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Heat statistics in the relaxation process of the Edwards-Wilkinson elastic manifold
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The stochastic thermodynamics of systems with a few degrees of freedom has been studied extensively so
far. We would like to extend the study to systems with more degrees of freedom and even further-continuous
fields with infinite degrees of freedom. The simplest case for a continuous stochastic field is the Edwards-
Wilkinson elastic manifold. It is an exactly solvable model of which the heat statistics in the relaxation process
can be calculated analytically. The cumulants require a cutoff spacing to avoid ultraviolet divergence. The scaling
behavior of the heat cumulants with time and the system size as well as the large deviation rate function of the
heat statistics in the large size limit is obtained.
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I. INTRODUCTION

Historically, people studied thermodynamics in macro-
scopic systems, such as ideal gas with up to 1023 molecules.
Due to the huge number of degrees of freedom in the macro-
scopic scale, it is impossible to extract the trajectories of
individual particles explicitly. Hence, it is not possible to
study thermodynamics of macroscopic systems in arbitrary
far from equilibrium processes. Nevertheless, for mesoscopic
systems with only a few degrees of freedom, stochastic dy-
namics (Langevin equation, Fokker-Planck equation, master
equation) provides detailed information about the system.
Prominent examples of mesoscopic systems include colloidal
particles, macromolecules, nanodevices, and so on [1,2]. In all
these examples, researchers focus on the dynamics of a few
degrees of freedom of the system whereas coarse graining all
the degrees of freedom of the reservoir. Mesoscopic systems
can be driven out of equilibrium by external driving, for in-
stance, by varying the temperature or by controlling them with
optical tweezers [3–18].

With the equation of motion, e.g., Langevin equation,
Fokker-Planck equation, or master equation, researchers are
able to establish a framework of thermodynamics for meso-
scopic systems in arbitrarily far from equilibrium processes.
This is stochastic thermodynamics in which thermodynamic
quantities such as work, heat, and entropy production in
nonequilibrium processes have been explored extensively in
both classical and quantum realms [9,18–48]. In the study
of work or heat distribution for extreme nonequilibrium pro-
cesses, rare events with exponentially small probabilities
have dominant contributions making finite sampling error
particularly serious. Hence, previous studies, be it experi-
mental or computer simulations, are predominantly for small
systems, i.e., those with a few degrees of freedom [49].

*Corresponding author: htquan@pku.edu.cn

Nevertheless, systems with a few degrees of freedom are
too special. Therefore, it is desirable to extend the study of
stochastic thermodynamics to more complicated systems. We,
thus, would like to extend the studies to systems with more de-
grees of freedom, for example, stochastic fields. Hopefully, in
some exactly solvable model, we can obtain analytical results
about work and heat distribution. These rigorous results about
work or heat distribution in systems with many degrees of
freedom not only have pedagogical value but also may bring
some insights to the understanding of thermodynamics in
extreme nonequilibrium processes as P. W. Anderson once ad-
vocated, “More is different” [50]. Although many researchers
are interested in the dynamic properties of stochastic fields
[51–55], less research is carried out from the perspective of
stochastic thermodynamics except [56–60] so far as we know.

In this article, we study the thermodynamics of an elas-
tic manifold whose underlying dynamics is described by the
Edwards-Wilkinson (EW) equation [61],

∂t h(x, t ) = ν∇2h(x, t ) + ξ (x, t ), (1)

where h(x, t ) is the local height at spatial point x at time t , ν

is the diffusive coefficient, and ξ (x, t ) is the Gaussian white
noise. The friction coefficient is set to unity.

The problem we analyze is the relaxation of an elastic
manifold described by the EW equation. The elastic manifold
is initially put in contact with a heat reservoir at the inverse
temperature β ′. After initial equilibration with the first heat
reservoir at β ′, the system is detached from it, and is put in
contact with a second heat reservoir at the inverse temperature
β. The manifold, subsequently, tries to adapt to the work-
ing temperature [55]. The relaxation is characterized by the
stochastic heat absorbed from/released into the surrounding
reservoir during a period of time τ . We are interested in the
average and fluctuation of the heat in such a process. We
find several generic properties of the average and fluctuating
heat in the relaxation process of the EW elastic manifold.
By employing the Feynman-Kac method [45,62], we obtain
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analytical results of the characteristic function of heat for
the EW model during an arbitrary relaxation period τ with
an arbitrary diffusive coefficient ν and analyze the scaling
behavior of the cumulants of heat with time. Analytical results
of the heat statistics bring important insights into understand-
ing the fluctuating property of heat in such a concrete and
exactly solvable model. We also verify from the analytical
results that the heat statistics satisfy the fluctuation theorem
of heat exchange [63]. The large deviation rate function of
heat statistics in the large size limit is also analyzed.

