1

∑
�

[
(1 − η)ŝx

� ŝx
�+1 + (1 + η)ŝy

�ŝy
�+1 + 	1ŝz

�ŝz
�+1

]
,

Ĥ2 = J2

∑
�

[
(1 − η)ŝx

� ŝx
�+2 + (1 + η)ŝy

�ŝy
�+2 + 	2ŝz

�ŝz
�+2

]
,

ĤF =
∑

�

(
hzŝz

� + hxŝx
�

)
, (9)

where ŝτ
� , with τ = x, y, z, are the spin-1/2 operators at site �.

We fix the five parameters J1 = 1 (unit of energy), η = 0.5,
	1 = 0.3, 	2 = 0.3, and hx = 0.3, whereas the remaining
two parameters J2, hz are determined by the analysis dis-
cussed in Sec. III.

In our full exact diagonalization calculations, we consider
chains with periodic boundary conditions, i.e., ŝτ

L+1 = ŝτ
1 and

ŝτ
L+2 = ŝτ

2 (τ = x, y, z), and with open boundary conditions.
With periodic boundary conditions, the Hamiltonian in Eq. (9)
exhibits translation symmetry. We resolve it resulting in a
block-diagonal structure of the Hamiltonian in which each
block is labeled by the total quasimomentum k and has a total
number of states ∼2L/L. The blocks with k = 0 and π are
further split using the reflection symmetry also present in the
Hamiltonian, resulting in sub-blocks with ∼2L/(2L) states.
For open boundary conditions, only reflection symmetry is
present, resulting in a splitting of the Hamiltonian in two
blocks with ∼2L/2 states. For periodic boundary conditions,
the largest chains that we study have L = 22 for k = 0 and
π and L = 20 for all the other total quasimomentum sectors.
For open boundary conditions, the largest chains that we study
have L = 18.

The second model we study is the clean spin-1/2 XXZ
chain (ĤXXZ) with nearest- (Ĥ ′

1) and next-nearest- (Ĥ ′
2) neigh-

bors interactions:

ĤXXZ = Ĥ ′
1 + Ĥ ′

2,

Ĥ ′
1 = J1

∑
�

[
ŝx
� ŝx

�+1 + ŝy
�ŝy

�+1 + 	1ŝz
�ŝz

�+1

]
,

Ĥ ′
2 = J2

∑
�

[
ŝx
� ŝx

�+2 + ŝy
�ŝy

�+2 + 	2ŝz
�ŝz

�+2

]
, (10)

which is obtained from Eq. (9) by setting η = hx = hz = 0.
We fix J1 = 1 and 	2 = 0.3, whereas the remaining pa-
rameters J2, 	1 are determined by the analysis discussed in
Sec. III.

The spin-1/2 XXZ chain has an additional U (1) symmetry,
so that the total magnetization (Ŝz = ∑

� ŝz
�) is a conserved

quantity. At zero magnetization, it further has a (Z2) spin-flip
symmetry. We resolve both symmetries in our calculations,
which are carried out in the zero total magnetization sector.
For chains with periodic boundary conditions, this further
reduces the number of states in the blocks that need to be
diagonalized to ∼( L

L/2

)
/(4L) at k = 0 and π and ∼( L

L/2

)
/(2L)

for all other total quasimomentum sectors. For the chains
with open boundary conditions, we need to fully diagonalize
blocks with ∼( L

L/2

)
/4 states. For periodic boundary condi-

tions, we study chains with up to L = 26 for k = 0 and π ,

and up to L = 24 for all other k sectors. For open boundary
conditions, we study chains with up to L = 20.

Unless stated otherwise, the exact diagonalization results
reported correspond to averages over all symmetry blocks for
any given chain size L, and the number of eigenstates reported
in the context of the averages is the one taken from each
symmetry block.

III. MAXIMALLY CHAOTIC REGIME

Several quantities, associated to the eigenenergies or
to the energy eigenstates, have been traditionally used to
quantify “quantum chaos” in many-body interacting Hamil-
tonians [27]. They are computed in model Hamiltonians and
compared to the predictions from random matrix theory
(RMT). Their agreement, or the improvement of their agree-
ment with increasing system size, are considered a hallmark
of many-body quantum chaos.

Since various limits of one-dimensional chains (such as
the ones considered here) are integrable, when carrying out
scaling analyses to make predictions about generic quantum-
chaotic interacting models it is desirable to be as “far away”
as possible from integrable points. In this spirit, in this sec-
tion we identify the maximally chaotic regime for the chain
sizes that we can study using full exact diagonalization calcu-
lations of the Hamiltonians in Sec. II. The maximally chaotic
regime is the regime in the model parameters in which we
find the closest agreement between the exact diagonalization
results and the RMT predictions.

A. Level spacing ratio

The statistical properties of the eigenenergies {Eα} of quan-
tum many-body Hamiltonians are one of the most commonly
used indicators of quantum chaos [27]. One of the simplest
and most studied associated quantity is the distribution of the
ratios of consecutive level spacings, defined as [28]:

rα = min{δα, δα+1}
max{δα, δα+1} , (11)

where δα = Eα − Eα−1 is the energy difference between
consecutive levels. The RMT prediction for the average
of rα in the Gaussian orthogonal ensemble (GOE) is
r̄GOE = 0.5307 [29], and this is the result one expects to
obtain in quantum-chaotic interacting Hamiltonians.

In Fig. 1(a) [Fig. 1(b)], we show the average level spacing
ratio r̄ for the XYZ [XXZ] model as a function of J2 for
different values of hz [	1] in a chain with L = 18 [L = 20].
For both the XYZ and XXZ models, the deviations from the
GOE predictions are greatest for small values of J2. For the
XYZ chain, we also find that large values of hz extend the
regime in J2 in which greater deviations are seen from the
RMT prediction, while in the XXZ model the extent of that
region is quite insensitive to the value of 	1 for the range of
parameters shown. In Figs. 1(c) and 1(d), we show exemplary
distributions of r for four sets of Hamiltonian parameters
for the XYZ and XXZ models, respectively, and how they
compare to the predictions for the GOE and the Poisson dis-
tribution.
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FIG. 1. Statistics of the level spacing ratio, see Eq. (11). [(a) and
(b)] Average level spacing ratio r̄ for 50% of midspectrum eigen-
states in the XYZ (L = 18) and XXZ (L = 20) models, respectively.
The solid (dashed) horizontal line denotes the GOE (Poisson dis-
tribution) prediction r̄GOE = 0.5307 (r̄P = 0.3867). [(c) and (d)]
Corresponding distributions P(r) for four sets of Hamiltonian
parameters. The solid [dashed] line denotes the GOE [Pois-
son distribution] prediction PGOE(r) = 27

4 (r + r2)/(1 + r + r2)5/2

[PP(r) = 2/(1 + r)2].

Our results in Fig. 1 show that there is a broad regime (of
the two Hamiltonian parameters that we have not fixed in both
models) in which there is a nearly perfect agreement with the
GOE predictions (up to the statistical fluctuations necessarily
present in our finite samples of eigenenergies). The param-
eters of both models that are fixed in Fig. 1 were selected
to ensure such an agreement with the GOE predictions for a
wide range of the parameters left to fix. We spare the readers
a discussion of that tedious broader exploration.

