
PHYSICAL REVIEW E 107, 064117 (2023)

Probabilistic model of resistance jumps in memristive devices
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Resistance switching memory cells such as electrochemical metallization cells and valence change mech-
anism cells have the potential to revolutionize information processing and storage. However, the creation of
deterministic resistance switching devices is a challenging problem that is still open. At present, the modeling
of resistance switching cells is dominantly based on deterministic models that fail to capture the cycle-to-
cycle variability intrinsic to these devices. Herewith we introduce a state probability distribution function and
associated integrodifferential equation to describe the switching process consisting of a set of stochastic jumps.
Numerical and analytical solutions of the equation have been found in two model cases. This work expands the
toolbox of models available for resistance switching cells and related devices and enables a rigorous description
of intrinsic physical behavior not available in other models.
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I. INTRODUCTION

Resistance switching memory cells (also known as mem-
ristive devices [1]) are emerging components with memory
that find applications in neuromorphic [2–4], logic [5,6], and
reservoir computing circuits [7], to name a few. Since the early
2010s, significant progress has been achieved in the above-
mentioned and related areas and includes the demonstration of
high-density crossbar arrays [8], diffusive memristors [9], etc.
Moreover, the utilization of natural materials and unconven-
tional fabrication techniques [10] may lead to memory cells
that have a lower carbon footprint compared to silicon-based
electronics.

Traditionally, memristive devices have been described
in terms of deterministic models. The dynamical system
approach introduced by Chua and Kang [1] provides the
mainstream theoretical framework (examples of memristive
models can be found in Refs. [11–13]). However, being rel-
atively simple, deterministic models neglect the stochastic
behavior in particular common to electrochemical metalliza-
tion (ECM) cells [14] and valence change mechanism (VCM)
cells [15]—the most typical memristive devices. As an exam-
ple, Fig. 1 shows the current-voltage curve for Cu/AlOx/W
nonvolatile memory structure [16].

In the present paper, we develop a continuous probabilistic
model to describe the evolution of stochastic memristive de-
vices. The main assumption in the model is that the resistance
switching occurs via random Markovian jumps in the contin-
uous space of internal state variable(s). Previously, we have
pioneered the use of a master equation as a tool for examining
the response of stochastic memristive devices with discrete
states [17], implemented this approach in SPICE [18], and
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developed a theory of circuits combining discrete stochastic
memristive devices with reactive components [19]. Recently,
the master equation was used in the analysis of memristive
Ising circuits [20], which are the electronic circuit realization
of the Ising model. The present paper extends the discrete
master equation approach [17,18,21] to a more realistic case
of continuous internal states [22].

II. MODEL

To take into account the stochasticity, we introduce the
state probability distribution function p(x, t ), where x ∈ [a, b]
is the internal state variable responsible for memory, and
p(x, t )dx is the probability to find the state in the interval
from x to x + dx at the time moment t . The state probability
distribution function is normalized to 1:∫ b

a
p(x, t )dx = 1. (1)

The first equation in the model is a statistically averaged
Ohm’s law

〈I〉 =
〈

V

R(x,V )

〉
≡ R

−1
(V )V, (2)

where 〈I〉 is the mean current, V is the voltage across the
device, R(x,V ) is the state- and voltage-depend resistance,
and R(V ) = (

∫ b
a R−1(x,V )p(x, t )dx)−1 is the harmonic mean

resistance. We emphasize that R(V ) �= 〈R(x,V )〉.
The evolution of p(x, t ) is represented by an integrodiffer-

ential equation

∂ p(x, t )

∂t
=

∫ b

a
γ (x′, x,V (x′))p(x′, t )dx′

− p(x, t )
∫ b

a
γ (x, x′,V (x))dx′, (3)
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FIG. 1. Experimental current-voltage curves of Cu/AlOx/W
nonvolatile memory structure (for details, see Ref. [16]). Reprinted
from Ref. [16].

which is the second equation in the model. Here γ (y, z,V (y))
is the voltage-dependent transition rate density from internal
state y to z, and V (y) is the voltage across the device in state
y. The first term in the right-hand side of (3) describes the
transitions to x from all other states, while the second one
describes the reverse transitions.