The rest of this article is organized as follows. In Sec. II, we
introduce the EW model. In Sec. III, we define the stochastic
heat and obtain analytical results of the characteristic function
of heat using the Feynman-Kac approach. We also compute
the cumulants of heat and discuss their scaling behavior with
time and the system size. Conclusions are given in Sec. IV.

II. THE MODEL

A d-dimensional elastic manifold, with finite size 2L
in each direction, joggles under thermal noise. Its local
height h(x, t ) at spatial point x at time t evolves accord-
ing to the EW equation Eq. (1), which takes the form
of a multivariable overdamped Langevin equation [1]. The
thermal noise ξ (x, t ) is white in nature, i.e., 〈ξ (x, t )〉 =
0, 〈ξ (x, t )ξ (x′, t ′)〉 = 2/βδd (x − x′)δ(t − t ′). The EW energy
is just that of a massless field with Hamiltonian HS =
ν
∫

dx[∇h(x, t )]/2. Here, the subscript S refers to the system.
Initially, the system is prepared in an equilibrium state

with the inverse temperature β ′ characterized by a Gibbs-
Boltzmann distribution in the configuration space, i.e., the
probability P (h, t ) to find the system in the configuration
{h(x, t )} is the Gibbs-Boltzmann distribution,

P (h, 0) = N ′−1 exp

[
−β ′ ν

2

∫
dx[∇h(x, 0)]2

]
, (2)

where N ′ is the normalization constant,

N ′ =
∫

dh(x, 0) exp

[
−β ′ ν

2

∫
dx[∇h(x, 0)]2

]
. (3)

Here, the integration in the normalization constant is taken
over all possible initial configurations, whereas the one in the
exponential factor is taken over all spatial points.

After initial equilibration, the system is detached from the
first heat reservoir and is placed in contact with a second heat
reservoir at the inverse temperature β, which is different from
β ′. The elastic manifold, subsequently, relaxes towards the
equilibrium state at inverse temperature β since no external
driving is involved. The heat absorbed/released is a fluctuat-
ing variable for the system undergoing stochastic motion. We
are interested in the heat statistics in such a relaxation process.

For a finite-size manifold, we take periodic boundary con-
ditions along each x direction. Following Refs. [1,52], we
employ a Fourier representation of the height field,

h(x, t ) = 1

(2L)d

∑
q

eiq·xhq(t ), (4)

hq(t ) =
∫

dx e−iq·xh(x, t ), (5)

where q represents a wave vector with q j = n jπ/L [ j =
x, y, z . . . , nj = ±1,±2 · · · , and hq=0(t ) = 0 for all time t]
[55]. The evolution of the Fourier component is given by

∂t hq(t ) = −νq2hq(t ) + ξq(t ), (6)

〈ξq(t )〉 = 0, (7)

〈ξq(t )ξq′ (t ′)〉 = 2(2L)d

β
δ(t − t ′)δq,−q′ . (8)

The normalization constant in Eq. (3) can be computed as

N ′ =
∫

d{hq(0)} exp

⎡
⎣− β ′ν

(2L)d

∑
q(q j�π/L)

q2hq(0)h−q(0)

⎤
⎦

=
∏

q(q j�π/L)

π (2L)d

β ′νq2
, (9)

where q2 stands for the modulus square of q.

The probability density of system state P (h, t ) evolves
under the governing of the Fokker-Planck equation,

∂P (h, t )

∂t
= −

∫
dx

δ

δh
[ν∇2h(x, t )P (h, t )]

+ 1

β

∫
dx

δ2

δh2
P (h, t ). (10)

In the Fourier space, the probability of the height field config-
uration is the product of the real and the imaginary parts over
all modes,

P ({hq}, t ) =
∏

q(q j� π
L )
P (hq, t ) =

∏
q(q j� π

L )
PR

(
hR

q , t
)
P I

(
hI

q, t
)
,

(11)
where

hR
q = Re(hq), hI

q = Im(hq). (12)

The Fokker-Planck equation in the Fourier space can be then
written into two independent parts: the real part and the imag-
inary part [64],

∂PR,I
(
hR,I

q , t
)

∂t
= ∂

(
νq2hR,I

q PR,I
)