B. Eigenstate coefficients

Next we study the distribution of eigenstate coefficients,
which we find to be a more sensitive diagnostic of quantum
chaos than r. Specifically, given a Hamiltonian eigenstate
ψα = ∑

m cα
m|m〉, expanded in the computational basis

{|m〉}, we study the distribution of cα
m over the midspectrum

eigenstates.
Due to the presence of translation symmetry, the coeffi-

cients are complex in all total quasimomentum sectors except
for k = 0 and π . Hence, we proceed in two steps. In the first
step, we consider eigenstates from a single symmetry block.
If the eigenstate coefficients are complex, then we rescale
both the real and the imaginary parts separately by their cor-
responding standard deviations σ [i.e., Re(cα

m) → Re(cα
m)/σ

and Im(cα
m) → Im(cα

m)/σ , where σ ∝ 1/
√

2D with D the
number of states in the corresponding sector], while in case

FIG. 2. Distribution of eigenstate coefficients z (see text) ob-
tained using 100 midspectrum eigenstates from each total quasimo-
mentum sector. In our calculations we take J2 = 1.0, for (a) the XYZ
model (L = 18) and (b) the XXZ model (L = 20). The dashed lines
show P̄(z) from Eq. (12). Insets: 
ψ from Eq. (13) for distributions
such as the ones shown in the main panels for three values of J2

(J2 = 1.0, 2.0, and 4.0). The results for 
ψ in the insets are plotted
as functions of (a) hz, and (b) 	1.

of real coefficients we directly rescale the coefficients (i.e.,
cα

m → cα
m/σ , where σ ∝ 1/

√
D with D the number of states

in the corresponding sector). In the second step, we collect
the rescaled real and imaginary parts of all the coefficients
and study the statistics of their absolute values, denoted as
z in this paper. The probability density function (PDF) of z,
P(z), is contrasted to a Gaussian PDF of the form

P̄(z) = 2√
2π

e− z2

2 , (12)

where a prefactor of 2 appears in the numerator because we
study the distribution of absolute values, see Appendix B. We
split and analyze the distributions of the coefficients this way
to avoid having to deal with different distributions for the real
and complex sectors. The distribution of the absolute values
of coefficients cα

m in the complex sectors follows a chi-squared
distribution, see Appendix B for details.

The main panels of Fig. 2 show the PDFs P(z) for the XYZ
[Fig. 2(a)] and XXZ [Fig. 2(b)] models. We take J2 = 1.0,
for which the average level spacing ratio r̄ in Fig. 1 matches
the GOE prediction for the model parameters under inves-
tigation. The results in Fig. 2 show that the distribution of
eigenstate coefficients is a more sensitive probe of many-
body quantum chaos than r. Specifically, all the PDFs in
Fig. 2 show deviations from the Gaussian distribution P̄(z),
which are most visible in the tails of the distributions. Sev-
eral works [22,30–33] have studied distributions of eigenstate
coefficients and also observed deviations from the Gaussian
distribution.

We find that, for J2 = 1.0, the PDFs P(z) are closest to
the Gaussian function P̄(z) at small hz < 1 in the XYZ model
and at small 	1 < 1 in the XXZ model. In order to quantify
the deviations from the Gaussian PDF, as done in Ref. [5], we
compute the ratio


ψ = 〈z2〉
〈z〉2

, (13)

064119-4



AVERAGE ENTANGLEMENT ENTROPY OF MIDSPECTRUM … PHYSICAL REVIEW E 107, 064119 (2023)

which yields 
ψ = π/2 for the Gaussian PDF from Eq. (12).
Numerical results for 
ψ are shown in the insets of Fig. 2
for J2 = 1.0, 2.0, and 4.0 as functions of (a) hz for the XYZ
model and (b) 	1 for the XXZ model. From those plots
we conclude that, for the closest agreement with the RMT
prediction, one needs small values of hz for the XYZ model
and small values of 	1 for the XXZ model and that, in the
latter regimes, J2∼2.0 gives the values that are closest to π/2.

In Appendix A, we show as density plots the normalized
differences |
ψ − π/2|/(π/2) as functions of J2, hz for the
XYZ model and as functions of J2, 	1 for the XXZ model. We
compare them with results for the normalized differences |r̄ −
r̄GOE|/r̄GOE computed in the same parameter regimes. Those
plots provide a more complete picture of the regimes in which
the results for the model Hamiltonians are closest to the RMT
predictions and about the sensitivity of the results obtained for
r̄ vs that of the results obtained for 
ψ .

As a side remark, we note that for the system sizes con-
sidered in Fig. 2, 
ψ is slightly greater than π/2 even in the
maximally chaotic regime of both models. In Appendix C, we
carry out finite-size scaling analyses of the normalized dif-
ference |
ψ − π/2|/(π/2) for the XYZ model in chains with
both periodic and open boundary conditions. We show that the
normalized differences decrease with increasing system size,
but they decrease more slowly than for eigenstates of random
matrices and than for pure random states with coefficients that
are drawn from a normal distribution.

C. Average eigenstate entanglement entropy

To close this section on the maximally chaotic regime,
we explore the behavior of the eigenstate entanglement en-
tropy SA of Hamiltonian eigenstates, see Eq. (2). We focus on
bipartitions in two halves, i.e., we set the subsystem fraction
to f = 1/2, and study the same parameter regimes of the
Hamiltonians as in Secs. III A and III B.

Figures 3(a) and 3(b) show the average entanglement en-
tropy S̄A in both models for the same Hamiltonian parameters
as those in the study of the average level spacing r̄ in Figs. 1(a)
and 1(b). We average SA over 100 midspectrum eigenstates
from each symmetry block and divide the results by the
two leading terms in Page’s prediction, see 〈SA〉 in Eq. (5).
A comparison between Fig. 3(a) [Fig. 3(b)] and Fig. 1(a)
[Fig. 1(b)] reveals a similar trend between the deviation of
S̄A from Page’s leading-order prediction and the deviation of
r̄ from the RMT prediction. We do note that the deviations
in the average entanglement entropy are more pronounced at
small J2 in both models. This is more prominent for the XXZ
model in Fig. 3(b), for which we find that S̄A at moderate 	1

increases with J2 even in the regime J2 > 1. This observation
motivate us in the next section to set J2 = 2.0 to carry out the
scaling analyses.

In Appendix A, we show density plots of the normalized
differences between S̄A and Page’s leading-order prediction
for 〈SA〉, |S̄A − 〈SA〉|/〈SA〉, as functions of J2, hz for the XYZ
model and as functions of J2, 	1 for the XXZ model. Like
the results for r̄ and 
ψ , those plots provide a more complete
picture of where the agreement between the averages over
Hamiltonian eigenstates and the theoretical expectations are
closest.
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FIG. 3. Scaled average eigenstate entanglement entropy S̄A/〈SA〉,
obtained after tracing out 1/2 of the chain, for the same models
and parameters as in Fig. 1. [(a) and (b)] Results for the XYZ
(L = 18) and XXZ (L = 20) models, respectively. The averages are
calculated taking 100 midspectrum eigenstates from each symmetry
block, and the Page value 〈SA〉 is taken to be the two leading terms
in Eq. (5). [(c) and (d)] Distributions P(Sα

A/〈SA〉), of the eigenstate
entanglement entropies Sα

A used when computing the averages, for
four sets of Hamiltonian parameters.

In Figs. 3(c) and 3(d), we show exemplary distributions
P(Sα

A/〈SA〉) of the eigenstate entanglement entropies Sα
A used

when computing the averages for four sets of Hamiltonian
parameters for the XYZ and XXZ models, respectively. One
can see that the closer the average S̄A is to Page’s result the
narrower is the distribution (or, what is the same, higher aver-
ages come from narrower distributions). Narrow distributions
of eigenstate expectation values of few-body observables are a
hallmark of eigenstate thermalization and, hence, of quantum
chaos [27]. It is remarkable that the same applies to the entan-
glement entropy of 1/2 of the system, which is a multibody
observable. The most chaotic regime in Fig. 3(c) [Fig. 3(d)]
is found to be the regime of J2 ∼ 2 and small hz (	1) in the
XYZ (XXZ) model.