The extension of Eqs. (2) and (3) to several internal state
variables is discussed in Supplemental Material [22].

To illustrate the above model, we consider two special
cases of Eqs. (2) and (3). In both cases, we will use the
resistance R ∈ [Ron, Roff ] as the internal state variable, x ≡ R,
and the resistance probability distribution function, r(R, t ), as
the state probability distribution function. Here Ron and Roff

denote the ON and OFF state resistance, respectively.

III. UNIFORM DISTRIBUTION OF JUMPS

In the first model, we assume a uniform continuous distri-
bution of jumps in the direction defined by the applied voltage.
The transition rate density in Eq. (3) is selected as

γ (R′, R,V ) =

⎧⎪⎪⎨
⎪⎪⎩

α10e
|V |
V10 , V > 0, R′ < R

α01e
|V |
V01 , V < 0, R′ > R

0, otherwise

, (4)

where α10, V10, and α01, V01 are the coefficients defining the
transition rates in the direction from the ON to OFF (10)
and OFF to ON (01) resistance states, respectively. In Eq. (4)
and Eq. (9), the exponential dependence of the switching rate
on the voltage was introduced phenomenologically inspired
by the experimental observations published in Refs. [23–25].
In particular, the studies of Ag/a-Si/p-Si pillar ECM de-
vices [23] subjected to constant voltage have revealed that
the occupation probability of the initial state decays expo-
nentially with the decay time depending exponentially on
the voltage, τ (V ) = τ0exp(−V/V0). The same exponential de-
pendence was observed in the cross-bar ECM devices based
on the same material combination [24] as well as in ZrOx-
based VCM devices [25]. While in the above-mentioned ECM

devices [23,24] the characteristic times were in milliseconds,
in VCM devices [25] the times were in microseconds. As
Eqs. (4) and (9) are written for the rates, there is no mi-
nus sign in front of the voltage. Below, we use the notation
γ10 = α10exp(|V |/V10) corresponding to the top line in the
right-hand side of Eq. (4).

Figure 2 shows results of numerical simulations for the
above model in the case of sinusoidal driving. We note that
the frequency behavior of current-voltage curves in Fig. 2(a)
is typical to memristive devices. Within each period, the max-
imum of the resistance distribution function r(R, t ) drifts from
RON to ROFF and back. Note that Fig. 2(c) shows the evolution
in the first half-period of periodic driving. Figures 2(d)– 2(f)
demonstrate that the resistance distribution function becomes
more localized at higher frequencies. Overall, all these results
are not unexpected.

Next, we simulate the response to step voltage (Fig. 3).
According to Fig. 3(a), the step voltage switches the resistance
from Ron to Roff in a relatively short time interval. A notable
feature is the exponential decay in the resistance probability
distribution function as seen in the bottom panel in Fig. 3(b).

The analytical solution of Eq. (3) with γ given by Eq. (4)
and V = const can be found using the method of Laplace
transform. One can show (see Supplemental Material [22])
that the general solution for V > 0 can be written as

r(R, t ) = γ10te−γ10(Roff −R)t
∫ R

Ron

r(R′, 0)dR′

+ r(R, 0)e−γ10(Roff −R)t , (5)

where r(R, 0) is the initial resistance probability distribution
function.

