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Distinguishing between a power law and a Pareto distribution
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This paper introduces the location Pareto distribution as a natural extension of the power law distribution and
gives a likelihood ratio test for choosing between the two models. Some properties of the distribution and test are
thoroughly investigated, and applications to real data are provided. For large values of the observations the two
models perform similarly; this explains why some classical approaches are very insensitive to the differentiation
between them. The likelihood ratio test between the two models is simple to use and has a high level of
discrimination power. It is recommended when the complementary cumulative distribution function exhibits
linearity on a log-log scale.
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I. INTRODUCTION

Pareto models have the great appeal of the underlying sim-
plicity of the complementary cumulative distribution function
(tail function) which takes the form of a straight line when
plotted on a log-log graph. The study of these models for
analyzing examples of a wide range of disciplines began with
the work by Pareto [1,2] to describing the distribution of
wealth in a society; see [3,4].

The approaches used in works published in physics and
statistics journals diverge in several ways because of differ-
ences between the notions of power law, or scale-free, and
Pareto distributions. This article should serve as a starting
point to clarify this issue and to discuss a common method-
ology for studying Pareto models. According to Sec. III, our
analysis extends beyond the generalized Pareto distribution
(GPD) to include the power law model (see Fig. 2).

The extreme value theory (EVT) has a long history in
statistics that begins in the work by Fisher and Tippett [5]
and the characterization of the limit distributions of maxima
and minima by Gnedenko [6]. Pickands [7], Balkema, and de
Haan [8] are the first to direct the theory to the study of all
observations obtained above a particular threshold that lead to
GPD. The EVT is explained in [9–15] among many others.

On articles published in journals of physics, we consider
the widely cited works by Newman [16] and Clauset et al. [17]
as our starting point. The significant impact of these articles on
complex systems physics has extended their methodologies in
multiple directions; see [18–22]. Here we will employ power
law as is commonly used in the physics articles and Pareto
in a different sense, which we will explain later. However,
in physics, Pareto is also used as a synonym for power law,
like in [23,24] when discussing “Pareto versus the lognormal,”
which has been the subject of an interesting controversy. The
first cited authors approach the problem through the sample
coefficient of variation following [25], and the second uses a
maximum entropy test.
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Section II, in addition to providing the precise definitions
utilized in this work, introduces from a physical point of
view the location Pareto distribution (LPD) and its expression
from the δ parameter, which is interpreted as the displacement
of the origin of the scale of measure in Eq. (3). When δ = 0
is used, the LPD model matches the power law distribution,
and consequently it is not included in GPD. This allows to use
the same language for researchers working on this distribu-
tion in complex systems physics as for researchers working
on the Pareto distribution in statistical theory of extreme
values.

When a sufficiently high threshold is reached, LPD is
confused with a power law distribution (see Fig. 1 and
Proposition II.1) and is observed in practice, for instance,
in Sec. V C on customers affected by electrical blackouts in
the United States. The Pickands-Balkema–de Haan theorem
in Sec. III provides a mechanism for generating the LPD.
This theorem and Proposition II.1 also form a mechanism for
generating power law distributions, making LPD a prominent
alternative to the power law distribution (which is a particular
case); thus it is crucial to know how to distinguish between
the two models.

In IV A the likelihood ratio test between LPD and a power
law distribution has been studied in detail, showing that the
techniques proposed [17] to validate the power law distribu-
tion are especially weak in front of a LPD alternative; see
Table III, Table IV, and Table V in the Appendix. Section V A,
on daily rainfall accumulations in southwest England, and
Sec. V C, on the numbers of customers affected in electrical
blackouts, clearly show the different accuracy between the
two tests; however, in Sec. V B, on Danish fire insurance, the
two methodologies complement each other in the selection of
the threshold. The examples frequently show the interest in
examining them using different approaches.

The software on extreme value analysis that can be used to
duplicate the outcomes found by various authors is reviewed
in the final portion of Sec. III. Both the previous software and
the software we built are used in the real-world examples that
we investigate in Sec. V. We also include an evolution of the
code by [26] to estimate the location Pareto model as well as
for the likelihood ratio test introduced here.
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FIG. 1. Tail functions of a LPD against the tail function of a PL
(δ = 0) in log-log scale for μ = 1, α = 1, and several values of δ.

