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Temperature anomalies of oscillating diffusion in ac-driven periodic systems
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We analyze the impact of temperature on the diffusion coefficient of an inertial Brownian particle moving in
a symmetric periodic potential and driven by a symmetric time-periodic force. Recent studies have revealed the
low-friction regime in which the diffusion coefficient shows giant damped quasiperiodic oscillations as a function
of the amplitude of the time-periodic force [I. G. Marchenko et al., Chaos 32, 113106 (2022)]. We find out that
when temperature grows the diffusion coefficient increases at its minima; however, it decreases at the maxima
within a finite temperature window. This curious behavior is explained in terms of the deterministic dynamics
perturbed by thermal fluctuations and mean residence time of the particle in the locked and running trajectories.
We demonstrate that temperature dependence of the diffusion coefficient can be accurately reconstructed from
the stationary probability to occupy the running trajectories.
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I. INTRODUCTION

For the past several decades methods of diffusion processes
have been applied in the analysis of a very large number of
phenomena not only in physics, chemistry, biology, material
science, and engineering but also in finance markets, commu-
nication, innovations [1], and social systems [2]. One of the
most fundamental examples of diffusion is Brownian motion,
which is a universal phenomenon emerging in both classical
and quantum worlds. For diffusion in classical systems and, in
particular, for Brownian motion, it is commonly expected that
an increase of temperature T causes a growth of the diffusion
coefficient D [3]. This deeply held view is mainly based on
the celebrated Einstein relation for which D is a linearly
increasing function of T [4]. It is also intuitive because for
higher temperature thermal fluctuations are stronger and cause
a larger spread of particle trajectories, which in consequence
leads to an increase of D.

However, there are systems which can exhibit the op-
posite effect; i.e., the diffusion coefficient decreases when
temperature increases [5–13]. The necessary condition for
such behavior is known: the system has to be in a nonequilib-
rium state. Sufficient conditions are not formulated in general.
One of the simpler systems which demonstrate such an ef-
fect is a Brownian particle moving in a spatially periodic
potential under the influence of an external force. Here we
consider the case when the Brownian particle is subjected
to a time-periodic force which drives it to a time-dependent
nonequilibrium state and in the long time limit it approaches
a unique asymptotic state characterized by a temporally peri-
odic probability density [14]. The diffusion coefficient, which
describes the spread of trajectories and fluctuations around the
average position of the particle, depends on the parameters
of the model, usually in a nonlinear way and sometimes in a

nonmonotonic way. An example is the abovementioned de-
crease of D when temperature T increases.

Lately, another interesting nonmonotonic behavior of D
has been found out, namely, the giant quasiperiodic changes
of the diffusion coefficient when the amplitude of the time-
periodic force increases [15]. In such a case one can detect
local maxima of D separated by its local minima [16–18].
At the maxima, D is much larger than the diffusion coeffi-
cient D0 for the force-free thermal diffusion of the Brownian
particle. At the minima, it is much smaller than D0. Here,
we address the problem of the influence of temperature on
this phenomenon, in particular, when the diffusion coefficient
attains its extremal values.

The paper is structured as follows. The presentation starts
in Sec. II, where we define the system in terms of the
dimensionless Langevin equation of the Brownian particle
moving in the spatially periodic potential driven by an unbi-
ased time-periodic force. In Sec. III, we discuss the impact of
temperature on the oscillating character of the diffusion co-
efficient D and report regimes where the normal temperature
dependence and the abnormal temperature dependence of D
take place. Section IV contains the main points of analysis of
the deterministic counterpart of the model which are crucial
for noisy dynamics. The most important deterministic prop-
erty is the existence of two classes of the particle trajectories,
namely, the running and localized ones. In Sec. V, we study
the full noisy dynamics with emphasis on behavior of the
diffusion coefficient. We consider regimes where its attains
its extremal values. The impact of temperature on the diffu-
sion coefficient is analyzed by applying several quantifiers
like spread of trajectories, mean residence times in different
states, etc. Section VI contains a summary of the findings.
In Appendix A, we detail the scaling scheme for Brown-
ian dynamics and the corresponding dimensionless Langevin
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equation. Appendix B provides information about simulations
of the Langevin equation.