∂hR,I
q

+ (2L)d

2β

∂2PR,I

∂
(
hR,I

q
)2 . (13)

It is noteworthy that Eq. (6) represents an overdamped Brow-
nian motion for each individual mode. Thus, we obtain the
analytical solution to the probability distribution PR,I (hR,I

q , t ),
which is also thermal for time-dependent effective inverse
temperature βq(t ),

PR,I
(
hR,I

q , t
) =

√
βq(t )νq2

π (2L)d
exp

[
−βq(t )νq2

(2L)d

(
hR,I

q

)2
]
. (14)

Here, the time-dependent effective inverse temperature βq(t )
is

βq(t ) = ββ ′

(β − β ′) exp(−2νq2t ) + β ′ . (15)

064115-2



HEAT STATISTICS IN THE RELAXATION PROCESS OF … PHYSICAL REVIEW E 107, 064115 (2023)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.0

2.5

3.0

3.5

4.0

FIG. 1. The effective inverse temperature βq(t ) for different
modes q = 1, 2, 4 (q stands for the modulus of mode q) as a function
of time. Parameters take values d = 1, ν = 1, β ′ = 4, and β = 2.

It transitions from the initial inverse temperature β ′ to the final
β following Newton’s law of cooling. As can be seen from
Fig. 1, high-energy modes equilibrate more quickly than lower
ones.

Having introduced the model, in the following, we will
calculate the heat statistics in the relaxation process.

III. HEAT STATISTICS

In this section, we study heat statistics of the EW elastic
manifold in the relaxation process. First, we obtain the analyt-
ical results of heat statistics and verify the fluctuation theorem
of heat exchange. Second, we study the asymptotic behavior
of the cumulants. Third, we calculate the large deviation func-
tion of heat statistics in the large size limit.

A. Characteristic function

Since no external driving is applied to the system, no work
is performed during the relaxation process. The fluctuating
heat Q absorbed from the heat reservoir equals the energy
difference between the initial and the final states over a time
period τ ,

Q = HS[h(x, τ )] − HS[h(x, 0)]. (16)

The characteristic function of heat χτ (u) is defined as the
Fourier transform of the heat distribution,

χτ (u) =
∫

dQ exp(iuQ)P (Q, τ ). (17)

Here, P (Q, τ ) stands for the probability of the heat Q trans-
ferred from the heat reservoir to the system during the period
of time τ .

According to Eq. (16), the characteristic function of heat of
the relaxation process is encoded in the characteristic function
of the initial and the final internal energy. This fact enables
us to calculate the characteristic function of heat by utilizing
the Fokker-Planck equation with a modified initial condition,
i.e., the characteristic function of heat χτ (u) can be calculated
using the Feynman-Kac method [45,47,62],

χτ (u) = 〈exp(iuQ)〉
=

∫
dh eiuHS[h(x,τ )]η(h, τ ), (18)

where the probability-density-like function η(h, τ ) satisfies
Eqs. (10) and (13) with the initial condition,

η(h, 0) = e−iuHS [h(x,0)]P (h, 0). (19)

The probability-density-like function η(h, τ ) is solved in the
Fourier space (see the Appendix for a detailed derivation), and
we obtain the characteristic function of heat for the relaxation
process over a time period of τ ,

χτ (u) = ββ ′ ∏
q(q j�π/L)

exp(2νq2τ )

−u(iβ ′ − iβ − u)[exp(2νq2τ ) − 1] + ββ ′ exp(2νq2τ )
. (20)

The wave vector component in each direction only takes pos-
itive discrete values q j = n jπ/L, n j = 1, 2 · · · .

We do a self-consistent check of the analytic result Eq. (20)
from three aspects:

(1) The distribution of heat satisfies the conservation of
probability,

χτ (0) = 1. (21)

(2) One can see the characteristic function of heat exhibits the
following symmetry:

χτ (u) = χτ (iβ ′ − iβ − u), (22)

indicating that the heat distribution satisfies the fluctuation
theorem of heat exchange [23,47,63],

〈eiuQ〉 = 〈e(−iu+β−β ′ )Q〉, (23)

namely,

P (Q, τ )

P (−Q, τ )
= e(β ′−β )Q. (24)

By setting u = 0, we obtain the relation χτ (iβ ′ − iβ ) = 1,
which is exactly the fluctuation theorem of heat exchange in
the integral form 〈exp[−(β ′ − β )Q]〉 = 1 [63].