Summarizing our analysis in this section, we showed that
all three quantities under investigation, the level spacing ra-
tio r̄, the statistics of the eigenstate coefficients cα

m, and the
eigenstate entanglement entropy SA yield consistent informa-
tion about the degree of quantum chaos in different regimes
of model parameters, with the latter two depending more
strongly on the values of the model parameters.

IV. SCALING OF THE AVERAGE
ENTANGLEMENT ENTROPY

We now turn our attention to the main subject of our
work, i.e., the behavior of the average entanglement entropy of
midspectrum eigenstates. We are interested in exploring their
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FIG. 4. Eigenstate entanglement entropies Sα
A at f = 1/2, in all

symmetry blocks, as functions of 	Eα (see text). The main panels
show the deviation from the average S̄(�)

A vs (	Eα/σ )2 [σ 2 is de-
fined in Eq. (16)] for different system sizes, while the insets show
Sα

A vs 	Eα for the largest system size computed in each case. We
calculate S̄(�)

A using � = 100 midspectrum eigenstates from each
quasimomentum sector. [(a) and (b)] Results for chains with periodic
boundary conditions (PBCs) for the XYZ and XXZ models, respec-
tively. [(c) and (d)] Results for chains with open boundary conditions
(OBCs) for the XYZ and the XXZ models, respectively. The solid
lines in the insets show fits of the eigenstate entanglement entropies
to Eqs. (14) and (15), in which the only fitting parameter is c. The
values of S̄(�)

A and c2 for the curves shown are (a) S̄(�)
A = 6.35 and

c2 = 3.26, (b) S̄(�)
A = 7.66 and c2 = 2.98, (c) S̄(�)

A = 5.65 and c2 =
2.89, and (d) S̄(�)

A = 6.27 and c2 = 2.71. (For the fits, we use the
entanglement entropies of the central 50% of the energy eigenstates.)
The solid lines in the main panels show (	Eα )2/(c2 σ 2), where c
comes from the fits in the insets, and σ is computed for each system
size.

scaling with the system size and with the fraction of midspec-
trum eigenstates taken to carry out the average. Motivated by
the results from Sec. III and Appendix A, we select model
parameters for which the system is found to be maximally
chaotic. Specifically, we set J2 = 2.0 and hz = 0.2 for the
XYZ model and J2 = 2.0 and 	1 = 0.2 for the XXZ model.

It is well known that the eigenstate entanglement entropy
of local Hamiltonians is a concave function of the eigenener-
gies, with a maximum in the middle of the energy spectrum,
namely, about Ē = Tr(Ĥ )/D, with D being the dimension
of the entire Hilbert space [7,8,22,26,34,35]. This property
is illustrated in the insets in Fig. 4 for our two models, us-
ing periodic (top panels) and open (bottom panels) boundary
conditions. In those insets, we plot Sα

A vs 	Eα = Eα − Ē for
all symmetry blocks, where Ē is the average energy in the
symmetry block to which Eα belongs (Ē → Ē with increasing
system size, as shown in Fig. 13). Consequently, in finite
systems, the average eigenstate entanglement entropy depends

on the number of states used to carry out the average. In large
systems, as we show in what follows, this translates into a
dependence of the subleading O(1) term on the fraction of
eigenstates used to carry out the averages.

About the maximum value of Sα
A , which can be computed

as an average S̄(�)
A over a fixed number � of midspectrum

eigenstates, the insets in Fig. 4 (containing all symmetry
blocks) make apparent that one can write the eigenstate en-
tanglement entropy Sα

A as

Sα
A = S̄(�)

A − C2(	Eα )2, (14)

where C, in general, depends on the Hamiltonian parameters
and the system size. We find that

C 	 1

c σ
, (15)

where σ 2 is the variance of the energy of the entire energy
spectrum

σ 2 = 1

D
∑

α

(Eα − Ē )2, (16)

and c is independent of the system size. This is demonstrated
by the data collapse seen in the main panels in Fig. 4, in
which we plot S̄(�)

A − Sα
A vs (	Eα/σ )2 for the entire energy

spectrum in chains with different sizes. Remarkably, the fits of
the numerical results in insets in Fig. 4 to Eqs. (14) and (15)
show that those equations provide an excellent description of
Sα

A over most of the energy spectrum. This is further confirmed
by the data collapse in the main panels, which occurs about the
fits.

In this work we carry out two types of averages for the
eigenstate entanglement entropy. The first one was already
mentioned before, namely we average over a fixed number
� of midspectrum eigenstates. This fixed number, as one
increases the system size, corresponds to an exponentially
vanishing fraction relative to the total number of eigenstates.
The energy eigenstates in that average have eigenenergies
Eα → Ē exponentially fast with increasing system size. In the
second type of average, we use a finite fraction ν of mid-
spectrum eigenstates, ν ∈ (0, 1], and we denote the average
as S̄(ν)

A . It is important to emphasize that, when computing
the averages, we define the “midspectrum eigenstates” for
each symmetry block separately, i.e., they are the eigenstates
whose eigenenergies are closest to the mean energy Ē in each
symmetry block.

Using Eqs. (14) and (15), we can estimate the dependence
of the average eigenstate entanglement entropy on the fraction
ν of midspectrum eigenstates used to compute the averages.
Let us begin by noticing that, for models with few-body
interactions (our interest here), the density of states is Gaus-
sian about the mean energy Ē . Introducing a new variable
E = E − Ē , we can write

ρ(E ) = D 1√
2πσ

e− E2

2σ2 , so that
∫ ∞

−∞
ρ(E )dE = D,

(17)
and has a variance σ 2 ∝ L [36,37].
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Using Eq. (17), we can write

ν = 1

D

∫ Eν

−Eν

ρ(E )dE = erf

( Eν√
2σ

)
, (18)

which shows that Eν ∝ σ ∝ √
L for ν ∈ (0, 1). The average

entanglement entropy over this energy window is then given
by

S̄ (ν)
A = 1

νD

∫ Eν

−Eν

ρ(E ) SA(E ) dE . (19)

Inserting Eqs. (14), (15), and (17) into the equation above, one
obtains

S̄ (ν)
A = 1

νD

∫ Eν

−Eν

D√
2πσ

e− E2

2σ2

[
S̄(�)

A − E2

c2σ 2

]
dE

= S̄(�)
A − 1

c2

[
1 −

√
2

π

Eν

ν σ
e− E2

ν

2σ2

]
. (20)

From Eq. (18), we know that Eν/σ = √
2erf−1(ν). Hence, we

find that the concave functional form of Sα
A vs 	Eα with a

maximum in the middle of the spectrum results in an O(1)
correction of the average over a finite fraction ν of the energy
eigenstates when compared to the maximal result

S̄ (ν)
A = S̄(�)

A − 1

c2

[
1 − 2√

π

erf−1(ν)

ν
e−[erf−1(ν)]2

]
. (21)

In Secs. IV A and IV B, we report numerical results for
the average entanglement entropy of a fraction ν of mid-
spectrum eigenstates in nonintegrable XYZ and XXZ chains,
respectively. We show that, after computing S̄(�)

A and fitting
c2, Eq. (21) describes the results for S̄ (ν)

A in our numerical
calculations. When meaningful, in Secs. IV A and IV B, we
will also report results for the maximal and minimal eigen-
state entanglement entropies within the set of states over
which the average is carried out. In contrast to the average
eigenstate entanglement entropies, the maximal and mini-
mal eigenstate entanglement entropies are not averaged over
symmetry blocks. We select the maximal and minimal over
the entire set containing all sectors and refer to them as the
“outlier” eigenstate entanglement entropies. They bound the
results for the entanglement entropies in the set considered.