II. DESCRIPTION OF THE MODEL

We consider the same model as in Ref. [15], which is
formulated in terms of the following dimensionless Langevin
equation:

ẍ + γ ẋ = − sin x + a sin(ωt ) +
√

2γ Q ξ (t ). (1)

In this scaling the dimensionless mass m = 1, the parameter
γ is the friction coefficient, and Q ∝ kBT is the dimension-
less temperature of the system. The coupling of the particle
with the thermostat is modeled by the δ-correlated Gaussian
white noise ξ (t ) of vanishing mean, namely, 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (s)〉 = δ(t − s). The starting dimensional equation is
presented in Appendix A, where the corresponding scaling
and dimensionless parameters are defined. The complexity
of the underlying dynamics with the nonlinear force f (x) =
− sin x, the time-periodic force of the amplitude a and the
frequency ω, and thermal fluctuations of the intensity 2γ Q
does not allow for a reasonable analytical approach, which
presently is clearly beyond known mathematical methods.
Therefore, numerical simulations were employed and their
methodology is described in Appendix B.

The Langevin equation (8) and its quantum counterpart
have been used for research in a wide range of mesoscale
nonequilibrium phenomena. Equation (8) describes driven
transport in diverse physical systems including Josephson
junctions [19], superionic conductors [20], and cold atoms in
optical lattices [21], to mention only a few. Numerous diffu-
sive processes modeled by Eq. (8) have been studied by many
authors [8–10,13,22–25] and still new findings are emerging
in this area.

In Eq. (8), the potential V (x) = − cos(x) corresponding to
the conservative force f (x) is symmetric and the time-periodic
force g(t ) = a sin (ωt ) is symmetric. Therefore, in the long
time limit the directed velocity 〈v〉 must vanish for both zero
and nonzero temperature regimes [26],

〈v〉 = 0. (2)

Here and below 〈·〉 stands for the average over the ensemble
of thermal noise realizations. Since the system is driven by the
time-periodic force, the velocity 〈v〉 can be calculated as

〈v〉 = lim
t→∞〈v(t )〉, (3)

where

v(t ) = 1

T

∫ t+T

t
dsẋ(s) (4)

is the particle velocity averaged over the period T = 2π/ω of
the external driving a sin (ωt ) [14]. Alternatively, the directed
transport velocity 〈v〉 can be calculated by resourcing to a
time-averaged velocity,

v = lim
t→∞

1

t

∫ t

0
dsẋ(s), (5)

which implies that

〈v〉 = 〈v〉. (6)
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FIG. 1. The rescaled diffusion coefficient D/D0, where D0 =
Q/γ is the force-free thermal diffusion coefficient, as a function of
the amplitude a of the ac driving for the fixed value of its frequency
ω = 1.59. Other parameters are as follows: friction γ = 0.03 and
temperature Q = 0.5.

In the deterministic case, when Q = 0, the dynamics may
be nonergodic and therefore sensitive to the specific choice
of the starting position x(0) and velocity v(0) of the par-
ticle. In such a case we should modify the driving to the
form a sin (ωt + φ0), where φ0 is the initial phase. Conse-
quently, all quantities of interest should be averaged over
{x(0), v(0), φ0} with uniform distributions to get rid of this
dependence. However, for any nonzero temperature Q > 0 the
system is ergodic and the initial conditions do not affect its
properties in the long-time stationary regime.

