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The objective of this work is to show that adiabatic processes can be very similar to isothermal ones. First,

we show that the criteria for the compatibility of linear-response theory with the second law of thermodynamics
for thermally isolated systems are the same as those for systems performing isothermal processes. Motivated
by such a result, we explore the thermodynamic consequences of the time-average excess work, observing an
unexpected existence of a well-defined relaxation time for thermally isolated systems that obeys the second
law of thermodynamics. This is justified by recognizing that such systems, in the usual sense, present random
relaxation time, which can be “averaged” by taking the time average of the relaxation function. Such a proceeding
is very similar to what happens in isothermal processes, where a stochastic average must be done on the
relaxation function to have a well-defined relaxation time. In the end, we analyze the Landau-Zener model from
this new point of view, discussing the construction of slowly-varying processes from linear-response theory and
observing negative entropy production rates for nonmonotonic and rapid protocols.
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I. INTRODUCTION

One of the main characteristics of isothermal processes
is the existence of a relaxation timescale of the system. It
allows, for instance, in the context of finite-time and weak
drivings [1-7], a natural expansion of the thermodynamic
work of weak processes to slowly-varying ones [1,8,9] and
creates a reference parameter that characterizes the emergence
of negative entropy production rates under certain conditions
[6,10]. On the other hand, thermally isolated systems, which
execute adiabatic processes, do not present a well-defined
relaxation timescale, except, at least, for chaotic [11-16] and
quantum many-body systems [17-22]. This leads to a natural
disagreement between the behaviors of the thermodynamic
work of both processes, like the behavior of the optimal excess
work for long switching times [7,23,24].

We present however in this work that adiabatic processes
can be very similar to isothermal ones in some contexts.
Proving at the beginning that the criteria used to justify the
compatibility of linear-response theory with the second law
of thermodynamics for isothermal processes remain the same
for thermally isolated ones, we propose, in the context of
finite-time, weak and adiabatic driving, that the quantity we
should observe to prove our point is not the average work, but
its time-averaged quantity.

To understand this point, consider that in isothermal pro-
cesses, the averaged work does not capture the randomness
inherent in the stochastic nature of the system, and, in prac-
tice, the system presents a random relaxation time. Indeed, to
obtain a meaningful result in that sense, a stochastic average
must be done in the averaged work. In typical scenarios of
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thermally isolated systems with oscillatory relaxation func-
tions [2—4,25], the same randomness on the relaxation time
can be considered, too. Inspired by what happens in isother-
mal processes, we expect that an appropriate average in the
average work will furnish a meaningful result. In this case, it
will be the average in the switching time of the process.

One of the main consequences of taking this average is
the appearance of an unexpected, well-defined relaxation time
for the system. It will allow these specific thermally isolated
systems to have the same mathematical property as those
performing isothermal processes. In other words, adiabatic
processes will be treated on the same foot as isothermal pro-
cesses. This will be illustrated with the Landau-Zener model,
where the isothermal processes properties, like a slowly-
varying process expansion and the appearance of negative
values to the entropy production rates for nonmonotonic and
rapid drivings, will be recovered in this new time-averaged
work approach.

II. EXCESS WORK IN LINEAR RESPONSE THEORY

Consider a quantum system with a Hamiltonian H(A(?)),
where A(?) is a time-dependent external parameter. Initially,
this system is in contact with a heat bath of temperature
B = (kgT)~"', where kg is Boltzmann’s constant. The system
is then decoupled from the heat bath and, during a switching
time 7, the external parameter is changed from A to Ao + SA.
The average work performed on the system during this pro-
cess is

W= / (3 H()A)dt, (1)
0

where 0, is the partial derivative for A and the superscripted
dot is the total time derivative. The generalized force (9, H.(?))
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is calculated using the trace over the density matrix p(t),
(A1) = tr{Ap(n)}, 2

where A is some observable. The density matrix p(#) evolves
according to Liouville equation

. 1

p==Lp:=——[p, Hl, 3)

ih

where L is the Liouville operator, [-, -] is the commutator,
and p(0) = p, is the initial canonical density matrix. Consider
also that the external parameter can be expressed as

A1) = Ao + g(1)82, “4)

where to satisfy the initial conditions of the external param-
eter, the protocol g(r) must satisfy the following boundary
conditions:

80)=0, glr)=1 (&)