II. LOCATION PARETO MODEL

The classical Pareto (type I) distribution, following
Arnold [3], is the two-parameter family of continuous prob-
ability density functions,

fPL(x; α,μ) = α

μ

(μ

x

)α+1
(x � μ), (1)

where the shape parameter α > 0 is known as the tail index,
and the parameter μ > 0 is the minimum value of the distribu-
tion support (μ,∞). This distribution, originally introduced
by [1], occurs in many situations of scientific interest and
has significant consequences for understanding natural and
man-made phenomena. In this article, following [16] and [17],
we will call the distribution (1) a power law, and we will
represent it by PL(α,μ). A random variable X power law
distributed is expressed as X ∼ PL(α,μ), and so on.

The main feature of this model is its characterization given
by Pareto in 1896 [1] in terms of the linear relationship
to the log-log scale of its tail function (complementary of
the cumulative distribution function). Specifically, for F (x) ≡
FPL(x; α,μ) it is fulfilled:

log[1 − F (x)] = −α log(x) + α log (μ). (2)

From a physical point of view it is convenient to extend
this model in order to include possible changes in the origin of
the unit of measurement of x. This can occur, for instance, by
measuring temperatures, where in degrees Celsius the freez-
ing point is 0, in Fahrenheit 32, and in Kelvin −273.15. At
this point, we begin to explore distribution functions Fδ (x) that
satisfy the linear relation

log[1 − Fδ (x)] = −α log(x + δ) + α log (μ + δ). (3)

From this equation follows a characterization and
parametrization of the Pareto type II distribution [3]. That is,
the tail function that satisfies Eq. (3) must necessarily have the
expression Fδ (x) = FLPD(x; α,μ, δ) where

1 − FLPD(x; α,μ, δ) =
(

μ + δ

x + δ

)α

(x � μ), (4)

with the probability density function

fLPD(x; α,μ, δ) = α

μ + δ

(
μ + δ

x + δ

)α+1

(x � μ), (5)

where the shape parameter α > 0 will be called the tail index,
the parameter μ � 0 is the minimum value of the distribution
support (μ,∞). Since f](μ; α,μ, δ) = α/(μ + δ), it follows
that (μ + δ) > 0 must be satisfied and δ > −μ is the change
in the unit of measurement’s origin. Although negative μ

values are allowed in Pareto type II, we do not address this
option here. We will call the model (5) the location Pareto
distribution, and we will represent it by LPD(α,μ, δ). We
remark that the δ parameter we have introduced can also be
interpreted as the “distance” to the PL distribution, as we will
see in (8).

We use here the Pareto distribution, which is also known as
a Pareto type II distribution with μ = 0 in [3], or the Lomax
distribution [27]. It is denoted by PD(α, δ), and its probability

FIG. 2. Considered generalizations of the Pareto distribution (PD) in Sec. II and Sec. III.
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density function is

fPD(x; α, δ) = α

δ

(
δ

x + δ

)α+1

(x � 0), (6)

where the shape parameter α > 0 is the tail index, and δ > 0
is scale.

Note that the LPD includes the Pareto distribution (μ = 0)
and the power law (δ = 0). That is, we can write

PD(α, δ) = LPD(α, 0, δ)

PL(α,μ) = LPD(α,μ, 0). (7)

The Pareto distribution is also the submodel of distribu-
tions with power decreasing tail functions of the generalized
Pareto distribution, which will be discussed in the next sec-
tion; see Fig. 2.

Remark II.1. The following result may appear to be a
paradox: The transformation Y = X − μ for X ∼ PL(α,μ)
gives Y ∼ PD(α,μ). That is, there is a one-to-one corre-
spondence between a power law distribution (1) and Pareto
distribution (6). However, the two statistical models are re-
ally different, since there is no unique transformation for all
probability density functions of the model (the transformation
depends on the parameter μ, which depends on the variable
X ). The estimation of the parameters is then not comparable.

For large x, in a log-log scale, the tail functions of LPD
and PL look like parallel straight lines; see the negative tail
functions in Fig. 1 for μ = 1, α = 1, and several values of δ.
Only for δ = 0 is the graph a true straight line, but for large x
the lines look parallel with the origin’s ordinate displaced by
α log(1 + δ/μ). The next proposition explains how the LPD
model tends to the PL approach for large enough values, as
suggested in Fig. 1.

Proposition II.1. For large values of x, when it tends to
infinity, an LPD distribution resembles a PL distribution.