III. DIFFUSION ANOMALIES

The dynamical system described by the deterministic coun-
terpart of Eq. (8) exhibits an extremely rich behavior as a
function of the four dimensionless parameters {γ , a, ω, Q}.
There are both regular and chaotic regimes, locked trajectories
in which the motion is confined to a finite number of spatial
periods and running states when it is is unbounded in space.
A broad spectrum of locked and running states can be desta-
bilized when random transitions between them are activated
by thermal fluctuations at nonzero temperature. It potentially
leads to a number of interesting phenomena [27–30]. How-
ever, our goal is not to analyze all aspects of the system
dynamics, but we want to focus on diffusion properties in
the selected parameter regime in which the diffusion process
is normal in the long time limit and is characterized by the
diffusion coefficient [31]

D = lim
t→∞

1

2t
〈[x(t ) − 〈x(t )〉]2〉. (7)

In Ref. [15] it was shown that for a tailored parameter regime
the diffusion coefficient D displays the damped quasiperiodic
dependence on the amplitude a of the time-periodic force
g(t ) = a sin (ωt ). An example of such behavior is depicted
in Fig. 1. The parameter regime in Fig. 1 is different than
that in Ref. [15]; however, it displays the same qualitative
features. We observe that indeed D exhibits damped quasiperi-
odic oscillations as the amplitude a increases. Moreover, there
are local maximal values of D which are much larger than
the Einstein diffusion coefficient D0 = Q/γ . For example,
if the driving amplitude is a = 14 and the dimensionless
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FIG. 2. The influence of temperature Q on the diffusion coef-
ficient. Parameters are the same as those in Fig. 1. The first two
maxima are for a = 6.3 and 14 and the first two minima are for
a = 9.81 and 17.85.

temperature is Q = 0.1, the diffusion coefficient is D ≈
1000D0 (see Fig. 2). On the other hand, at the local minima, D
is smaller than the Einstein diffusion coefficient. For example,
if the driving amplitude is a ≈ 9.81 and the temperature reads
Q = 0.1, the diffusion coefficient is D ≈ 0.01D0.

In this paper, we want to analyze the impact of tempera-
ture on the characteristics presented in Fig. 1. Typically, for
higher temperature Q the diffusion coefficient D is expected
to increase. However, we now know examples of systems for
which the increase of temperature can reduce D [8–10,13]. In
Fig. 2(a) we show how the quasiperiodicity of D is deformed
at four different values of temperature Q. One can notice three
characteristic features: (i) there are intervals of the amplitude
in the neighborhood of the local minima in which the diffusion
coefficient D increases when Q grows (as expected); (ii) there
are windows of a near the maxima in which D decreases when
Q increases (which is abnormal); and (iii) there are values of
a at which D is robust with respect to a change of Q; i.e.,
D is very slowly varying function of Q. In other words, one
can observe that when temperature is changed the diffusion
coefficient is alternately reduced and boosted in adjacent in-
tervals of the driving amplitude. In Fig. 2(b) we display the
diffusion coefficient for a larger window of temperature which
includes the high-temperature limit when for any a the dif-
fusion coefficient increases. However, the most interesting is
the case of abnormal dependence of D on temperature. In the
first maximum observed for a ≈ 6.3, the abnormal diffusion
emerges up to high temperatures Q = 4, i.e., to kBT = 4�U
[see Eq. (A7) in Appendix A]. The deterministic counterpart
of the studied dynamics is a precursor of the above intriguing

properties and, therefore, as the first step of our investigation
we analyze the noiseless case.

IV. NOISELESS DYNAMICS, Q = 0

The noiseless system corresponding to Eq. (8) generally
can exhibit both chaotic and nonchaotic behavior [32]. For
the parameter regimes corresponding to the maxima and min-
ima of the diffusion coefficient D, both the running and the
localized states are detected. The particle can oscillate in the
periodic potential wells and then proceed either forward or
backward within one or many temporal periods, or it can per-
manently move in one direction, all depending on the initial
conditions. Roughly speaking, at the maxima the populations
of both states are similar; however, at the minima the localized
states are predominated over the running solutions. In Fig. 3
the probability distribution of the system states is shown for
two values of the driving amplitude: a = 6.3 (the first pro-
truding maximum of D) and a = 9.81 (the first protruding
minimum of D). Because both the potential and the driving
force are symmetric, the averaged velocity of the Brownian
particle has to be zero, 〈v〉 = 0, and consequently the distri-
butions are symmetric.