All the results in the main text correspond to the subsystem
fraction f = 1/2. Results for other system fractions are shown
in Appendix E.

A. XYZ model

In order to carry out a finite-size scaling analysis for the
XYZ model, in this section we compute the average entan-
glement entropy of energy eigenstates in chains with different
sizes L. We then subtract the numerical results obtained from
the prediction by Page [20] for the average over random pure
states in a full Hilbert space H = HA ⊗ HB, with correspond-
ing dimensions DA = 2LA and DB = 2L−LA , which has the

form [4]:

〈SA〉 =
{

�(DADB + 1) − �(DB + 1) − DA−1
2DB

, DA � DB

�(DADB + 1) − �(DA + 1) − DB−1
2DA

, DA > DB
,

(22)
where �(z) = (ln 
(z))′ = 
′(z)/
(z) is the digamma func-
tion. At subsystem fraction f = LA/L, the two leading terms
for Eq. (22) are given in Eq. (5).

In Fig. 5, we show the finite-size scaling of the differ-
ences 〈SA〉 − S̄(ν)

A (filled symbols) for the average over: (a)
� = 100 (ν = 0+), (b) ν = 1/4, (c) ν = 1/2, and (d) all
eigenstates (ν = 1). The open symbols in Fig. 5 show the
differences for the outlier eigenstate entanglement entropies.
In the main panels we show results for periodic and open
boundary conditions, while in the insets we show results
for periodic boundary conditions for averages over all quasi-
momentum sectors (as shown in the main panels) and only
over k = 0 and π (for which the largest system sizes can
be diagonalized). We also show, as horizontal dashed lines,
the prediction of Eq. (7) for the specific value of ν under
consideration.

In Fig. 5(a) and its inset, for � = 100 midspectrum eigen-
states, one can see that with increasing system size the
difference between the average over random pure states and
the average over Hamiltonian eigenstates appears to saturate
at a small O(1) number that is smaller than, but likely of
the order of, 0.1. This O(1) number seems to be slightly
smaller than the one predicted by Eq. (7), which, as mentioned
in the introduction, is identical to the result for the average
over random pure states with fixed magnetization sz = 0 at
f = 1/2 [n = 1/2 and f = 1/2 in Eq. (3)].

In Figs. 5(b)–5(d), one can see that with increasing system
size 〈SA〉 − S̄(ν)

A approaches a nonzero O(1) constant whose
value increases with ν. In Fig. 6, we plot the difference
〈SA〉 − S̄(ν)

A vs ν for a chain with periodic boundary conditions
(PBCs) (L = 20) and for a chain with open boundary condi-
tions (OBCs) (L = 18). In both cases we find the difference to
be in excellent agreement with the prediction of Eq. (21), with
the values of S̄(�)

A and c2 taken from the curves shown in the
insets in Figs. 4(a) and 4(c). Since the results for large systems
with PBCs and OBCs are expected to agree up to corrections
that vanish in the thermodynamic limit, the fact that the PBC
and OBC results are slightly different makes clear that they
still suffer from finite-size effects and are expected to decrease
(likely only slightly) if larger system sizes are considered.

Like in Fig. 5(a), in Figs. 5(b)–5(d) as well as in Fig. 6,
we consistently find our numerical results to be below the
predictions from Eq. (7). The results for the outliers in
Figs. 5(a)–5(c) further show the range of values over which
the average is carried out. Figure 5(a) shows that, strik-
ingly, the least entangled Hamiltonian eigenstates among the
� = 100 midspectrum eigenstates, the ones with the largest
〈SA〉 − Sα

A , are already at the value for the average predicted
by Eq. (7). This strengthens our expectation that S̄(ν)

A will
be greater than the prediction from Eq. (7) for ν = 0+ [for
an O(1) number of eigenstates] in the thermodynamic limit.
Furthermore, the results in Fig. 6 show that S̄

(ν)
A from Eq. (7)

does not capture the functional dependence of 〈SA〉 − S̄(ν)
A vs

ν observed in the numerical results. Given our Eq. (21), we
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FIG. 5. Finite-size scaling analysis for the XYZ model. The
deviations of the average eigenstate entanglement entropy S̄(ν )

A

(filled symbols), and the outlier eigenstate entanglement entropies
(open symbols), from the exact result for the average over random
pure states 〈SA〉 [Eq. (22)] are plotted vs the inverse subsystem
size LA = L/2. Results are shown for chains with both peri-
odic and open boundary conditions. The insets show the average
eigenstate entanglement entropy in systems with periodic bound-
ary conditions including all quasimomentum sectors, S̄(ν )

A (same
as in the main panels), and only including the k = 0 and π

sectors, S̃(ν )
A (“real” sectors for which we can diagonalize the

largest chains). The averages are carried out over (a) � = 100
(ν = 0+), (b) ν = 1/4, (c) ν = 1/2, and (d) the entire spec-
trum (ν = 1). The horizontal dashed lines show the predictions of
Eq. (7).
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ν

0
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0.4
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〉−

S̄
(ν

)
A
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OBC

Eq.(7)

Eq.(21)

FIG. 6. Average eigenstate entanglement entropy vs ν for the
XYZ model. The differences between the average eigenstate en-
tanglement entropy S̄(ν )

A and the average over random pure states
(thick lines) are plotted as functions of the fraction ν of midspectrum
Hamiltonian eigenstates included in the average. We show results for
a chain with L = 20 with PBCs and for a chain with L = 18 with
OBCs. The thin solid lines overlapping with the numerical results
are the predictions of Eq. (21), with the values of S̄(�)

A and c2 taken
from the curves shown in the insets in Figs. 4(a) and 4(c). The thin
dashed line is the function S̄

(ν )
A from Eq. (7).

expect that S̄(ν)
A will in general depend on the model Hamil-

tonian under consideration through a potentially nonuniversal
O(1) term in S̄(�)

A and the constant c.
In Appendix C, we report scalings similar to the one in

Fig. 5(a) obtained for other Hamiltonian parameters across
and beyond the maximally chaotic regime. They show that the
results in Fig. 5(a) are robust against changes in the Hamilto-
nian parameters and, hence, that our findings and conclusions
are not a consequence of a fine tuning of the parameters for
the specific model under consideration.

B. XXZ model

In order to carry out the finite-size scaling analysis for the
XXZ model, we subtract our numerical results from the exact
result obtained when averaging over random states in finite-
dimensional Hilbert spaces at fixed zero magnetization, or, in
the spinless fermions language, at fixed half filling. Using the
latter (more convenient) language, the Hilbert space H(N ) of
a system with N spinless fermions in L sites is a direct sum
of tensor products of Hilbert spaces in subsystems A (with
LA sites and NA fermions) and B (with LB = L − LA sites and
NB = N − NA fermions),

H(N ) =
min(N,LA )⊕

NA=0

[
H(NA )

A ⊗ H(N−NA )
B

]
, (23)

where the latter equation assumes N � L/2, and we define
n = N/L. The dimension of the total Hilbert space H(N ) is
DN = (L

N

)
, and of the Hilbert spaces H(Ni )

i , with i = A, B, are

Di(Ni ) = dim H(Ni )
i =

(
Li

Ni

)
. (24)

The average entanglement entropy of random pure states in a
system with L sites and N spinless fermions, after tracing out
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FIG. 7. Finite-size scaling analysis for the XXZ model. The
deviations of the average eigenstate entanglement entropy S̄(ν )

A

(filled symbols), and the outlier eigenstate entanglement entropies
(open symbols), from the exact result for random pure states 〈SA〉n

[Eq. (25)] are plotted vs the inverse subsystem size LA = L/2. Re-
sults are shown for chains with both periodic and open boundary
conditions. The insets show the average eigenstate entanglement
entropy in systems with periodic boundary conditions including all
quasimomentum sectors, S̄(ν )

A (same as in the main panels), and only
including the k = 0 and π sectors, S̃(ν )

A (“real” sectors for which we
can diagonalize the largest lattices). The averages are carried out over
(a) � = 100 (ν = 0+), (b) ν = 1/4, (c) ν = 1/2, and (d) the entire
spectrum (ν = 1).
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FIG. 8. Average eigenstate entanglement entropy vs ν for the
XXZ model. The differences between the average eigenstate en-
tanglement entropy S̄(ν )

A and the average over random pure states
(thick lines) are plotted as functions of the fraction ν of midspectrum
Hamiltonian eigenstates included in the average. We show results for
a chain with L = 24 with PBCs and for a chain with L = 20 with
OBCs. The thin solid lines overlapping with the numerical results
are the predictions of Eq. (21), with the values of S̄(�)

A and c2 taken
from the curves shown in the insets in Figs. 4(b) and 4(d).