Proof. Taking the difference between (3) and (2)

log[1 − Fδ (x) − log[1 − F (x)] = −α log(1 + δ/x)

+ α log (1 + δ/μ),

and from the Taylor formula and large x the last expression is
approximately

= α log (1 + δ/μ) − α δ/x + O
(
1/x2

) ≈ α log (1 + δ/μ).

Hence, for large enough x, (2) and (3) look like parallel
straight lines.

A. Location, scaling, truncation, and residual distribution

The LPD is a family of probability distributions closed
by location-scale transformations. That is, for any random
variable X whose probability distribution function belongs to
LPD, for any real ν and any positive λ, the random variable
Y = λ X + ν belongs to LPD. The family is also closed taking
exceedances (truncation) andexcesses (residual) over a thresh-
old, as will be reviewed in this section.

A power law distribution can be considered synonymous
with a scale-free distribution; the equivalence is demonstrated
in [16]. The requirement of scale free merely tells us that PL is
closed by scale transformation. As the following proposition
demonstrates, the result generalizes to LPD.

Proposition II.2. If X is LPD(α,μ, δ) distributed, then, for
any positive λ and real ν, λ X + ν is LPD(α, λ μ + ν, λ δ − ν)
distributed.

Proof. From (4), it is self-evident that λX is
LPD(α, λ μ, λ δ) distributed, for any positive λ. Hence,
the proof can then be reduced to the case λ = 1.

Transforming the tail function of X , F X = [(μ + δ)/(x +
δ)]α , by Y = X + ν, we obtain

FY (y) =
(

μ + ν + δ̄

y + δ̄

)α

,

where δ = ν + δ̄ [note that δ̄ > −(μ + ν)]. From this it fol-
lows that Y is LPD(α,μ + ν, δ̄) distributed. �

In particular, the above proposition says

LPD(α,μ, δ) + δ = PL(α,μ + δ)

LPD(α,μ, δ) − μ = PD(α,μ + δ)

PD(α, δ) + μ = LPD(α,μ, δ − μ). (8)

The first formula in (8) provides an interpretation of the
parameter δ as the distance from LPD to the PL. Equation (8)
explains how by relocating a sample from a LPD we can
obtain a sample of a power law (adding δ) or a sample of a
Pareto distribution (subtracting μ). On the other hand, small
displacements of a sample from a power law or a Pareto
distribution always give a sample of a LPD. This could be
the answer to the article’s title question.

If X is LPD(α,μ, δ) distributed, then X/μ ∼
LPD(α, 1, δ/μ), as Proposition II.2 shows. Moreover,
from (8), it follows

X ∼ LPD(α,μ, δ) ⇔ (X + δ)/(μ + δ) ∼ PL(α, 1). (9)

Definition II.1. Let X be a continuous non-negative ran-
dom variable with distribution function F (x). For any
threshold ν > 0 the distribution of exceedances of X condi-
tional on X > ν, denoted as Xν = {X | X > ν}, is called the
truncated distribution (of X over ν). The tail function of Xν ,
F ν (x), is given by

F ν (x) = F (x)/F (ν). (10)

The distribution function of excessesX − ν conditional on
X > ν, denoted as X+ν = {X − ν | X > ν}, is called the resid-
ual distribution (of X over ν); see [10]. The cumulative
distribution function of X+ν , F+ν (x), is given by F+ν (x) =
Fν (x + ν).

Proposition II.3. The truncated distribution of a LPD over
a threshold ν > μ is simply the change of μ by ν:

LPDν (α,μ, δ) = LPD(α, ν, δ).

The residual distribution of a LPD over a threshold ν > μ

always leads to a PD distribution, according to the formula

LPD+ν (α,μ, δ) = LPD(α, 0, δ + ν) = PD(α, δ + ν).
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Proof. Equation (10) is simpler in terms of tail functions;
then from (4)

F ν (x) = F (x)/F (ν) =
(

μ + δ

x + δ

)α(
μ + δ

ν + δ

)−α

=
(

ν + δ

x + δ

)α

∼ LPD(α, ν, δ),

and in the same way

F+ν (x) = F (x + ν)/F (ν) =
(

ν + δ

x + ν + δ

)α

∼ LPD(α, 0, δ + ν).

�
Since the parameters α and δ of LPD do not change by

truncation, if δ = 0 the first part of Proposition II.3 extends to
PL(α,μ).