At the first maximum a = 6.3, there are five states v ∈
{v0 = 0, ±v1 = ±ω, ±v3 = ±3ω}, i.e., the localized state
v0 (the particle oscillates in one or several potential wells and
the motion is bounded in the coordinate space), two domi-
nant running solutions with the velocities ±v1, and the two
remaining running states ±v3. One should pay attention to the
fact that the vertical axis in Fig. 3 is in the logarithmic scale
and the population of the states with ±v1 is much greater than
the population of the states with ±v3. At the first minimum
a = 9.81, there are nine relevant states v ∈ {v0 = 0, ±v1 =
±ω, ±v2 = ±2ω, ±v3 = ±3ω, ±v4 = ±4ω}, one domi-
nant locked state v0, and four running states with the positive
velocities as well as the same number of states transporting the
particle in the negative direction. The structures of solutions
are similar in the remaining maxima and minima presented in
Fig. 2.

V. NOISY DYNAMICS, Q > 0

Thermal fluctuations existing at nonzero temperature make
the noisy dynamics ergodic. Consequently, the initial condi-
tions do not affect the results in the long time limit while
their impact can still be relevant for transient regimes. The
latter can last extremely long especially when the thermal
noise strength Q tends to zero. However, it is not the case for
high-temperature Q ∈ [0.1, 1] presented in Fig. 2, where the
asymptotic state is reached swiftly.

Although the asymptotic state is nonequilibrium and non-
stationary, in some regimes it can effectively be described in
the framework of equilibrium statistical mechanics, at least for
some observables. For example, in Ref. [17] the vibrational
mechanics scheme is applied and Eq. (1) is approximated by
the Langevin equation of the type

ẍ + γ ẋ = f (x) +
√

2γ Q ξ (t ), (8)

where f (x) is some effective time-independent force. A
similar approach is also presented in Ref. [33]. Both
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FIG. 3. Upper row: The probability distribution P(v) for the period-averaged velocity v of the Brownian particle in the long time regime is
depicted for the first maximum (a = 6.3) and minimum (a = 9.81) of the diffusion coefficient D, cf. Fig. 2, in panels (a) and (b), respectively.
Bottom row: The probability distribution P(v) for the time-averaged velocity v is presented for a = 6.3 [panel (c)] and a = 9.81 [panel (d)].
Other parameters are the same as those in Fig. 2.

approximations do not explain the temperature dependence of
the diffusion coefficient displayed in Fig. 2. Another approach
is based on the concept of effective temperature T ∗, which is
a function of the physical temperature Q [8,34]. Then D ∼ T ∗
and looks like the Einstein relation. We have performed an
analysis and noticed that for very low temperature Q < 0.05
the agreement is quite satisfactory. However, for the temper-
ature regime Q ∈ [0.1, 10] considered in the paper we have
observed a large deviation from this form. Therefore, we have
decided to apply numerical methods.

Let us consider diffusive spreading of the system trajecto-
ries. The particle starting from a given initial condition moves
along the orbit according to dynamics determined by Eq. (1)
and after some time it occasionally jumps onto a different
solution. These random transitions are induced by thermal
fluctuations and are realized as stochastic escape events con-
necting the coexisting attractors. In fact, the particle does not
jump onto another trajectory but rather changes it in a contin-
uous way. For example, the particle can follow the running
trajectory, next for some interval it resides in the localized
state, and later it again travels along the running trajectory
either in the same direction or in the opposite direction. In
this way, for a given trajectory various deterministic solutions
are visited in a random sequence. We exemplify different
scenarios of such behavior in Fig. 4. As a consequence the
deterministic structure of locked and running states impacts
the spread of trajectories.