L − LB sites, takes the form [4,19]

〈SA〉n =
min(N,LA )∑

NA=0

DA(NA)DB(NB)

DN
[〈SA〉 + �(DN + 1)

− �(DA(NA)DB(NB) + 1)], (25)

in which 〈SA〉 is given by Eq. (22). At subsystem fraction
f = LA/L, the leading terms for Eq. (25) are given in Eq. (3).
Our focus in this section is f = 1/2 at half filling n = 1/2
(corresponding to zero magnetization).

The finite-size scalings of the differences 〈SA〉n − S̄(ν)
A are

shown in Fig. 7, for the same number � = 100 of midspec-
trum eigenstates [Fig. 7(a)] and fractions of midspectrum
eigenstates [Figs. 7(b)–7(d)] as those in the respective pan-
els in Fig. 5. The similarity between the finite-size scaling
results in Fig. 7 and in Fig. 5 is striking. They suggest
that for the models considered the deviations of S̄(ν)

A , for
any given value of ν, from the result for the average
over random states is nearly independent of whether the
Hamiltonian exhibits or not U (1) symmetry (particle-number
conservation). We emphasize that this is the case despite
the fact that the O(1) subleading term in 〈SA〉 (from which
the XYZ results are subtracted) and in 〈SA〉n (from which
the XXZ results are subtracted) are different, see Eqs. (3)
and (5).

In Fig. 8, we plot 〈SA〉n − S̄(ν)
A vs ν for a chain with PBCs

(L = 24) and for a chain with OBCs (L = 20). The plots are
qualitatively and quantitatively similar to the ones seen for
the XYZ model in Fig. 6. Also like in Fig. 6, we find that
〈SA〉n − S̄(ν)

A vs ν is in excellent agreement with the prediction
of Eq. (21), with the values of S̄(�)

A and c2 taken from the
curves shown in the insets in Figs. 4(b) and 4(d). We note
that, both in Figs. 6 and 8, the average over up to ∼20% of the
midspectrum eigenstates barely changes the result from that at
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ν = 0+. Those fractions can be used in numerical calculations
to reduce fluctuations in the average over the entanglement
entropy of Hamiltonian eigenstates associated to finite-size
effects, while still producing results that are close to those at
ν = 0+.

In Appendix C, we report scalings similar to the one in
Fig. 7(a) obtained for other Hamiltonian parameters across
and beyond the maximally chaotic regime. They show that the
results in Fig. 7(a) are robust against changes in the Hamilto-
nian parameters and, hence, that our findings and conclusions
are not a consequence of a fine tuning of the parameters for
the specific model under consideration.

V. SUMMARY AND DISCUSSION

We carried out a state-of-the-art computational study of
the O(1) subleading corrections to the leading volume-law
term of the average entanglement entropy of midspectrum
eigenstates in nonintegrable spin-1/2 XYZ and XXZ chains.
We focused on the subsystem fraction f = 1/2, and for the
XXZ chain [which has U (1) symmetry] we focused on the
zero magnetization sector.

For a fixed number � of midspectrum Hamiltonian
eigenstates in the average (� = 100, i.e., the fraction of
Hamiltonian eigenstates ν = 0+), we found indications that
the average eigenstate entanglement entropy differs by a small
O(1) number from the prediction for the average over ran-
dom states in the thermodynamic limit. The magnitude of the
difference was �0.1 both for the XYZ [does not have U (1)
symmetry] and the XXZ [has U (1) symmetry] chains. While
the magnitude of the difference was found to be similar in
the absence or presence of the U (1) symmetry, it is important
to emphasize that the average over random states exhibits
an O(1) term that does depend on whether the average is
carried out over states in which the magnetization is fixed
or not [4].

We also found indications that the fixed-� average en-
tanglement entropy of eigenstates of the XYZ model differs
from Huang’s prediction (the former is greater for the models
and parameters considered here) in the thermodynamic limit.
Huang’s O(1) correction at ν = 0+ is identical to the O(1)
“mean-field” correction derived in Ref. [6] for the average
over random pure states at fixed particle number (fixed mag-
netization in the spin language). In Appendix D, we show that
a finite-size scaling analysis of the difference between the av-
erage entanglement entropy of eigenstates of the XYZ model
and the analytic prediction for the average over random pure
states at fixed zero magnetization also indicates that those two
averages exhibit an O(1) difference. This is understandable as
the energy conservation constraint in quantum-chaotic local
Hamiltonians [25,26] in general does not produce the same
structure in the Hilbert space as that introduced by the U (1)
symmetry. In the presence of latter, quantum states can be
decomposed using direct sums of tensor products, which is
not possible (in general) in the presence of the former. In the
context of SU (2) symmetry, in Ref. [38] it was argued that
“interferences” not accounted for in decompositions involving
direct sums of tensor products can introduce O(1) correc-
tions. This motivates us to conjecture that the O(1) correction
in quantum-chaotic local Hamiltonians is not universal. To

explore the validity of this conjecture, we plan to study
the average entanglement entropy over eigenstates of differ-
ent kinds of random matrices (SYK models being specific
examples).

When considering fixed nonvanishing fractions of mid-
spectrum Hamiltonian eigenstates in the average, ν ∈ (0, 1],
we found that the average eigenstate entanglement entropy
differs by a ν-dependent O(1) correction from the prediction
for the average over random states with increasing system
size. For this case, we provided a simple expression for the
O(1) deviation expected from the maximal result at ν = 0+
as a function of ν. This phenomenological expression was
obtained using the concave functional form of the eigen-
state entanglement entropy, which exhibits a maximum in
the middle of the spectrum of local quantum-chaotic Hamil-
tonians, and the known Gaussian form of the density of
states in such models. Our analytical expression provides an
excellent description of the numerical results for the aver-
age entanglement entropy, after numerically computing one
parameter (S̄(�)

A ) and fitting a second one (c) using the nu-
merical results for the eigenstate entanglement entropy vs the
eigenenergies.

Our numerical results for a nonvanishing ν also indicate
that the average entanglement entropy in eigenstates of the
XYZ model differs from Huang’s prediction (the average over
eigenstates is greater) in the thermodynamic limit. Huang’s
O(1) correction in the ν = 1 limit is identical to the O(1)
term derived in Ref. [4] for the average over random pure
states with fixed particle number (fixed magnetization in
the spin language) when averaging over all particle-number
sectors with a weight that is determined by the number of
states in each sector. An interesting question to be explored
in the future is what the O(1) corrections at ν = 0+ and
nonvanishing ν can tell us about the Hamiltonian. For the
(integrable) XY model in a transverse field, in Refs. [12,14]
is was shown that there is an O(1) correction at the critical
line (h = J) for f > 0, and no O(1) correction otherwise,
so that such a correction can be used to identify the critical
line.