The Pareto distribution is closed by taking a residual dis-
tribution, from Proposition II.3, according to

PD+ν (α, δ) = PD(α, δ + ν). (11)

B. Estimation for LPD and PL

Given a sample of a random variable X LPD(α,μ, δ) dis-
tributed of size n the log-likelihood function is

l (α,μ, δ) = n log(α) − n log(μ + δ)

− (α + 1)
n∑

i=1

log

(
xi + δ

μ + δ

)
= n log(α) + n α log(μ + δ)

− (α + 1)
n∑

i=1

log (xi + δ), (12)

provided μ < xi for all observations in the sample.
From the second expression it is clear that with fixed α and

δ the maximum of l (α,μ, δ) is attained at the minimum of

the sample μ̂ = xm = min{xi}; in other words, μ should be as
big as possible, but less than or equal to the minimum, xm.
Deriving the log-likelihood in the α direction we obtain

∂αl = n

α
−

n∑
i=1

log

(
xi + δ

xm + δ

)

= 0 ⇔ 1

α
= 1

n

∑
log

(
xi + δ

xm + δ

)
.

That is, α̂ = 1/ξ (δ),where

ξ (δ) = 1

n

∑
log

(
xi + δ

xm + δ

)
. (13)

Substituting the estimated values into the log-likelihood func-
tion we obtain the profile likelihood

lp(δ) = l (α̂, μ̂, δ)

= −n{log [ξ (δ)] + log (xm + δ) + ξ (δ) + 1}. (14)

The δ̂ value that maximizes lp(δ) provides the maximum of
the log-likelihood. The maximum likelihood estimator (MLE)
is (α̂, μ̂, δ̂), and the log-likelihood value at this point is lp(δ̂),
where

μ̂ = min{xi}, α̂ = 1/ξ
(
δ̂
)
, δ̂ = arg{max{lp(δ)}}.

In particular, making δ = 0 on Eq. (13), the MLE of the
parameters of a PL(α,μ) distribution is μ̂ = xm and α̂0 =
1/ξ (0).

On the other hand, the second formula of (8) says that
subtracting μ from the data of a LPD(α,μ, δ) we get a
PD(α,μ + δ). Then, once the data are relocated to 0, subtract-
ing μ, we can use a code that estimates the parameters of the
Pareto distribution PD(α, σ ), with σ = μ + δ. For instance,
developing the code by [26], the following R code provides
the algorithm we use to obtain a MLE of the parameters of a
LPD from a numerical standpoint:

# MLE estimation for LPD

eLPD<–function(xdat, thres = NA){xm<–ifelse(!is.na(thres), thres, min(xdat));

xdt<–xdat[xdat >= xm]; max<–max(xdt);

xi<–function(delta){mean(log((xdt + delta)/(xm + delta)))};
int<–c(–xm, 100 ∗ max);

fp<–function(delta){–length(xdt) ∗ (log(xi(delta) ∗ (xm + delta)) + xi(delta) + 1)};
out<–optimize(fp, interval = int, maximum = T);

delta<–out$maximum; loglik<–out$objective;

list(alpha = 1/xi(delta), min = xm, delta = delta, lLPD = loglik)}

Note that the functions xi and fp in the code correspond to
Eqs. (13) and (14), respectively.

Sometimes the threshold is known and does not need to
be estimated. It is also not necessary to know μ to compare

PL and LPD, because in both cases the estimate is the same,
μ̂ = min{xi}. However, in most examples determining μ is not
an estimation problem but a threshold selection problem, as
we will see in the Sec. IV C.
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On the other hand, to calculate confidence intervals for the
α and δ parameters of LPD we can reduce to the PD distribu-
tion, using the second formula of (8) as we have already done,
and we continue to work conditioning by μ̂. The expected
Fisher information matrix for PD(α, σ ) is calculated directly
from the log-likelihood function and can be found in [3, Ch.
5]:

I (α, σ ) =
(

α−2 −(α + 1)−1σ−1

−(α + 1)−1σ−1 α(α + 2)−1σ−2

)
.

The expected Fisher information matrix for the α and δ

parameters of LPD with the change (α = α, δ = σ − μ) is
exactly I (α, δ), and the standard errors turn out to be

se(̂α) = α(α + 1)/
√

n,

se(̂δ) = (α + 1)(α + 2)1/2α−1/2δ/
√

n. (15)

Finally, to quantify the uncertainty for μ̂ a parametric
bootstrap method can be used. Note that, as mentioned in
Sec. IV C, applications frequently face a threshold selection
problem for μ rather than an estimating problem.