The simple form of the general solution (5) allows the
detailed analysis of the evolution for any initial resistance
probability distribution function r(R, 0). Consider, for in-
stance, r(R, 0) = δ(R − Ron) (the detailed analysis of this case
is given in Supplemental Material [22]). One can easily see
that the probability distribution function decreases purely ex-
ponentially at the left edge of the distribution (at R = Ron)
with the highest possible rate γ10(Roff − Ron):

r(Ron, t ) = r(Ron, 0)e−γ10 (Roff −Ron )t . (6)

At the right edge of the resistance interval, the resistance
probability distribution finction growths linearly from t = 0:

r(Roff , t ) = r(Roff , 0) + γ10t . (7)

This result corresponds to the fact that at the positive volt-
age, the resistance can only increase (or stay constant), see
Eq. (4). This leads to the accumulation of the probability
density at R = Roff . It also follows directly from Eq. (5) that
inside of the interval [Ron, Roff ], r(R, t ) increases first and then
decreases. The decrease is exponential with R-dependent rate
γ10(Roff − R). Moreover, the linear growth of probability (7)
at Roff implies that the characteristic width of the distribution
peak decreases as (γ10t )−1 asymptotically in time.

Equation (5) allows finding various quantities on average
such as the mean resistance

〈R〉(t ) = Roff − 1 − e−γ10(Roff −Ron )t

γ10t
(8)

and its variance (see Supplemental Material [22]).
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FIG. 2. First model simulations. Response to a sinusoidal voltage V = V0 sin(2π f t ): (a) mean current-voltage curves, (b) 〈R〉(t ) versus
voltage, (c) resistance distribution function at selected times ( f = 1 kHz), and [(d)–(f)] color plots of r(R, t ) at f = 1, 2, 5 kHz, respectively.
This figure was obtained using the following parameter values: Ron = 1 k�, Roff = 50 k�, α10 = α01 = 0.1 (s · �)−1, and V10 = V01 = V0 =
1 V.

IV. EXPONENTIAL DISTRIBUTION OF JUMPS

In the second model we use R-dependent transition
rates to describe the situation when the shorter jumps are
more frequent than longer. The transition rate density is

selected as

γ (R, R′,V ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α10e
|V |
V10

− |R−R′ |
R0 , V > 0, R < R′

α01e
|V |
V01

− |R−R′ |
R0 , V < 0, R > R′

0, otherwise

, (9)
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FIG. 3. First model simulations. Response to a steplike voltage: (a) Voltage, mean current, and mean resistance as functions of time and
(b) color plot (log scale) of r(R, t ) (top) and r(R, t ) at selected times (bottom). This figure was obtained using the same parameter values as in
Fig. 2 and r(R, 0) = δ(R − Ron ).
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FIG. 4. Second model simulations. Response to a steplike voltage: (a) Voltage, mean current, and mean resistance as functions of time and
(b) color plot (log scale) of r(R, t ) (top) and r(R, t ) at selected times (bottom). This figure was obtained using the following parameter values:
Ron = 1 k�, Roff = 50 k�, α10 = α01 = 10 (s · �)−1, V10 = V01 = 1 V, R0 = 1 k�, and r(R, 0) = δ(R − Ron ).

where R0 defines the average size of the jump. In fact, the first
model can be considered as the limiting case of the second
model in the limit of R0 → ∞. We note that the parameters in
Eqs. (4) and (9) can be in principle derived using molecular
dynamics simulations of the resistance switching process.

Figure 4 shows the response of the second model to step
voltage. We highlight a couple of interesting features of this
result. First, unlike Fig. 3(a), in Fig. 4(a) there is a significant
interval of the linear growth of resistance (from 0 to 1.5
ms). Second, the resistance probability distribution function is
more localized: In the bottom panel of Fig. 4(b) there is a clear
peak that shifts from left to right as the resistance switches
from Ron to Roff .

Compared to the first model, the analytic analysis of the
second one is more involved. Its general solution is complex
[we give it in Supplemental Material [22], see Eq. (S.17)
supplemented by Eq. (S.18)]. This exact analytical solution
allows the efficient numerical calculation of the resistance
probability distribution function r(R, t ) at any moment of time
for the whole range of parameters, in particular for small
values of R0. Moreover, it allows the derivation of simple
asymptotic formulas for interesting limiting cases.