We note that there are several types of contributions to
the spread of trajectories and as a result to the diffusion
coefficient. The first, which is the largest one, comes from
the distance between the running solutions moving into the

opposite directions, e.g., x(t ) ∼ v1t and x(t ) ∼ −v1t , that
emerge in pairs due to the symmetry of the system. The
second, also relatively large, is the spread between the running
and the localized trajectories, e.g., x(t ) ∼ ±v1t and x(t ) ∼ xk

around the kth well of the periodic potential. We note that, as

FIG. 4. Exemplary set of the system trajectories at temperature
Q = 0.1 [panels (a) and (b)] and Q = 1 [panels (c) and (d)]. Panels
(a) and (c) correspond to the first maximum (a = 6.3) of the diffusion
coefficient, whereas panels (b) and (d) present the first minimum
(a = 9.81). Note the difference in the scale of the ordinate axis. Other
parameters are the same as those in Fig. 2.
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we presented above, for a given parameter regime generally
there are more than one running solution. Last but not least,
there are contributions driven by thermal fluctuation in each
of the running and locked states. Clearly, even at high temper-
ature the latter are significantly smaller than the two previous
ones. Therefore, it is intuitively expected that the diffusion
coefficient D will change considerably especially when the
population of running and locked states is significantly mod-
ified. In the high-temperature limit, this subtle deterministic
structure is blurred and looks like random motion of a free
Brownian particle.

A. Diffusion at maximum

We continue our analysis by investigating the temperature
dependence of diffusion at the first maximum a = 6.3. In
the deterministic case, when Q = 0, the system exhibits both
the locked and the running states v ∈ {v0 = 0,±v1,±v3}
[see Fig. 3(c)]. There are two dominant running solutions
{v1,−v1}. The population of the locked states v0 is also
large. There are also two running solutions {v3,−v3} that are
much less probable. When temperature increases in the noisy
system some states are eliminated in favor of the others (not
depicted). For example, for temperature T = 0.01, the system
trajectories follow only v = ±v1 and the locked solution is
completely wiped out.

In Fig. 4(a), for temperature Q = 0.1, one can observe
the jagged piecewise locked and running trajectories. The
majority of the transporting parts have the slope ±v1 and
at first glance it is difficult to extract time intervals corre-
sponding to the remaining solution ±v3. It is related to the
mean residence time τres in these states. We calculated this
quantity from trajectories of the period-averaged velocity v(t )
simply by counting how many periods the particle stays in
a given state until it jumps onto the other one. We observe
the difference between the probability distributions P(v) and
P(v) for the period-averaged and time-averaged velocities,
respectively [see Fig. 3(a) vs Fig. 3(c)]. In the latter, for
nonzero temperature Q �= 0 it is difficult to distinguish indi-
vidual running states, while for the period-averaged velocity
even for the noisy system one can clearly observe traces of the
deterministic structure of solutions v ∈ {v0 = 0,±v1 = ±ω}.
Moreover, it turns out that thermal fluctuations induce a new
running state ±v2 = ±2ω which is not present for the deter-
ministic system.

In Fig. 5(a) we present the temperature dependence
of the mean residence time τres for the noisy states v ∈
{v0 = 0,±v1 = ±ω,±v2 = ±2ω} determined by the period-
averaged velocity v. For temperature Q = 0.1, the corre-
sponding mean residence times are τ0 = 16.53, τ±1 = 16.07,
and τ±2 = 5.43. Therefore, the marginal states v±2 are rarely
occupied. The main contribution for the swift spreading of
trajectories and consequently to the large diffusion coefficient
comes from the long residence time τ±1 corresponding to
solutions that transport the particle in the opposite directions.
If the temperature decreases, the mean residence time τ±1

rapidly grows and dominates the other states. On the other
hand, when the temperature is high enough the difference
between the average time which the particle spends in each
of the states is marginalized. For example, for temperature

FIG. 5. Temperature dependence of the mean residence time τres

for different states is presented for the first maximum [panel (a), a =
6.3] and minimum [panel (b), a = 9.81] of the diffusion coefficient.
Other parameters are the same as those in Fig. 2.