Linear response theory aims to express the average of some
observable until the first order of some perturbation consid-
ering how this perturbation affects the observable and the
nonequilibrium density matrix [26]. In our case, we consider
that the parameter does not considerably change during the
process, |g(t)dA/1g| < 1, for all ¢ € [0, t]. Using the frame-
work of linear-response theory [26], the generalized force
(0, H (1)) can be approximated until the firstorder as

(M) = (3, H)o + 5405, H)8(¢)

— 8A /0 Go(t —1")g(t)Hdr', (6)

where the (-) is the average over the initial canonical density
matrix. The quantity ¢o(?) is the so-called response function
[26], which can be conveniently expressed as the derivative of
the relaxation function W (¢) [26],

= ¥ 7
o) = o (7N

where
Wo(t) = B{0L H()H(0))o +C (3

being the constant C calculated via the final value theorem
[26]. In this manner, the generalized force, written in terms of
the relaxation function, is

(B H (1) = (3, H) — 51 Wog(t)
+ SA/ Wo(t — te("dt', 9)
0

where \io(t) = ¥y (0) — (E)fA’H,)o. Combining Egs. (1) and
(9), the average work performed at the linear response of the
generalized force is

SA2 ~
W =810, H) — 7\110

+ 822 / ' / Wo(t —tHg(tHgt)dt'dt.  (10)
0 0

We remark that in thermally isolated systems, the work is
separated into two contributions: The quasistatic work Wy, and
the excess work Wex. We observe that only the double integral

on Eq. (10) has “memory” of the trajectory of A(¢). Therefore
the other terms are part of the contribution of the quasistatic
work. Thus, we can split them as

A2 ~
Wys = SM0H) — 7xlfo, (11)

Wox = 822 / ' / Wo(t — tet)et)de'dt. (1)
0 0

In particular, the excess work can be rewritten using the sym-
metry property of the relaxation function, W(¢) = W(—t) (see
Ref. [26]),

S P ,
Wex = —/ / Wo(t —t)g(t)g(t)dt' dt. (13)
2 Jo Jo

We remark that such treatment can be applied to classic
systems, by changing the operators to functions, and the com-
mutator by the Poisson bracket [26].

III. ISOTHERMAL PROCESSES

The description of the previous section was made for adia-
batic processes. However, the framework of linear-response
theory can be applied similarly to isothermal processes
where a stochastic approach is appropriate. In this case, the
average work W is divided into the irreversible work W, and
the difference of Helmholtz free energy AF,

W =W, — AF, (14)
where, in linear-response theory, we will have
S

VVirr—_
2

T T __
[ [ %o -oiariwarar. as
0 Jo
where - is the stochastic average. To satisfy the second law of
thermodynamics for isothermal processes, that is,
lim Wi = 0, "Virr(f) P 0, v, (16)
T—>00
as it is explicitly deduced in Jarzynski’s work [27], the relax-
ation function must satisfy the following criteria [6]:
Ty(0) < 00, Wo(w) >0, (17)

where ™~ and * are, respectively, the Laplace and Fourier trans-
forms. Because of this, it is possible to define a relaxation time
for the system

——dt = < 00. (18)
w(0) Yo (0)

We discuss some consequences of the existence of such a
quantity. First, it establishes a criterion to identify how fast
the driving is performed. Indeed, one can create a diagram
of nonequilibrium regions illustrating that. See Fig. 1. In
region 1, the so-called slowly-varying processes, the ratio
8A/Ag is arbitrary, while tz/t < 1. By contrast, in region
2, the so-called finite-time and weak processes, the ratio
dA/Ag < 1, while T/t is arbitrary. In region 3, the so-called
arbitrarily far-from-equilibrium processes, both ratios are ar-
bitrary. Linear-response theory can be used to calculate the
irreversible work of regions 1 and 2.

wim [ TO, O
0
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FIG. 1. Diagram of nonequilibrium regions. Region 1: Slowly-
varying processes, Region 2: Finite-time but weak processes,
and Region 3: Arbitrarily far-from-equilibrium processes. Linear-
response theory can describe regions 1 and 2.