III. GENERALIZED PARETO DISTRIBUTION
AND FITTING TECHNIQUES

A relevant application of Pareto’s ideas emerged in the
1970s with the fundamental results in extreme value the-
ory by Pickands [7] and Balkema and de Haan [8]. The
Pickands-Balkema–de Haan theorem (PBdH) characterizes
the asymptotic behavior of the residual distribution over a
high threshold under widely applicable regularity conditions;
see McNeil et al. [11, Ch. 7] and Coles [10, Ch. 4]. The
generalized Pareto distribution (GPD) examined in this sec-
tion is exactly the limit distributions determined by the PBdH
theorem. Because all of the GPD distributions are supported
on positive numbers with the minim value μ = 0, neither the
PL nor the LPD is included in the GPD model; see Fig. 2.

The cumulative distribution function of a GPD is given by

FGPD(x; ξ, β ) =
{

1 − (1 + ξ x/β )−1/ξ , ξ 	= 0
1 − exp (−x/β ), ξ = 0

, (16)

where ξ ∈ R is called the extreme value index and β > 0 is a
scale parameter. If ξ < 0 the distribution has bounded support
0 � x � −β/ξ , and if ξ � 0, it is x � 0.

If ξ < 0, we say that the distribution is light tailed. If
ξ = 0, the GPD is the exponential distribution with mean β.
When ξ > 0 a GPD(ξ, β ) is a PD(α, δ) where α = 1/ξ and
δ = β/ξ , in this case the distribution has a power decreasing
tail function and finite moments of order k if k < α, and we
say that it is heavy tailed. The mean of a GPD is β/(1 − ξ ),
and the variance is β2/[(1 − ξ )2(1 − 2ξ )] provided ξ < 1 and
ξ < 1/2, respectively.

The (ξ, β ) parametrization, due to Von Mises [28], has
the outstanding property of unifying in a single model the
three different behaviors that can present the tails of the dis-
tributions: heavy, exponential, and light tailed. Then, when
estimating the parameters, the type of distribution does not
need to be specified a priori. By extension we will call heavy,
exponential, and light-tailed distributions those that have by

limit a GPD distribution with parameter ξ positive, zero, or
negative, respectively.

The next result shows a duality of heavy and light tails
(changing from ξ to −ξ ) that is very interesting and will be
used for the examples in the Sec. V. Castillo et al. [29] intro-
duced it; however, the demonstration is placed here because it
hasn’t been published yet.

Proposition III.1. If ξ > 0, β > 0 and δ = β/ξ , then a
random variable X is GPD(ξ, β ) distributed if and only if
its transformed variable t (X ) = δ X/(X + δ) is GPD(−ξ, β )
distributed.

Proof. For δ > 0, t (x) = δ x/(x + δ) is a strictly increasing
function that applies (0,∞) to (0, δ). Its inverse is t−1(z) ≡
x(z) = δ z/(δ − z), from (0, δ) to (0,∞). Let Z = t (X ), its
tail function is

F Z (z) = F gpd (x(z)) =
(

1 + ξ z

β − ξ z

)−1/ξ

=
(

β

β − ξ z

)−1/ξ

= (1 − ξ z/β )1/ξ ,

that is, the tail function of a GPD(−ξ, β ). The converse is a
consequence of the same method applied to z(x) ≡ t (x). �

Under our parametrization, the Pareto distribution (PD) of
Eq. (6) appears as a GPD(ξ, β ) with ξ > 0,

PD(α, δ) = LPD(α, 0, δ) = GPD(ξ = 1/α, β = δ/α),

α > 0, δ > 0. (17)

Similarly, after Proposition III.1, the GPD with ξ < 0 can be
thought of as the complement of the PD and denoted cPD;
see Fig. 2. It is also observed that PD generalizes to LPD by
including the location parameter μ and generalizes to GPD by
allowing parameter ξ to be zero or negative.