Finally, we should mention that while the focus of this
work was the nature of the O(1) correction at f = 1/2, we
have also studied what happens when f 
= 1/2. We briefly
discuss those results in Appendix E. Our main finding away
from f = 1/2 is that, for a fixed number of midspectrum
Hamiltonian eigenstates in the average (� = 100), the aver-
age eigenstate entanglement entropy also appears to differ by
a small O(1) correction from the prediction for the average
over random states in the thermodynamic limit. The difference
obtained in our numerical calculations is clearly smaller than
the one for f = 1/2, and appears to decrease with decreasing
the value of f . This parallels the behavior of the O(1) mean-
field term in Eq. (4). Determining the functional form of the
O(1) correction in model Hamiltonians as a function of f is
something that deserves a future investigation.
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APPENDIX A: MAXIMALLY CHAOTIC REGIME

In Sec. III, we described how we locate the maximally
chaotic regime and reported results for exemplary sets of
parameters considered. Here we report results for the full set
of parameters that we explored in some detail for the XYZ and
the XXZ models.

The XYZ model studied in this work has a large parameter
space, with six independent parameters (J2, η, 	1, 	2, hz,

and hx) after setting J1 = 1 to be our energy scale [see Eq. (9)].
We select η = 0.5, in the middle between the Ising point
(η = 1) and the XXZ point (η = 0). In our early broader
exploration of the space spanned by the other five parameters,
we noticed that the results do not depend strongly on the
strength of the transverse field hx unless it is made too large,
which results in a departure from quantum chaotic behavior.
Moreover, we found that when 	1 and 	2 are both ∼0.3, there
is a wide range of values of J2 and hz for which the numerical
results for the various quantum chaos indicators considered
here are close to the RMT predictions. This motivated us to
set hx = 0.3, 	1 = 0.3, and 	2 = 0.3.

For XYZ chains with L = 18 and PBCs, in Fig. 9 we
show density plots of the normalized differences between the
numerical results and the RMT predictions for our quantum
chaos indicators in the (J2, hz) plane. Figure 9(a) shows re-
sults for the average gap ratio [supplementing the results in
Fig. 1(a)], Fig. 9(b) shows results for our indicator of how
close to Gaussian the distribution of eigenstate coefficients
is [supplementing the results in the inset in Fig. 2(a)], and
Fig. 9(c) shows results for the average entanglement entropy
[supplementing the results in Fig. 3(a)]. In the latter case, the
average entanglement entropy S̄(�)

A is calculated using � =
100 states in the middle of the spectrum from each symmetry
block.

The results for all the quantum chaos indicators reported in
Fig. 9 consistently show that the largest deviations from the
RMT predictions occur in the regime of small J2 and large
hz. On the other hand, for identifying the maximally chaotic
regime, the results reported in Figs. 9(b) and 9(c) are the
most useful ones. We find the lowest normalized differences
there to occur for J2 ∼ 2.0 and hz < 0.5 (for the values of hz

reported). This motivated us to selected J2 = 2.0 and hz = 0.2
for the scaling analysis of the average entanglement entropy
discussed in Sec. IV.

The XXZ model studied in this work has three inde-
pendent parameters (J2, 	1, and 	2) after setting J1 = 1
to be our energy scale [see Eq. (10)]. We set 	2 = 0.3,
as for the XYZ model, because it results in a wide range
of values of J2 and 	1 for which the numerical results for
the various quantum chaos indicators considered are close
to the RMT predictions. For XXZ chains with L = 20 and
PBCs, in Fig. 10 we show density plots of the normalized
differences between the numerical results and the RMT pre-
dictions for our quantum chaos indicators in the (J2, 	1)
plane. Those results parallel the ones in Fig. 9 for the XYZ

chains, and supplement the results reported in Fig. 1(b), in
the inset in Fig. 2(b), and in Fig. 3(b). For small values of
	1 and intermediate values of J2 ∼ 2, there is less struc-
ture in Figs. 10(b) and 10(c) than for small values of hz

and intermediate values of J2 ∼ 2 in Figs. 9(b) and 9(c).
From the wider range of parameters that give results in
the XXZ chain that are similarly close to the RMT pre-
dictions, we selected J2 = 2.0 and 	1 = 0.2 for the scaling
analysis of the average entanglement entropy discussed in
Sec. IV.

APPENDIX B: DISTRIBUTION OF EIGENSTATE
COEFFICIENTS

In Sec. III B, we reported results for the distributions of
the absolute values of the scaled real and imaginary parts of
the eigenstate coefficients in the computational basis, which
we denoted as z. Those distributions were compared to the
Gaussian distribution in Eq. (12). The latter distribution was
derived assuming that the scaled real and imaginary parts x of
the eigenstate coefficients are Gaussian with variance 1,

P̄X (x) = 1√
2π

e−x2/2. (B1)

To derive PZ (z), we note that z = g(x) = |x|. In general,
if g(x) is an invertible function, then one can calculate the
probability distribution of z using the formula

P̄Z [z = g(x)] = P̄X [g−1(z)]

∣∣∣∣dg−1(z)

dz

∣∣∣∣, (B2)

and, for piecewise invertible functions, given the set for
x = h(z)

hi(z) : ∃x1
i ,x

2
i

h−1
i (x) = g(x) for x ∈ (

x1
i , x2

i

)
,

Eq. (B2) can be generalized as

P̄Z [z = g(x)] =
∑

i

P̄X (hi(z))

∣∣∣∣dhi(z)

dz

∣∣∣∣. (B3)

Hence, the distribution of z is given by

P̄Z (z) = P̄X (z) + P̄X (−z) = 1√
2π

e−z2/2 + 1√
2π

e−(−z)2/2,

(B4)
which yields the result in Eq. (12).

Instead of studying the distributions of the absolute values
z of the scaled real and imaginary parts of the eigenstate coef-
ficients in the computational basis, which allowed us to treat
all the quasimomentum sectors on an equal footing, one can
separately study the distributions of the absolute values z of
the scaled real eigenstate coefficients in the k = 0, π (“real”)
quasimomentum sectors, and separately of the absolute values
z̃ of the scaled complex eigenstate coefficients in all the other
(k 
= 0, π ; “complex”) quasimomentum sectors.

Let us derive the PDF of the absolute value z̃ of the
complex coefficients in the k 
= 0, π sectors. We define z̃ =
|x + iy|, where x is the real part of the coefficients [Re(cα

m)]
and y is the imaginary part of the coefficients [Im(cα

m)]. As
a first step, let us find the PDF of w = z̃2 = x2 + y2. Under
the assumption that both x and y are normally distributed with
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FIG. 9. Normalized differences: (a) |r̄ − r̄GOE|/r̄GOE, (b)
|
ψ − π/2|/(π/2), and (c) |S̄(�)

A − 〈SA〉|/〈SA〉 for the (J2, hz)
parameter space explored in the XYZ model, in chains with L = 18
and PBCs. The differences are computed with respect to (a) the GOE
prediction r̄GOE, (b) the π/2 result for random states, and (c) Page’s
result 〈SA〉 in Eq. (22).

zero mean and variance 1, the PDF of w is the chi-squared
distribution of degree 2,

P̄W (w) = 1
2 e− w

2 . (B5)

Then, using Eq. (B2), we obtain that

P̄Z̃ (z̃) = z̃ e− z̃2

2 . (B6)

Next, let us find the ratio 
ψ defined in Eq. (13) for the
distribution in Eq. (B6). The first moment of z̃ is