Indeed, Eq. (15) describes the irreversible work performed
in region 2. In region 1, the approximation used to calculate
the relaxation function is [22]

lim ﬁo(t) = 21 W (0)5(2). 19)

/1K1

In this manner, the averaged irreversible work becomes [1]

Wi (7) = f RO OO, (20)
0
where

x[Ao] = Wo(0). 2y

Second, the regions determined by the ratio of the re-
laxation time and switching time could present different
behaviors when regarding the entropy production rates. Defin-
ing such quantity by

Wi, = )L(t)/ Vot — tHA)dr, (22)
0

we observe that its sign, for slowly-varying processes, is
always positive, while for finite-time and weak processes,
nonmonotonic external protocols can produce instants of time
where the sign is negative [6,10]. Even though, its integral
along the switching time is always positive [6,10,28].

We remark that such characteristics raised in the previous
paragraphs do not hold necessarily for thermally isolated sys-
tems, because the relaxation function does not decorrelate [see
a typical example in Eq. (46)]. In Sec. V, we present a new
definition of work where those characteristics are recovered
for a specific type of thermally isolated system.

IV. CRITERIA OF COMPATIBILITY
FOR ADIABATIC PROCESSES

The first objective of this work is to find criteria for the
compatibility of linear-response theory with the second law of

thermodynamics for thermally isolated systems. We validate
in this manner the use of linear-response theory in describing
thermodynamic processes in this context, as we have done
in the context of isothermal processes [6]. In this way, one
important aspect of Eq. (15) is its resemblance with the ex-
pression of the irreversible work used to describe isothermal
drivings in linear-response theory [see Eq. (15)]. If the second
law of thermodynamics for thermally isolated systems can be
stated as

lim Wex(7) =0, We(r) 20, V1, (23)
T—>00

as Jarzynski demonstrates in [29]; then the relaxation function
should have the same criteria described in Ref. [6] to satisfy
the above statements:

Ty(0) < 00, Wo(w) > 0. (24)

The second criterion is easily proven using Bochner’s theorem
[6,10]. However, the first criterion is based on the direct appli-
cation of the final value theorem [6]. If its conditions are not
satisfied, the compatibility with the vanishing behavior of the
excess work for large times can not be proven by this criterion.
Indeed, if we analyze a typical class of systems of thermally
isolated systems, of those presenting oscillatory relaxation
function [2,4,25],

W(t) = Acos (wt), (25)

we observe that one of the poles of its Laplace transform is in
the right complex plane, so the final value theorem cannot be
applied.

Howeyver, there is an alternative version of the final value
theorem that can be used in place of its traditional form [30]:
If n(¢) is a bounded function, then

~ 1 [T
lim s7(s) = lim —/ n(t)de. (26)
s—0+ =00 T Jy

Therefore, the finiteness of the Laplace transform can be used
again to prove the asymptotic limit of Eq. (23). Indeed,

~ 1 T
Y(0) < o0& lim —/ Y(t)dt =0, 27)
=0 T Jo
1 T
& lim — Wex (t)dt = 0, (28)
=00 T Jo
and
1 T
lim —/ We(t)dt =0 < lim We () =0, (29)
=00 T J T—00

where we consider the alternative version of the final value
theorem. For more detail, see Appendix A. Therefore, the
conditions (24) are enough to prove the compatibility of
linear-response theory with the second law of thermodynam-
ics for thermally isolated systems with bounded relaxation
functions.

V. TIME-AVERAGED EXCESS WORK

The previous result highlights the role of the time-averaged
excess work

W) = l /T W (t)dt 30)
T Jo
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to determine a criterion to make compatible the formalism
of linear-response theory with the second law of thermody-
namics. In this manner, we investigate the thermodynamic
consequences to adiabatic processes if we observe as the
main quantity of interest the time-averaged thermodynamic
work, instead of its traditional averaged form. Taking this new
point-of-view, we shall see that this produces an unexpected
relaxation time for the system. In this manner, in principle,
an adiabatic process will have the same characteristics as an
isothermal one. In Sec. VI we illustrate that presenting the two
characteristics discussed in Sec. III with the Landau-Zener
model.

In the following sections, we present how time-averaged
work can be calculated using linear-response theory and its
relaxation time. To do so, we define the idea of time-averaged
excess work

— 1 T
Wex = — / Wex(t)dta (31)
T Jo

where W = Wey + W,.