All distributions in LPD have power decreasing tails (or
heavy tails) and support (μ,∞), see (4). Proposition II.3
shows that the residual distribution of a LPD(α,μ, δ) over any
threshold is exactly the PD(α, δ) (its asymptotic limit). All
of the examples we will look at in this paper have been con-
jectured to have power decreasing tails. Then asymptotically
the residual distribution for a large enough threshold μ must
be a PD, that is, a GPD with ξ > 0, by the PBdH theorem.
Equivalently the truncated distribution above this threshold
(relocated at μ) must be as a LPD. This last point gives
mathematical support to LPD, providing a natural asymp-
totic mechanism for the observation of LPD in real-world
examples.

Remark III.1. Gnedenko [6] characterized the domains of
attraction of the maxima in terms of the regularly varying
functions, properly extending to the tails. The approximations
obtained from Gnedenko and the PBdH theorem are not the
same [11, Ch. 7]. A regularly varying function, which ap-
proximates a distribution in the Fréchet attraction domain,
is the product of a PL(α, 1) with a slowly varying function,
unknown in practice. The PBdH theorem is more accurate
because the asymptotic approximation of the residual distribu-
tion in this case is exactly a PD distribution (ξ > 0) and more
generally a GPD. The approximation that is derived usually
in practice for a truncated distribution for a large enough
threshold, say, μ, is in the first case a PL(α,μ) distribution
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for x > μ, since the slowly varying function is forgotten, and,
in the second case, a LPD(α,μ, δ) distribution for x > μ. In
the first case the data are fitted for a family of a single pa-
rameter and in the second case for a biparametric family that
contains the previous one and will have a better adjustment.
Proposition II.1 explains how the LPD approach leads to the
PL approach.

A review of the available software on extreme value anal-
ysis appears in [30]. R software [31] contains some useful
packages for dealing with EVT. The R package evir [32]
provides maximum likelihood estimation at the same time for
the block maxima and threshold model approaches. The R
package poweRlaw [33] enables power law and other heavy-
tailed distributions to be fitted using the techniques proposed
by [17]. The R package ercv [34] based on the residual coef-
ficient of variation is a complement, and often an alternative,
to the available software on EVT; see [29]. The R package
ismev [35] allows fitting parameters of a generalized Pareto
distribution depending on covariates and offers diagnostics
such as qqplots and return level plots with confidence bands.

IV. TESTING THE POWER LAW HYPOTHESIS

Clauset et al. [17] in the abstract of their paper write,
“Commonly used methods for analyzing power law data, such
as least-squares fitting, can produce substantially inaccurate
estimates of parameters for power law distributions, and even
in cases where such methods return accurate answers they
are still unsatisfactory because they give no indication of
whether the data obey a power law at all.” They introduce
a methodology based on an estimate of the parameters by
MLE to determine the distance to the model by Kolmogorov-
Smirnov distance and validate the PL model with a bootstrap
procedure. These techniques, also called here the Clauset
methodology, are available in the R package poweRlaw [33].

The PBdH theorem gives an asymptotic mechanism for
generating the LPD that is a natural extension of PL and that
for a high threshold performs similarly to PL; see Proposi-
tion II.1. Hence, LPD is a prominent alternative to PL, and it is
crucial to distinguish between the two alternatives. Clauset’s
methodology has been very helpful to identify when the PL
model is acceptable in view of the numerous occasions in
which roughly straight-line behavior on a doubly logarith-
mic plot for the cumulative distribution function has been
observed, usually only for values above some lower bound.
These techniques can be applied to testing PL against an
alternative LPD, but the results are unsatisfactory, as we will
see later.

A. Likelihood ratio test for PL against alternative LPD

The likelihood-ratio test (LRT), which can be justified
by the Neyman-Pearson lemma, is the best way to test the
goodness of fit of a nested competing model under regularity
conditions. It can be used to test the null hypothesis of PL
against the alternative LPD with the deviance statistic

D = 2[l (α̂, μ̂, δ̂) − l (α̂0, μ̂, 0)], (18)

where the log-likelihood function (12) is evaluated in
(α̂, μ̂, δ̂), the maximum likelihood estimator for LPD, and in

(α̂0, μ̂, 0), the maximum likelihood estimator for PL; see [10,
Sec. 2.6.5] or [36, Sec. 8.2]. The asymptotic distribution of the
deviance statistic is in this case a chi-square distribution with
one degree of freedom, D ∼ χ2

1 . Following a detailed simu-
lation examination, it is evident that for sample sizes larger
than 100 and α greater than 2, the asymptotic distribution is a
good approximation. The critical values are obtained through
simulation for smaller sample sizes and various α values.