Moreover, since every mode contributes independently,
we can decompose the total heat exchange into the con-
tribution from every mode Q = ∑

q(q j�π/L) Qq, where Qq =
νq2(2L)−d [hq(τ )h−q(τ ) − hq(0)h−q(0)], and the heat distri-
bution is in a product form P (Q, τ ) = ∏

q(q j�π/L) P (Qq, τ ).
The heat distribution of individual modes also satisfies a
fluctuation theorem,

P (Qq, τ )

P (−Qq, τ )
= e(β ′−β )Qq . (25)
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(3) In the long time limit τ → ∞, the characteristic function
becomes

lim
τ→∞χτ (u) =

∏
q(q j�π/L)

ββ ′

(u + iβ )(u − iβ ′)
. (26)

This result, independent of the relaxation dynamics, can be
written in the form

lim
τ→∞χτ (u) = 〈eiuHS (h(x,τ ))〉β〈e−iuHS [h(x,0)]〉β ′ , (27)

where the initial distribution (thermal equilibrium with the
inverse temperature β ′) and the final distribution (thermal
equilibrium with the inverse temperature β) are sampled in-
dependently, reflecting the complete thermalization of the
system [29]. This result agrees with our intuition.

B. Cumulants

The cumulants of heat can be derived by taking derivatives
of the logarithm of the characteristic function χτ (u) with
respect to u at u = 0 with the first cumulant representing the
average heat, and the second one standing for the variance.

The average heat is

〈Q〉 = 1

i

d ln χτ (u)

du

∣∣∣∣∣
u=0

=
∑

q( π
a �q j� π

L )

[1 − exp(−2νq2τ )](β ′ − β )

ββ ′

= β ′ − β

ββ ′
(π

L

)−d
∫ π

a

π
L

dq[1 − exp(−2νq2τ )]. (28)

A cutoff π/a of the wave vector is needed to avoid ultraviolet
divergence, i.e., we introduce a smallest spacing a in this
elastic manifold [1,65,66]. Since we consider a continuous
field, the cutoff spacing is always much smaller than the
system size a � L. We will see that the choice of the value
of a will influence the average heat [see Fig. 2(b) inset plot].
We rewrite the average heat 〈Q〉 with a change in the variable
s = Lq,

〈Q〉 = (β ′ − β )

ββ ′πd
f
(ντ

L2

)
, (29)

where

f (r) =
∫ Lπ

a

π

ds[1 − e−2rs2
]

=
(

L − a

a
π

)d

+
( π

8r

) d
2

×
[

Erf(π
√

2r) − Erf

(
πL

√
2r

a

)]d

. (30)

Erf(r) is the error function.
In the following, we discuss the asymptotic behavior of the

average heat as a function of time. For the one-dimensional
case, the average heat as a function of time is illustrated in
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FIG. 2. Average heat as a function of time. Parameters for both
panels: d = 1, ν = 1, β ′ = 4, and β = 2. (a) 〈Q〉 as a function of
τ for three system sizes L = 30, 35, and 40, fixing a = 0.2. The
inset: the saturation value of average heat 〈Q〉st as a function of
system size L. (b) 〈Q〉 as a function of τ for three cutoff spacings
a = 0.2, 0.5, and 1.0, fixing L = 10. The inset: the saturation value
of average heat 〈Q〉st as a function of cutoff spacing a.

Fig. 2. At the initial stage for τ � a2/ν,

〈Q〉 ≈ 2π2

3a2

(β ′ − β )

ββ ′ ντ
L

a
. (31)

The average heat initially increases with time linearly. This is
Newton’s law of cooling.

For the intermediate time, a2/ν � τ � L2/ν,

〈Q〉 ≈ (β ′ − β )

ββ ′
L

a

(
1 − a√

8ν
τ−1/2

)
. (32)

It exhibits τ−1/2 scaling with time.
In the long time limit, for τ � L2/ν,

〈Q〉 → β ′ − β

ββ ′
L

a
, (33)

the average heat saturates, which is a consequence of the
equipartition theorem. The saturation value of heat is an ex-
tensive quantity, which scales linearly with the system size L.
It will not diverge for a finite spacing a as a result of finite
resolution.
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FIG. 3. Average heat of a mode q for different time dura-
tions. The parameters take values L = 30, d = 1, ν = 1, β ′ =
4, and β = 2 and the curves correspond to three values of time delay
τ = 101, 100, and 10−1 from the bottom to the top. The dashed line
stands for the saturation value.