A. Equivalence between second Laws

First of all, it is important to see if the time-averaged work
preserves the second law of thermodynamics when observed
independently from the averaged work. We are going to prove
then that the properties of Eq. (23) are equivalent to

lim We(t) =0, Wex(7) = 0, V1. (32)
T—>00

The equivalence between Eqgs. (23) and (32) for the asymp-
totic limit was proven in Eq. (A3). Concerning the equivalence
of the positiveness of the excess works, we prove first the
implication (23)=(32). It is easy to see that

We(7) = % / Wee(t)dt > 0. (33)
0

Now we prove the second implication (32)= (23) of the
positiveness of the excess works. Consider that there exists
a particular switching time 7y where

Wex(t0) < 0. (34)

Since the excess work is a continuous quantity there must exist
an interval [tp — «, 70 + Y], with & > 0 and y > 0, where
the excess work must be negative for all instants within it.
It is then possible—changing the initial time—to determine a
new time o + y where W, must be negative. Therefore, the
implication is proved.

In this manner, we only have to regard Eq. (32) as a new
statement of the second law of thermodynamics.

B. Linear-response theory

Now we observe how the time-averaged excess work can
be calculated using linear-response theory. One can easily
show that (see Appendix B)

_ 5k2 T T
We(0) = 25 / / Wolt — @drdr,  (35)
0 0

where
_ 1 4
Wo(r) = ;/ Wo(u)du (36)
0

is the time-averaged relaxation function. This means that
calculating the time-averaged excess work is the same as cal-
culating the averaged excess work, but with the time-averaged
relaxation function.

C. Time-averaged relaxation time

When measured with time-averaged work, the system
presents a relaxation time. Indeed, the conditions such that
linear-response theory is compatible with the second law of
thermodynamics of Eq. (32) are the same as those of Ref. [6],

Ty(0) < 00, Wo(w) > 0. 37)

Therefore, analogously to what happens in an isothermal pro-
cess, we define a new relaxation time:

. /°° Tot) | Wy(0)
TR = — dt = —
o Yo(0) Wo(0)

< 00. (38)

D. Physical meaning

Mathematically, we approximate thermally isolated sys-
tems to isothermal ones by giving the former a relaxation time.
Physically speaking, what does that mean? In what follows I
give my interpretation of what happens.

The isothermal process has, as a main feature, a stochastic
process acting on the system of interest due to the dynamics
of the heat bath. Because of this, the relaxation time of the
system is illdefined and presents random aspects. It is then
necessary to take a stochastic average in every ensemble aver-
age performed on an observable of the system. In particular,
this stochastic average appears in the definition of the relax-
ation function of systems that passes through an isothermal
process

To(t) = BULHO)LH())o — C. (39)

If we observe the new relaxation function of the thermally
isolated system defined in Eq. (36), we have a new average on
the generalized force, not in the stochastic sense, but in time.
Is it possible that the thermally isolated system passes through
a random process at each time, like in isothermal ones? We
cannot affirm this in general, but, as we will see in Sec. VI, the
relaxation time of systems presenting oscillatory relaxation
functions are mathematically illdefined [see Eq. (46)] and
can be physically interpreted as a limited random number.
Therefore, at each moment along the process, the system of
interest presents a different relaxation time and, implicitly,
a different relaxation function. In this manner, we have to
average in time those relaxation functions to produce a new
one which we expect will furnish a well-defined relaxation
time to the system. Observing Eq. (38), that is indeed the
case. Also, as far as we know, there are no other situations of
thermally isolated systems with well-defined relaxation times
in the usual sense.

In the end, adiabatic and isothermal processes can be
indeed very similar, when both have randomness in their
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relaxation time. In this case, this can be solved by taking
appropriate averages in their relaxation functions, each one
in its own way. In particular, the irreversible work can be seen
as the stochastic average of the work given by Eq. (1):

Wi = W — AF. (40)

E. Executing in the laboratory

In order to furnish a feasible way to calculate the
time-averaged work without calculating the time-averaged
relaxation function, we remark that the expression (35) is
nothing more than an average of the W(¢) taken in switch-
ing times of a uniform random variable in the range [0, t].
Therefore, the time-averaged work can be measured in the
laboratory considering an average in the data set of processes
executed in the following way: First, we choose a switch-
ing time t. After, we randomly choose an initial condition
from the canonical ensemble and a time ¢ from a uniform
distribution in the range [0, t] to avoid preferred works in the
time average. Removing the heat bath, we perform the works
by changing the external parameter, collecting their values at
the end. The data set produced will furnish, on average, the
time-averaged work. I remark that we considered that this
unique average will take care of the two random processes
of this process: In the initial state and in the switching time.
Therefore, this procedure seems to be faster than the conven-
tional method of calculating the averaged works for equally
spaced switching times and taking the average.