〈z̃〉 =
∫ ∞

0
dz̃ z̃ PZ̃ (z̃) =

∫ ∞

0
dz̃ z̃2 e− z̃2

2 =
√

π

2
, (B7)
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FIG. 10. Normalized differences: (a) |r̄ − r̄GOE|/r̄GOE, (b)
|
ψ − π/2|/(π/2), and (c) |S̄(�)

A − 〈SA〉n|/〈SA〉n for the (J2, 	1)
parameter space explored in the XXZ model, in chains with L = 20
and PBCs. The differences are computed with respect to (a) the GOE
prediction r̄GOE, (b) the π/2 result for random states, and (c) the
result 〈SA〉n in Eq. (25).

and the second moment is

〈z̃2〉 =
∫ ∞

0
dz̃ z̃2 z̃ e− z̃2

2 = 2, (B8)

so that the ratio in Eq. (13) is


ψ = 〈z̃2〉
〈z̃〉2

= 4

π
. (B9)

In Figs. 11(a) and 11(c) [Figs. 11(b) and 11(d)], we
show results obtained for the distributions of the scaled (by
the corresponding standard deviation) absolute values of
eigenstate coefficients for the XYZ model in chains with
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FIG. 11. Distribution of the absolute values of eigenstate coeffi-
cients collected from 100 midspectrum eigenstates of each symmetry
block from the [(a) and (b)] k = 0, π (“real”) and [(c) and (d)] all
other (k 
= 0, π ; “complex”) quasimomentum sectors. The results
were obtained taking J2 = 1.0, for [(a) and (c)] the XYZ model
(L = 18) and [(b) and (d)] the XXZ model (L = 20). The dashed
lines show P(z) from Eq. (12) in (a) and (b) and from Eq. (B6)
in (c) and (d). The insets show the ratio 
ψ as a function of hz in
(a) and (c) and of 	1 in (b) and (d). The horizontal dashed lines are
the predictions for random states [see discussion in Sec. III B and
Eq. (B9)].

L = 18 [the XXZ model in chains with L = 20] and PBCs.
The top panels [Figs. 11(a) and 11(b)] show results for the
k = 0, π quasimomentum sectors compared to the PDF
(dashed line) in Eq. (12), while the bottom panels [Figs. 11(c)
and 11(d)] show results for the k 
= 0, π quasimomentum
sectors compared to the PDF (dashed line) in Eq. (B6). Results
for 
ψ are shown in the insets, in which the horizontal lines
mark the prediction for the PDF of Eq. (12) in Figs. 11(a) and
11(b), and the prediction of Eq. (B9) in Figs. 11(c) and 11(d).
These results can be seen as being complementary to the ones
in Fig. 2, where we reported results for the distribution of the
absolute values of the scaled real and imaginary parts of the
eigenstate coefficients from all symmetry blocks (all values
of k) bundled together.

The results in Fig. 11 suggest that the convergence to the
predictions for random states is faster in the k = 0, π sectors,
compare the agreement with the theoretical predictions seen in
Figs. 11(a) and 11(b) vs in Figs. 11(c) and 11(d), even though
for any given value of L the “real” sectors have 1/2 of the
number of states in the other sectors (due to the presence of
reflection symmetry). In the maximally chaotic regime, the
PDFs in the XYZ model are the ones that we find to be closest
to the theoretical predictions. Notice that, for the parameters
shown, the set selected for the scaling in Sec. IV is the one
that gives the closest results to the theoretical predictions.
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FIG. 12. Scaling of |
ψ − π/2|/(π/2) for midspectrum eigen-
states of matrices that belong to the GOE and for random pure
states whose coefficients are sampled from a normal distribution. The
normalized differences are plotted as functions of 1/D, where D is
the dimension of the Hilbert space. Taking D = 2L , the dimensions
shown would correspond to chains with L = 8, 10, 12, 14, and 15.
We compute 
ψ by (i) diagonalizing 100 GOE matrices and taking
100 midspectrum eigenstates from each of them, and (ii) by generat-
ing 104 realizations of the random pure states. The black dotted line
indicates ∼D−1 behavior.

We also note that for the results shown in the insets in
Figs. 2 and 11, even in the maximally chaotic regime of both
models, 
ψ is slightly larger than the theoretical prediction
for random states. In Appendix C, we report the scaling of
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FIG. 13. Scaling of the mean energy Ē in all symmetry blocks
vs 1/L for [(a) and (c)] XYZ and [(b) and (d)] XXZ chains with
[(a) and (b)] periodic and [(c) and (d)] open boundary conditions,
for the same Hamiltonian parameters used in Sec. IV. The empty
red squares show the average energy over the entire Hilbert space Ē ,
and the horizontal dashed lines mark the theoretical prediction for
Ē in the thermodynamic limit: [(a) and (c)] ĒXYZ

∞ = 0 and [(b) and
(d)] ĒXXZ

∞ = − 1
4 (J1	1 + J2	2) = −0.2. In (b) and (d), the dotted

lines show fits of the numerical results for Ē in finite XXZ chains to
the function c1 + c2/L, which returned (b) c1 = −0.199 and c2 =
−0.227, and (d) c1 = −0.201 and c2 = 0.171. In (a) and (b), we
use empty (filled) symbols to report Ē in the k = 0, π (k 
= 0, π )
quasimomentum blocks.
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FIG. 14. Finite-size scaling analysis of the average entanglement
entropy of � = 100 midspectrum eigenstates in XYZ chains with
various sets of parameters. The deviations of the average eigenstate
entanglement entropy S̄(�)

A (filled symbols), and the outlier eigenstate
entanglement entropies (open symbols), from the exact result for
random pure states 〈SA〉 [Eq. (22)] are plotted vs the inverse sub-
system size LA = L/2. The insets show |
ψ − π/2|/(π/2) for the
same parameters as in the main panels vs 1/LA. Results are shown
for chains with both periodic and open boundary conditions. The
horizontal dashed lines show the predictions of Eq. (7). The results
in (b) are the same as in Fig. 5(a).

the normalized difference |
ψ − π/2|/(π/2) for the XYZ
model in chains with both periodic and open boundary condi-
tions. They show that, as expected, the normalized differences
decrease with increasing system size. In Fig. 12, we show
how |
ψ − π/2|/(π/2) depends on the inverse Hilbert space
dimension 1/D for midspectrum eigenstates of matrices that
belong to the GOE and for random pure states whose coef-
ficients are sampled from a normal distribution. In those two
cases, the deviations from the predicted value of π/2 in the
thermodynamic limit are much smaller than for Hamiltonian
eigenstates and decrease as 1/D.

APPENDIX C: SCALING OF THE
ENTANGLEMENT ENTROPY

As mentioned in the main text, when computing the
eigenstate entanglement entropy averages we define the “mid-
spectrum eigenstates” for each symmetry block separately,
i.e., they are the eigenstates whose eigenenergies are closest to

FIG. 15. Finite-size scaling analysis of the average entanglement
entropy of � = 100 midspectrum eigenstates in XXZ chains with
various sets of parameters. The deviations of the average eigenstate
entanglement entropy S̄(�)

A (filled symbols), and the outlier eigen-
state entanglement entropies (open symbols), from the exact result
for random pure states 〈SA〉n [Eq. (25)] are plotted vs the inverse
subsystem size LA = L/2. Results are shown for chains with both
periodic and open boundary conditions. The results in (b) are the
same as in Fig. 7(a).

the mean energy Ē in each symmetry block. This, as opposed
to using the mean energy Ē = Tr(Ĥ )/D in the entire Hilbert
space, is done as a way to reduce finite-size effects in the
smallest chains considered. In the thermodynamic limit, Ē for
the XYZ model is ĒXYZ

∞ = 0, while for the XXZ model, see
Eq. (10), it is ĒXXZ

∞ = − 1
4 (J1	1 + J2	2).