From Eq. (28), one can see the average heat for every q
mode is

〈Qq〉 = β ′ − β

ββ ′
(π

L

)−d
[1 − exp(−2νq2τ )]. (34)

As we can see from this equation and Fig. 3, heat transfer
occurs mainly through high-energy modes, and thermalization
occurs in high-energy modes more quickly than that in lower
ones.

For fixed time duration τ , in the small wave vector limit,
i.e., 2νq2τ � 1, it increases with time linearly

〈Qq〉 = 2ντ
β ′ − β

ββ ′
(π

L

)−d
q2, (35)

which is the Newton’s law of cooling.
On the other hand, if one takes the large wave vector

limit, i.e., 2νq2τ � 1, the average heat reaches the asymptotic
value,

〈Qq〉 = β ′ − β

ββ ′
(π

L

)−d
, (36)

which is the result of the equipartition theorem.
From the analytical result of heat statistics Eq. (20), we can

also study the variance of heat. The variance of heat is defined
as var(Q) = 〈Q2〉 − 〈Q〉2 and can be calculated as

var(Q) = 1

i2

d2 ln χτ (u)

du2

∣∣∣∣
u=0

=
(π

L

)−d 1

β2β ′2

∫ π
a

π
L

dq e−4νq2τ (−1 + e2νq2τ )

× [(−1 + e2νq2τ )β2 + 2ββ ′ + (−1 + e2νq2τ )β ′2]

= 1

β2β ′2πd
g
(ντ

L2

)
, (37)

where

g(r) =
∫ Lπ

a

π

ds[(β2 + β ′2)(1 − 2e−2rs2 + e−4rs2
)

+ 2ββ ′(−e−4rs2 + e−2rs2
)].
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FIG. 4. Variance of heat as a function of time. Parameters for
both panels: d = 1, ν = 1, β ′ = 4, and β = 2. (a) var(Q) as a
function of τ for three system sizes L = 30, 35, and 40, fixing
a = 0.2. The inset: the saturation value of heat variance var(Q)st as
a function of system size L. (b) var(Q) as a function of τ for three
cutoff spacings a = 0.2, 0.25, ans 0.3, fixing L = 10. The inset: the
saturation value of heat variance var(Q)st as a function of cutoff
spacing a.

In the one-dimensional case, for τ � a2/ν, we have

var(Q, τ ) ≈ 4π2

3a2ββ ′ ντ
L

a
. (38)

It grows with time linearly in the very beginning.
For a2/ν � τ � L2/ν,

var(Q, τ ) ≈ 4π4ν2τ 2

5β2β ′2a4
(β2 − 3ββ ′ + β ′2)

L

a
. (39)

It scales as τ 2 as time elapses.
Finally, for τ � L2/ν, it reaches the saturation value in the

long time,

var(Q, τ ) ≈ β2 + β ′2

β2β ′2
L

a
. (40)

As can be seen from Fig. 4, the variance of heat depends on
the cutoff spacing a as well. Similar to the average heat, the
saturation value of variance increases linearly with the system
size L and will not diverge for finite spacing a. Higher order
cumulants of heat can be analyzed in a similar way.
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C. Large deviation rate function

We can also study the large deviation rate function of the
heat statistics in the large size limit.

The scaled cumulant generating function (SCGF) φ(u, τ )
of heat per volume over time τ , which is defined through〈

exp

[
(2L)d u

Q

(2L)d

]〉
�L→∞ e(2L)d φ(u,τ ), (41)

or

φ(u, τ ) = lim
L→∞

1

(2L)d
ln

〈
exp

[
(2L)du

Q

(2L)d

]〉

= lim
L→∞

1

(2L)d
ln χτ (−iu) (42)

can be computed by

φ(u, τ ) = lim
L→∞

− 1

(2L)d

∫ π
a

π
L

dq ln

(−u(β ′ − β + u)

ββ ′ [1 − exp(−2νq2τ )] + 1

)
. (43)

The large deviation rate function for heat per volume over time
τ is just the Legendre-Fenchel transform of the SCGF [67],

I

(
Q

(2L)d
, τ

)
= lim

L→∞
− 1

(2L)d
lnP

(
Q

(2L)d
, τ

)

=sup
u∈R

{
u

Q

(2L)d
− φ(u, τ )

}
. (44)

We emphasize that the large deviation rate function of work
distribution in the large size limit has been studied in other
models previously (see, e.g., Refs. [49,68]). Here we report
the large deviation rate function of heat in the large size limit.