VI. EXAMPLE: LANDAU-ZENER MODEL

To exemplify our results, we are going to treat here the
Landau-Zener model at initial temperature 7 = 0. The ob-
jective is to bring one more example to the literature that
furnishes an oscillatory relaxation function. Systems that are
characterized by this kind of feature represent an important
class in the literature, ever since it includes systems whose
validity in Hamiltonian modeling is out of the debate. It
includes, for example, the classical and quantum harmonic
oscillators [2,3], the 1/2 spin interacting with the magnetic
field [4], and statistical anyons [25].

The Hamiltonian of the system is

H = Ao, + T (t)o,, 41
where o,, o, are the Pauli matrices in the x and z directions,
respectively, A the coupling energy, and I'(¢) = 'y 4 g(¢)éT"
the time-dependent magnetic field. Calculating the relaxation
function, we have

Wo(t) = Acos (1), (42)

where

IA2 Lo+ ,/A2+T§
A: ) )
A2+FO A2+(F0+ /A2+F3)2
9—2 A2 4+ T2 44
= +Ig. 44)

(43)

A. Treatment with averaged work
First, we show that this function satisfies the second law
of thermodynamics (23) using the criteria for linear-response
theory. Second, we present the problems that are generated
by using the traditional averaged excess work. Indeed, the
Laplace transform and Fourier transform are

U(s) = <00, Y(w) = \/g(S(a)) +258(0)) > 0.

(45)

5
52 4+ Q2

For the second point, the main problem with the average
excess work treatment is the fact that the relaxation func-
tion does not decorrelate for long times, that is, there is no
convergence to a Dirac delta in this regime. As a first conse-
quence, the extension of the treatment of the finite-time and
weak regimes to the slowly-varying ones by using Eq. (19)
is lost. Also, the system presents a mathematically ill-defined
relaxation time. Indeed,
sin (00) 46
R = o (46)
Observe that such relaxation time can be physically inter-
preted as a random number between —1/€2 and 1/2. Indeed,
when measured in the laboratory using its own definition, it
will furnish a random quantity since the sum of the integral
must stop at some finite but high instant of time. Also, I
speculate that such a randomness property is allowed for each
instant of time. Indeed, as the relaxation function depends on
Q2 = sin (00)/ 1R, at each time ¢, the sine could oscillate such
that 7 do it in the same fashion. Therefore, the relaxation time
would be a limited random number along the process. Finally,
the mechanism found to justify the existence of a negative
entropy production rate is not suited for this kind of system.
Indeed, considering a driving process where the protocol is
given by

gt) = L + sin (n_t) @7
T T

with Q = 1, we depict the entropy production rate for differ-
ent T in Fig. 2, observing that in all cases there are instants of
time where its sign is negative.

B. Compatibility with the Second Law

We now analyze the Laplace and Fourier transforms of the
time-averaged relaxation function to see if they agree with the
compatibility criteria. The time-averaged relaxation function
is

Wo(t) = Asinc(Q1), (48)
with the respective time-averaged relaxation time
b4
TR = —. 49
R= 55 (49)

Its Laplace and Fourier transforms are
~ A Q
Wo(s) = o) arctan | — | < oo, (50)

S
JTA
229

Wo(w) = (sgn(w + Q) —sgn(w — ) >0, (51)
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FIG. 2. Entropy production rate for Landau-Zener model using
Eq. (47) as a protocol. Graphic (a) depicts the entropy production
rate for T = 0.1, showing negative values in that quantity. Graphic
(b) depicts for T = 10, showing as well negative values in the entropy
production rate. The mechanism of associating the existence of a
negative entropy production rate with the proximity of equilibrium
does not hold anymore in this context. It was used 2 = 1.

therefore the Landau-Zener model, and any other system with
an oscillatory relaxation function of type (48), agrees with the
second law of thermodynamics of Eq. (32).