In Fig. 13, we show the scaling of the mean energy Ē in
all symmetry blocks vs 1/L. The plots make apparent that,
with increasing system size, Ē in all symmetry blocks rapidly
collapses onto Ē (plotted as empty red squares), both for the
XYZ [Fig. 13(a)] and the XXZ [Fig. 13(b)] models in chains
with periodic and open boundary conditions. For the XXZ
chains, one can further see that Ē approaches ĒXXZ

∞ polyno-
mially with increasing system size, as expected for canonical
ensemble calculations [39]. Linear fits of the results for Ē
in finite systems return a thermodynamic limit result that is
almost in perfect agreement with the theoretical prediction.
Finally, we note that in Figs. 13(a) and 13(b), the results for Ē
in the k 
= 0, π quasimomentum blocks are much closer to Ē
than those for Ē in the k = 0, π blocks.
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Next, we report results for the scaling of the average en-
tanglement entropy of � = 100 midspectrum eigenstates in
XYZ and XXZ chains with various sets of parameters. They
show that the results reported in Sec. IV are robust against
changes in the Hamiltonian parameters, so long as the param-
eters are not taken to be too far from the maximally chaotic
regime.

In Fig. 14, we plot 〈SA〉 − S̄(�)
A for the XYZ model for six

pairs of values of (J2, hz ). The results in Fig. 14(b) are the
same as in Fig. 5(a). The theoretical results for the random
pure states 〈SA〉 are the ones predicted by Eq. (22). As in
Fig. 5, we include the maximal and minimal outliers, which
bound the eigenstate entanglement entropies that enter the
averages. In Fig. 14, J2 increases from left to right, while
hz increases from top to bottom, and the horizontal dashed
lines mark the result from Eq. (7). The insets show the scaling
of |
ψ − π/2|/(π/2) for the same parameters as in the main
panels vs 1/LA.

All the results in the main panels of Fig. 14 suggest that,
with increasing system size, S̄(�)

A approaches a value that is
slightly smaller than the prediction of Eq. (22). The difference
appears to be smaller than 0.1 in all panels but in Fig. 14(a).
The results for |
ψ − π/2|/(π/2) in the insets depend more
strongly on the parameters chosen, with small hz resulting in
the smallest normalized differences, and are consistent with a
polynomial decrease with 1/LA = 2/L as L increases.

In Fig. 15, we plot 〈SA〉n − S̄(�)
A for the XXZ model for

six pairs of values of (J2, 	1). The results in Fig. 15(b)
are the same as in Fig. 7(a). The theoretical results for the
random pure states 〈SA〉n are the ones predicted by Eq. (25).
As in Fig. 7, we include the maximal and minimal outliers,
which bound the eigenstate entanglement entropies that en-
ter the averages. In Fig. 15, J2 increases from left to right,
while 	1 increases from top to bottom. All the results in
Fig. 15 suggest that, with increasing system size, S̄(�)

A ap-

(a) (b)

FIG. 16. Additional finite-size scaling analysis of the average
entanglement entropy of � = 100 midspectrum eigenstates in XYZ
chains with periodic boundary conditions. The deviations of the
average eigenstate entanglement entropy S̄(�)

A from the exact result
for random pure states at fixed zero magnetization 〈SA〉n [Eq. (25)]
are plotted vs the inverse subsystem size LA = L/2. The main pan-
els show the numerical results for the averages over all symmetry
sectors, while the insets show the average over “real” sectors (k = 0
and π sectors, for which we can diagonalize the largest chains). We
report results for (a) J1 = 1.0 and (b) J2 = 2.0 for different values
of hz.
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FIG. 17. Finite-size scaling analysis of the average entanglement
entropy of � = 100 midspectrum eigenstates in XYZ chains with
J2 = 2.0 and hz = 0.2. The deviations of the average eigenstate en-
tanglement entropy S̄(�)

A (filled symbols), and the outlier eigenstate
entanglement entropies (open symbols), from the exact result for ran-
dom pure states 〈SA〉 [Eq. (22)] are plotted vs the inverse subsystem
size LA = f L. The subsystem fractions are (a) f = 1/4, for which
we only show results for PBCs because of the limited sizes accessible
for OBCs, and (b) f = 1/3, for which we show results for both PBCs
and OBCs.

proaches a value that is slightly smaller than the predictions of
Eq. (22). The difference appears to be smaller than 0.1 in all
panels.

APPENDIX D: XYZ EIGENSTATES VS RANDOM STATES
AT FIXED ZERO MAGNETIZATION

Since Huang’s O(1) correction at ν = 0+ [23] is identical
to that predicted for random pure states at zero magneti-
zation [4,6], in Fig. 16 we provide an additional finite-size
scaling analysis of the average entanglement entropy of � =
100 midspectrum eigenstates in XYZ chains with periodic
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FIG. 18. Finite-size scaling analysis of the average entanglement
entropy of � = 100 midspectrum eigenstates in XXZ chains with
J2 = 2.0 and 	1 = 0.2 at f = 1/4. The deviations of the average
eigenstate entanglement entropy S̄(�)

A (filled symbols), and the outlier
eigenstate entanglement entropies (open symbols), from the exact
result for random pure states 〈SA〉n [Eq. (25)] are plotted vs the
inverse subsystem size LA = L/4. We only show results for PBCs
because of the limited sizes accessible for OBCs.
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boundary conditions when compared to the exact result for
random pure states at fixed zero magnetization 〈SA〉n [see
Eq. (25)]. The differences are clearly smaller than when com-
paring to the exact result for random pure states 〈SA〉 [see
Eq. (22)], but we find no indication that they will vanish in
the thermodynamic limit. For the parameters considered, our
numerical results suggest that S̄(�)

A > 〈SA〉n for L → ∞.

APPENDIX E: SUBSYSTEM FRACTIONS f �= 1/2

All the previous results for the average eigenstate entan-
glement entropy were computed for a subsystem fraction
f = LA/L = 1/2. Here we report results obtained for smaller
subsystem fractions. For the XYZ model, for which there is
no restriction on the value of the magnetization and hence
for which we can study chains with even and odd numbers of
sites, we consider f = 1/3 and f = 1/4. For the XXZ model,
for which we restrict our study to the zero total magnetization
sector and hence only study chains with an even number of
sites, we only consider f = 1/4.

Figure 17 shows results for the XYZ model in the max-
imally chaotic regime when J2 = 2.0 and hz = 0.2 (same
parameters as in Sec. IV A), for f = 1/4 [Fig. 17(a)] and
f = 1/3 [Fig. 17(b)]. We again find indications of an O(1)
difference in the thermodynamic limit, but with a value that
appears to depend on f . Notice that the deviation from the
results for random pure states 〈SA〉 is smaller at f = 1/4
[Fig. 17(a)], than at f = 1/3 [Fig. 17(b)]. In both cases the
differences are much smaller than at f = 1/2. This suggests
that if the difference remains nonzero in the thermodynamic
limit, then the O(1) contribution is likely to decrease with
decreasing f .

Figure 18 shows results for the XXZ model in the max-
imally chaotic regime when J2 = 2.0 and 	1 = 0.2 (same
parameters as in Sec. IV B). Only three system sizes are acces-
sible for PBCs at f = 1/4, but the results are qualitatively and
quantitatively similar to those for the XYZ model at f = 1/4
in Fig. 17(a). Together with the results for the XYZ model
at f = 1/3 in Fig. 17(b), our numerical results suggest that
the O(1) difference, if nonzero in the thermodynamic limit, is
much smaller for f < 1/3 than at f = 1/2.
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