In particular, the solution for r(R, 0) = δ(R − Ron) [given
by Eq. (S.22) in Supplemental Material [22]] allows us to
calculate directly the mean resistance and its variance at short
times,

〈R〉 = Ron + R2
0γ10t, (10)

and

〈(R − 〈R〉)2〉 = 2R3
0γ10t . (11)

In fact, Eqs. (10) and (11) are exact in the limit of Roff → ∞
in Eq. (S.22). Note that Eq. (10) explains the linear increase
of 〈R〉 in Fig. 4(a).

Additionally, if γ10t (R − Ron) = γ10R0tξ 
 1, then the so-
lution (S.22) can be simplified to

r(R, t ) = (γ10R0t )1/4

2
√

πξ 3/4R0
e−(

√
ξ−√

γ10R0t )2
, (12)

where, for shortness, we have introduced ξ = (R − Ron)/R0.
From Eq. (12) we see that far from both boundaries,

Ron and Roff , the resistance probability distribution function
r(R, t ) tends asymptotically to the bell-shaped distribution
[Eq. (12)] at t 
 1/(γ10R0ξ ). The location of the maxi-
mum, ξmax = ξmax(t ), can be easily calculated from Eq. (12).
At long times, γ10R0t 
 1, we find that ξmax(t ) = γ10R0t −
3/2 + O(1/t ). It means that in this regime the distribution
maximum, ξmax, propagates at constant velocity γ10R2

0 in
the R space. The magnitude of the distribution maximum
r(ξmax(t ), t ) = 1/(2R0

√
πγ10R0t )[1 + O(1/t )] decreases as

the inverse square root of time. This also means that the
characteristic width of the probability distribution increases
as the square root of time (to satisfy the normalization
condition). Another way to see it is to expand up to
quadratic terms with respect to (ξ − ξmax) the logarithm of
Eq. (12). This way we get the following approximated ex-
pression for the probability distribution function (12), which
is valid in the vicinity of the maximum point ξmax(t ) when
γ10R0t 
 1:

r(R, t ) = 1

2R0
√

πγ10R0t
e− (ξ−γ10R0t+3/2)2

4γ10R0t . (13)

Equation (13) is the Gaussian distribution with the maximum
at ξmax ≈ γ10R0t − 3/2 and standard deviation

√
2γ10R0t .

Thus we see that the evolution of the initial delta function
distribution r(R, t ) = δ(R − Ron) involves three stages (when
|Roff − Ron| 
 R0). At the first stage, 0 < t � (γ10R0)−1, the
“running wave”, which is described by the second term
in Eq. (S.22), is formed near Ron. At the second stage,
(γ10R0)−1 � t � (Roff − Ron)/(γ10R2

0), as the first term in
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Eq. (S.22) becomes exponentially small, the second term,
which can be approximated by Eq. (12), describes the
propagation of the “wave” at constant velocity γ10R2

0 and
its broadening as 2R0

√
πγ10R0t in R space. At the be-

ginning of the last third stage of evolution, t � (Roff −
Ron)/(γ10R2

0), the “wave” reaches Roff . At this moment of
time, the probability distribution has a characteristic width
of 2

√
πR0(Roff − Ron), which is much larger than R0 [by

a factor of ∼2
√

π (Roff − Ron)/R0 
 1], and, at the same
time, much smaller than (Roff − Ron). Therefore, the proba-
bility distribution stays localized the whole evolution time.
Eventually, the magnitude of the probability distribution at
Roff starts to grow linearly in time, r(Roff , t ) ∼ γ10t , as
it follows from the asymptotic behavior of Laplace trans-
form r̃(Roff , p) ∼ γ10/p2 when p → 0. At the same time,

the probability distribution approaches the delta function
δ(R − Roff ).

V. CONCLUSION

In conclusion, we have developed a fundamentally differ-
ent probabilistic model of memristive devices that takes into
account the cycle-to-cycle variability in their response. Our
model differs conceptually from the conventional memristive
models [26] (even though they may use the transition rates
[27]) in its statistical approach to the description of resistance
switching phenomenon. Overall, this work provides a new
tool for the analysis of stochastic memristive devices and their
circuits, and may find applications in other cases, such as the
random memristive networks [28], albeit in a modified form.
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