Q = 1, the residence times are τ0 = 5.45, τ±1 = 6.4, and
τ±2 = 4.9. As it is shown in Fig. 2(b) for the first maximum
a = 6.3 the diffusion coefficient D for the higher temperature
Q = 1 is almost twice as small as for the lower temperature
Q = 0.1. The main reason for this behavior is the mentioned
rapid growth of the mean residence time τ±1 in the state
v1 = ±ω as the temperature drops down. Conversely, if the
thermal noise intensity increases, the populations of running
states with long residence times are significantly reduced. It
means that there are many transporting orbits which are short-
lived and therefore cannot generate such a large spread as for
lower thermal fluctuation intensity. In the high-temperature
limit the periodic potential as well as the external driving can
be neglected and this regime imitates a free Brownian particle.

B. Diffusion at minimum

As the next point of our analysis we consider diffusion
for the driving amplitude a = 9.81 corresponding to the first
local minimum (see Fig. 2). The set of deterministic solutions
encompasses nine states v ∈ {v0 = 0,±v1,±v2,±v3,±v4}
in which the locked one v0 = 0 is dominant [cf. Fig. 3(b)]. It
is important to note that as the temperature grows the running
states are completely destroyed and only v0 = 0 survives. It
must be contrasted with the case of diffusion at the maximum
for a = 6.3 where temperature induces new states that are
missing in the deterministic dynamics. In Fig. 5(b) we present
the mean residence time τres for the selected noisy states de-
termined by the period-averaged velocity v. For example, for
temperature Q = 0.1, the corresponding mean residence time
reads τ0 = 509.81 and τ±1 = 4.4. Consequently the locked
state is much more stable against thermal fluctuations than
the running solutions. It implies a highly counterintuitive
behavior in which the diffusion coefficient is much smaller
than the Einstein free diffusion coefficient D = 0.01D0 � D0

(see Fig. 2) despite the fact that the temperature is high,
Q = 0.1, and the particle is driven by the external harmonic
force with large amplitude a = 9.81. When the temperature
increases the locked state is destabilized but it is still less
sensitive to perturbations than the running ones. For example,
for temperature Q = 1, we find τ0 = 10.11, τ±1 = 5.55, and
τ±2 = 5.02. An inspection of Fig. 4(d) reveals that even for the
high-temperature limit frequent segments of localized states
in the particle trajectory are interspersed by still rare but long
excursions. If the temperature is further increased, there are
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FIG. 6. The stationary probabilities to reside in the localized p0

[panel (a)] and running pr [panel (b)] states as a function of tem-
perature Q. The driving amplitudes a are fixed to the values where
the first two maxima and minima of the diffusion coefficient D are
observed. Other parameters are the same as those in Fig. 2.

more and more unstable short-living periodic orbits which are
more frequently visited and the spread of trajectories grows,
details of the deterministic structure are washed out, and
the diffusion coefficient behaves like the Einstein diffusion
coefficient.

C. Residence probabilities

Since our system is symmetric, a preferential direction
of motion is impossible in the asymptotic stationary state,
implying 〈v〉 = 0. This condition imposes a fundamental con-
straint on the impact of thermal fluctuations onto the set of
deterministic solutions for the particle velocity. The latter can
be quantified by the temperature dependence of the stationary
probabilities to reside in each of the states existing in the
noiseless case. From a qualitative perspective there are only
two distinct classes of states, namely, the locked v = 0 state
and the running v �= 0 one. Therefore, in Fig. 6 we present the
stationary probabilities p0 and pr = 1 − p0 that the particle
occupies the locked and the running state, respectively, versus
the temperature of the system.

We detect that at the minima of the diffusion coefficient
the probability p0 = 1 in a wide interval of temperature Q ∈
[0.1, 1]. It means that thermal fluctuations destroy the running
solutions and all trajectories eventually are localized in the
locked state in which by definition the time-averaged velocity
v = 0 and consequently the symmetry condition is satisfied
〈v〉 = 0. It explains why the diffusion coefficient D at the
minima can be reduced even well below its value for a free

particle. We note that for asymmetric systems thermal-noise-
induced dynamical localization in a running state can lead
to the emergence of transient but long-lasting subdiffusion
without broad distributions or strong correlations tradition-
ally identified with disorder, trapping, viscoelasticity of the
medium, or geometrical constraints [35,36]. In contrast, here
localization in the locked state induces normal diffusion but
with an extremely small diffusion coefficient. If tempera-
ture increases at the minima, the probability to reside in the
locked state p0 detaches from one and decreases while at the
same time the corresponding quantity for the running state pr

grows. All this causes the diffusion coefficient to increase with
temperature as it is commonly expected.