The approximate critical points are obtained by simulation
of the PL distribution, computing the LRT from the LPD
and PL estimates. Since the test is invariant for monotone
transformations the calculations made for μ = 1 are valid for
any other value. The simulations are all run with 105 samples.
Table II in the Appendix shows the critical points for the
LRT (18) for values of the α parameter 1, 2, 4, and 8, and
for sample sizes 10, 25, 50, 100, 250, and 500, corresponding
to the 90th and 95th percentiles, as well as the values obtained
with the asymptotic distribution. In most practical examples α

is between 1 and 8, and above this value the exponential model
is already a comparable alternative.

The power estimates are obtained by simulation of the LPD
distribution with 104 samples, testing PL against LPD by LRT
at significance level p = 0.10. Tables III and IV show the
power of the LRT for values of the α parameter 1, 2, 4, and 8,
values of the δ parameter −0.5, 1, 2, 4, and 8, and for sample
sizes 25, 50, 100, 250, and 500. The power increases with δ

(distance to the null hypothesis) and the sample size, n, and
decreases slightly with α. The power is greater than 80% in
all cases for samples of size 100 or larger and for delta values
equal to or greater than 4.

While being widely used, Clauset’s technique is not free
from criticism. For instance, Ref. [37] mentions that the al-
gorithm inappropriately rejects PL in a particular case. We
obtained guarantees for the procedure while creating Table V
by simulating the empirical significance levels and achieving
values that did not surpass the nominal level of significance
(p = 0.10). However, the techniques in [17] are very insensi-
tive to differentiating between PL and LDP (see Table V) in
front of the high levels of power obtained with the LRT, as
shown in Tables III and IV. The power of Clauset’s methodol-
ogy is similar to the level of significance for α parameters and
δ parameters between 2 and 8, and sample size n = 100, and is
therefore useless. The power of Clauset’s methodology is less
than 20% and for LRT more than 77% in the same range of
parameters for sample size n = 250, Values become less than
26% and higher than 96% for LPD for sample size n = 500.

B. Validating the LPD hypothesis

Clauset’s methods can be used to verify that a dataset is
suitable for the PL model. The stronger power of the likeli-
hood ratio test, on the other hand, may lead to the rejection
of PL in favor of LPD for the same dataset, but this does
not guarantee that the LPD model is true. It would also be
necessary to test the LPD hypothesis.

For a nonnegative random variable X , the coefficient of
variation is the ratio of the standard deviation to the mean,
CV(X ) = sd(X )/mean(X ). The coefficient of variation offers
the best comparison test between the exponential distribution
and the truncated normal alternative [25] and the best compar-
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FIG. 3. Exploratory data analysis for threshold selection on the daily rainfall accumulation data with the graphs of Hill, residual mean, and
residual coefficient of variation.

ison test between a power law and the truncated log-normal
alternative [23].

The residual coefficient of variation, cv(t ), was introduced
in [38,39] as a tool for describing data sets with tail behav-
ior similar to GPD. This is the coefficient of variation of
the residual distribution of X over the threshold t � 0; see
Sec. II A. If the raw data consist of a sequence of independent
and identically distributed measurements x1, . . . , xn, extreme
events can be detected using the sample CV(t ),

t → cv(t ) = sd{x j − t | x j > t}/mean{x j − t | x j > t}.
(19)

The graph of cv(t ) with pointwise error limits is called a CV
plot; see Fig. 3(c) and Fig. 5(c). The R package ercv provides
exploratory data analysis, a threshold selection method, and
model validation approaches established in [29,38,39], from
the asymptotic distribution of the cv(t ) as a random process
indexed by the threshold. This practice is referred to here
asresidual CV methodology.

The LPD hypothesis can be tested using the residual CV
methodology (Tm function in R package ercv), with the
following reasoning: Given a sample that comes from an
LPD distribution, the residual distribution from any value, for
example, the minimum of the sample, must be PD, by Propo-
sition II.3. Then PD is contrasted with the sample shifted to
the origin. If the contrast accepts PD, any displacement of this
distribution is LPD, by Proposition II.2.

C. Threshold selection algorithms

In general there are few doubts about the estimation meth-
ods and algorithms to implement them when the model with
which the data are analyzed is well defined. The difficulty
arises in specifying the model in the context of the various
Pareto models and, especially, because it is usually the case
that empirical data, if they follow some kind of Pareto dis-
tribution, do so only for values above some unknown lower
bound. The standard practice in threshold selection is to adopt
as low a threshold as possible, subject to the fact that the
Pareto approximation is reasonable for the selection of higher
data.