With the large deviation rate function Eq. (44), we can
write down the probability distribution of heat per volume
over time τ as

P
(

Q

(2L)d
, τ

)
�L→∞ exp

[
−(2L)d I

(
Q

(2L)d
, τ

)]
, (45)

which demonstrates the dependence of the heat distribution on
the system size. And the fluctuation theorem of heat exchange
Eq. (24) can also be formulated in terms of the large deviation
rate function.

IV. CONCLUSION

Previously, the stochastic thermodynamics of systems with
a few degrees of freedom have been studied extensively
both in classical and quantum realms [9,18–48]. However,
less is known in systems with many degrees of freedom.
What new results the complexity of many degrees of free-
dom will bring to stochastic thermodynamics remains largely
unexplored.

In this article, we extend previous studies about the
stochastic thermodynamics of systems with a few degrees
of freedom to a continuous field. We compute the heat
statistics in the relaxation process of an exactly solvable
model—an elastic manifold whose underlying dynamics can
be described by the Edwards-Wilkinson equation. By employ-
ing the Feynman-Kac approach, we calculate analytically the
characteristic function of heat for any relaxation time. The
analytical results of heat statistics have pedagogical value and
may bring important insights to the understanding of ther-
modynamics in the relaxation process of continuous fields.
For example, the cumulants of heat in such a system with
many degrees of freedom require a spatial cutoff to avoid the
ultraviolet divergence, which is a consequence of finite reso-

lution. We also analyze the scaling behavior of the cumulants
with time and the system size. In addition, the large deviation
rate function of heat in the large size limit is analyzed.

This paper can be regarded as an early step in the stochastic
thermodynamics of continuous fields. More interesting prob-
lems remain to be explored, such as the definitions for the
thermodynamic quantities in every space-time point, the ex-
tension to nonlinear models, the work statistics in the presence
of external driving and so on. Studies about these issues will
be given in our future work.
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APPENDIX: DERIVATION OF EQ. (20)

Similar to the probability density distribution, the modified
function η(h, t ) can be written as the product of the imaginary
part and the real part over all modes in the Fourier space,

η({hq}, t ) =
∏

q(q j�π/L)

ηR
(
hR

q , t
)
ηI
(
hI

q, t
)
. (A1)

The probability-density-like function ηR,I (hR,I
q , t ) follows the

same time evolution as PR,I (hR,I
q , t ) in Eq. (13),

∂ηR,I
(
hR,I

q , t
)

∂t
= ∂

(
νq2hR,I

q ηR,I
)

∂hR,I
q

+ (2L)d

2β

∂2ηR,I

∂
(
hR,I

q
)2 , (A2)

with the initial condition,

η(h, 0) = e−iuHS (0)P (h, 0). (A3)

Due to the quadratic nature of the EW equation, we assume
the time-dependent solution η(h, t ) takes a Gaussian form at
any time,

ηR,I
(
hR,I

q , t
) =

√
β ′νq2

π (2L)d
exp

[ − A(t )
(
hR,I

q

)2 + B(t )
]
. (A4)
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The coefficients are governed by the following ordinary dif-
ferential equations:

Ȧ(t ) = −2(2L)d

β
A2(t ) + 2A(t )νq2, (A5)

Ḃ(t ) = − (2L)d

β
A(t ) + νq2. (A6)

The initial condition Eq. (A3) gives way to the initial values
of the coefficients,

A(0) = (β ′ + iu)ν

(2L)d
q2, (A7)

B(0) = 0. (A8)

By solving the above equations we obtain

A(t ) = 1

(2L)d

e2νq2tβ(u − iβ ′)νq2

(e2νq2t − 1)u − i[β + (e2νq2t − 1)β ′]
, (A9)

B(t ) = νq2t + 1

2
ln

[
iβ

u − iβ ′ + iβ + (iβ ′ − u)e2νq2t

]
.

(A10)

Substituting Eqs. (A9) and (A10) into Eq. (A4), we arrive at

η({hq}, t ) =
∏

qi�π/L

ηR
(
hR

q , t
)
ηI
(
hI

q, t
)

=
∏

q(qi�π/L)

β ′νq2

π (2L)d

iβ exp(2νq2t )

u − iβ ′ + iβ + (iβ ′ − u) exp(2νq2t )

× exp

{
− 1

(2L)d

exp(2νq2t )β(u − iβ ′)νq2

[−1 + exp(2νq2t )]u − i[β − β ′ + β ′ exp(2νq2t )]

[(
hR

q

)2 + (
hI

q

)2
]}

. (A11)

Substituting it into Eq. (18), we obtain the characteristic function of heat Eq. (20) of the EW elastic manifold in the relaxation
process.
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