On the other hand, in the symmetric system localization
can occur also in a pair of the running states transporting
the particle into the opposite directions so that the symmetry
condition 〈v〉 = 0 is still satisfied. Since such a type of trajec-
tory maximizes the spread, it has the greatest impact on the
diffusion coefficient. It can be inferred from Fig. 6(b) where
the probability pr to reside in the running state is depicted
as a function of temperature. It turns out that the temperature
dependence of pr fully characterizes the diffusion coefficient
D as a function of temperature [compare Figs. 2(b) and 6(b)].
When the latter decreases, pr is reduced, whereas if D grows,
pr increases as well. The positions of extremes at the maxima
of diffusion also agree. This correspondence occurs due to
the symmetry of the system which imposes the condition of
equal coexistence of states with opposite velocities. However,
in general, the quantifier W = 1 − |p0 − pr |, which loosely
speaking describes the difference between the number of
locked and running trajectories, could be used to qualitatively
predict the behavior of the diffusion coefficient [15]. We note
that in the presently studied case p0 > 0.5 and for this reason
W = 1 − p0 + pr = 2pr . Therefore, the difference between
the number of locked and running solutions is characterized
by the probability pr alone.

VI. SUMMARY

With this study we numerically analyzed diffusion of the
Brownian particle moving in a spatially periodic potential and
driven by an unbiased time-periodic force. Our investigation
was focused mainly on the temperature dependence of the dif-
fusion coefficient D in the regime in which its quasiperiodicity
with respect to the driving amplitude is observed.

We revealed that for lower temperature the diffusion coef-
ficient at the minima is extremely reduced even well below
the Einstein diffusion coefficient for a free particle. The ori-
gin of this effect lies in thermal-noise-induced localization
of all system trajectories in the locked state in which the
particle motion is bounded to a finite number of the periodic
potential wells. If the temperature grows, the diffusion coeffi-
cient increases as it is commonly expected. In contrast, for
the same lower temperature this quantity at the maxima is
extremely large. If the temperature increases in this regime,
the anomalous behavior is detected in which the diffusion
coefficient decreases when the temperature grows. As a reason
for this intriguing effect we identified the peculiar influence
of thermal fluctuations on transitions between two classes of
trajectories, namely, the locked and running ones, existing in
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the deterministic dynamics of the system. In particular, we
found out that the temperature dependence of the diffusion
coefficient in its minima and maxima can be qualitatively
reconstructed by the temperature dependence of the stationary
probability to reside in the running state.

As a final note we point out that it is not a nuisance
that the nonmonotonic temperature behavior of the diffusion
coefficient is related to the proportion between the number
of locked and running trajectories, but seemingly it emerges
rather as a universal property observed for different systems
in various regimes [7,11,13,35,37,38].

ACKNOWLEDGMENTS

This work was supported by the Polish Grants NCN:
Grants No. 2022/45/B/ST3/02619 (J.S.) and No.
2018/30/E/ST3/00428 (I.G.M.) and in part by PL-Grid
Infrastructure. V.A. is supported by the Ukrainian Grant
Agency NASU under Grant No. 0122U002145/2022-2023.
I.G.M. acknowledges the University of Silesia for its
hospitality since the beginning of the war, February 24,
2022.