C. Slowly-varying processes

As a main consequence of having a relaxation time, the
time-averaged excess work in the slowly-varying processes is
given by

We(1) = / TRICOIXITOIT(1)dr, (52)
0

where
- __ T _2 oo
Tr[C(1)] = NGk Qr] = h\/A +I2(), (53)
and

2A2 r VA2 4+ T2
IO ()] = OFVA Ty

A2+ T20) A2 4 (P(@) + /A2 + T2(0))

@

(b)

Wee/P

103

0.0 0.2 0.4 0.6 08 1.0
t/T

FIG. 3. Entropy production rate for the Landau-Zener model
using Eq. (47) as a protocol. Graphic (a) depicts the entropy pro-
duction rate for Tg/t = 10, showing negative values in that quantity.
Graphic (b) depicts for Tz /7 = 0.01, showing no negative values in
the entropy production rate. The behavior is identical to the case with
isothermal processes.

D. Entropy production rates

Considering a driving process where the protocol is that of
Eq. (47), we depict the entropy production rate for different
ratios Tg/t on Fig. 3. The situation is analogous to the case
of isothermal processes [6]. For T/t <« 1, we observe only
positive entropy production rate, while for Tz/Tt > 1, we
observe negative values.

VII. FINAL REMARKS

This work was divided into two parts. In the first, we
identified the criteria that make the linear-response theory
compatible with the second law of thermodynamics for ther-
mally isolated systems with bounded relaxation functions.
We observe that they are the same as those for the case of
isothermal processes. In the second part, observing the role of
the time-averaged work in the identification of the previous
criteria, we explored the possible consequences of defining
it as the main quantity of interest instead of its traditional
averaged counterpart. This proceeding defines an unexpected
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relaxation time to thermally isolated systems with oscillatory
relaxation function, which allows them to obtain some math-
ematical properties of isothermal processes: The construction
of slowly-varying processes from linear-response theory and
to observe negative entropy production rates for nonmono-
tonic protocols in rapid processes. We illustrate our results
with the Landau-Zener model. Last but not least, the exam-
ple treated illustrates how similar are thermally isolated and
isothermal processes. Indeed, the time-averaged excess and
irreversible works are of the same nature: Both are composed
of an average of the relaxation function, which has, each one
at its nature, an intrinsic random relaxation time.
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APPENDIX A: PROVING EQUIVALENCES
OF EQS. (18)-(20)
1. Proving Eq. (18)

First, we prove the direct implication:

¥ (0) < 0o = lim 1/ W(r)dt = 0. (AD)
0

T—>00 T

We have

1 [ 1 t
lim —/ Y(t)dt = lim — lim W(t)dt
0

T—>00 T 700 T 700 J
00

= lim — W(t)dt

=00 T Jy
N

= lim —{(0).
T—>00 T

Since W(r) is bounded, then W(0) is as well. The reverse
implication is a direct consequence of the final value theorem

[Eq. (26)].
2. Proving Eq. (19)
The direct implication
1 [° 1 [°
lim —/ Y(t)dt =0 = lim —/ Wex(t)dt =0 (A2)
T—00 T 0 T—>00 T 0

is proven considering the definition (35). In the reverse impli-
cation, we still use Eq. (35) and consider Bochner’s theorem.

3. Proving Eq. (20)

In the direct implication

1 T
lim —/ Wex(t)dt =0 = lim Wi (r) =0, (A3)
0 T—00

T—>00 T

we consider

.17
lim —
=00 T Jo

1
Wa (£)dt = / (lim We(zw))du — (A4)
0 T—>00

and use the fact that Wx(7) = 0, V1. The reverse implication
is direct.

APPENDIX B: TIME-AVERAGED
RELAXATION FUNCTION

Let us deduce the time-averaged relaxation function. Using
the assumption that A(¢) = A(¢/t), we have

W (1) = % /0 ' /0 /0 W(u — uM)A W dudu dt

T 1 1
1 / / / Wt (v — V)AW)A )dvdv'dt
TJo Jo Jo

1 1 1 T . .
/ / (—/ W(t(v — v'))dt)k(v)k(v')dvdv/
o Jo \T Jo

1 1 1 T(v—2')
i [ v

o Jo \t(v—=2")Jp

x LA )dvdv'

— /01 /Olw(f(v — V' )AW)AQW )dvdv’
= /0 ’ /0 Tw(u — W )M dudu!,
where
() = %/Ot W(u)du (B1)

is the time-averaged relaxation function. Observe that it pre-
serves the symmetry of the relaxation function, thatis, W(r) =
W(—t).
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