APPENDIX A: SCALING OF THE LANGEVIN EQUATION

We consider a classical Brownian particle of mass M sub-
jected to a one-dimensional, spatially periodic potential U (x)
and driven by an unbiased and symmetric time-periodic force
F (t ). Its dynamics can be described by the Langevin equa-
tion in the form [3]

Mẍ + 
ẋ = −U ′(x) + F (t ) +
√

2
kBT ξ (t ), (A1)

where the dot and the prime denote differentiation with re-
spect to time t and the particle coordinate x, respectively. The
parameter 
 is the friction coefficient. The potential U (x)
is assumed to be symmetric of the spatial period L and the
barrier height 2�U , reading

U (x) = U (x + L) = −�U cos

(
2π

L
x

)
. (A2)

The external ac-driving force of amplitude A and angular
frequency � has the simplest harmonic form:

F (t ) = A sin (�t ). (A3)

Thermal equilibrium fluctuations due to interaction of the
particle with its environment of temperature T are modeled
as δ-correlated Gaussian white noise of zero-mean value,

〈ξ (t )〉 = 0, 〈ξ (t )ξ (s)〉 = δ(t − s), (A4)

where the bracket 〈·〉 denotes an average over white noise
realizations (ensemble average). The noise intensity 2
kBT
in Eq. (A1) follows from the fluctuation-dissipation theorem
[39], where kB is the Boltzmann constant. If A = 0, the sta-
tionary state is a thermal equilibrium state. If A �= 0, then the
external force F (t ) drives the system away from the equilib-
rium state.

Now, we transform Eq. (A1) to its dimensionless form. To
this aim we use the following scales as characteristic units of

length and time:

x̂ = 2π
x

L
, t̂ = t

τ0
, τ0 = L

2π

√
M

�U
. (A5)

Under such a procedure, Eq. (A1) assumes the form

¨̂x + γ ˙̂x = − sin x̂ + a sin (ωt̂ ) +
√

2γ Q ξ̂ (t̂ ). (A6)

The dimensionless parameters are defined by the relations

γ = τ0

τ1
, a = 1

2π

L

�U
A,

ω = τ0�, Q = kBT

�U
, (A7)

where the second characteristic time is τ1 = M/
. It has the
physical interpretation of the relaxation time for the velocity
of the free Brownian particle. On the other hand, the charac-
teristic time τ0 is related to the period of small oscillations
inside the potential U (x) wells.

The rescaled potential V (x) of the period L = 2π reads
V (x̂) = U [(L/2π )x̂]/�U = − cos x̂ and the corresponding
potential force is f (x) = −Û ′(x̂) = − sin x̂. The rescaled
thermal noise is ξ̂ (t̂ ) = (L/2π�U )ξ (t ) = (L/2π�U )ξ (τ0t̂ )
and has the same statistical properties as ξ (t ); i.e., 〈ξ̂ (t̂ )〉 = 0
and 〈ξ̂ (t̂ )ξ̂ (ŝ)〉 = δ(t̂ − ŝ). The dimensionless noise strength
Q is the ratio of thermal energy and half of the activation
energy the particle needs to overcome the non-rescaled po-
tential barrier. In order to simplify the notation we omit the
hat notation in Eq. (8).

APPENDIX B: DESCRIPTION OF THE SIMULATIONS

The complexity of stochastic dynamics determined by
Eq. (8) with three-dimensional phase space {x, y = ẋ, z =
ωt} is rooted in the four-dimensional parameter space
{γ , a, ω, Q}. The Fokker-Planck equation corresponding to
Eq. (8) cannot be solved analytically and for this reason
we had to resort to comprehensive numerical simulations.
All calculations were done using a compute unified device
architecture (CUDA) environment implemented on a mod-
ern desktop graphics processing unit (GPU). This proceeding
allowed for a speedup of factor of the order 103 times as
compared to the present-day central processing unit (CPU)
method [40]. The Langevin equation (8) was integrated us-
ing a second-order predictor-corrector scheme [41] with the
time step h = 10−2. The quantities characterizing diffusive
behavior of the system were averaged over the ensemble up
to N = 220 = 1 048 576 trajectories, each starting with differ-
ent initial conditions x(0), v(0), and φ distributed uniformly
over the intervals [0, 2π ], [−2, 2], and [0, 2π ], respectively.
The time span of simulations read 106 periods 2π/ω of the
external driving a cos (ωt ) and was extensive enough to reach
the long time limit indicated by the stationarity of diffusion
coefficient.
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