The threshold selection is an important aspect in the
asymptotic approximation by Pareto distributions, but there is
no definitively established algorithm. The Hill method is the
best-known procedure and one of the best-studied estimators
in the EVT literature. The Hill estimator is exactly the MLE
estimator for the PL model (Sec. II B), and the Hill-plot hill
function in R package evir gives the estimates for various
values of the truncated ordered sample. The general strategy
for selecting the threshold is to find a stable region where
the estimates of different order statistics are quite similar.
Novak [15] recommends that, in these cases, one select the
threshold at which the estimator achieves the average value
of the estimators in the stable region because, despite fluctua-
tions in the region’s boundary, the resulting threshold will be
nearly the same.

Coles [10] recommends using GPD distributions with
MLE methods to extrapolate from observed levels to unob-
served levels of a dataset of independent observations above
a threshold, and he uses a mean residual MR-plot (mrl.plot
function in R package ismev) for threshold selection. He pro-
poses revising threshold selection by locating a stable region
where estimates of the shape and modified scale parameters
over a range of thresholds are produced (gpd.fitrange function
in the ismev R package). Instead, in some cases, he stays with
the original decision despite the evidence to the contrary; see
Sec. V A. In [40] an automated threshold selection technique
is developed by locating a stable region of the shape and mod-
ified scale parameters using the Pearson’s chi-square test of
goodness of fit for the normality of the observed differences.

The techniques of Clauset et al. [17] present an objective
method of discerning and quantifying PL behavior in empiri-
cal data. The first step of their methodology is to choose the
threshold μ that minimizes the Kolmogorov-Smirnov distance
between the truncated ordered sample above this value and the
PL distribution (estimate_xmin function in R package poweR-
law). This estimated value is considered as the threshold that
selects the subset of data that could be fitted to a PL model.
This method can be considered free of subjectivity.

Usually, the selection of an appropriate threshold is per-
formed on a visual basis of several graphs, each with
pointwise error limits for a wide range of thresholds. Hence,

064113-7



JOAN DEL CASTILLO AND PEDRO PUIG PHYSICAL REVIEW E 107, 064113 (2023)

some kind of global test is needed to avoid the risk of misuse
for multiple testing, such as the Tm function in R package ercv
already mentioned. In [38] an automatic threshold selection
algorithm is provided that truly reduces the multiple testing
problem (thrselect function in R package ercv). An automatic
method is an “objective” test that helps researchers. Auto-
matic methods need not be used in an uncritical way; they can
of course be used as a starting point for fine tuning. It may well
be that a subjective approach is in reality the most useful one.

D. Tail plots

Before fitting Pareto models to a dataset, it is common
to run an exploratory data analysis to see if the linear rela-
tionship (2) holds empirically. For this it is sufficient to draw
on a log-log scale the empirical tail funcition. Keep in mind
that the LPD model is more general than the PL model and
that it is likewise expressed on a log-log scale with a linear
relationship (3). It is convenient to draw the locus of points{[

log

(
xr,n + δ̂

μ̂ + δ̂

)
, log

(
1 − r

n + 1

)]
, r = 1, 2, . . . , n

}
,

(20)

where xr,n is the r-order statistic of a size n dataset with a
lower limit μ, to which a displacement δ of the origin has
been applied. This graph is used to visualize if the data can
correspond to an LPD model, that in the case δ = 0 would be
the PL; see Eq. (9). In the general situation, the LPD model’s
parameter δ must be estimated, which can be done using the
evir or ismev packages we discussed before, or by choosing
the δ value that produces the greatest correlation between the
two variables of Eq. (20).

Sometimes a roughly straight-line behavior on a doubly
logarithmic plot with δ = 0 is observed only for values above
some lower limit. This could lead to ignoring data below this
limit and adjusting a PL for the sample above the lower limit.
It can also happen that estimating δ the graph shows straight-
line behavior for all data, suggesting the LPD adjustment for
the whole sample, and avoiding removing an important part
of the sample. This is shown in Sec. V C as well as Fig. 5.

However, in practice, identifying Pareto distributions by
the approximately straight-line behavior of a sample is not
enough. It should always be interpreted and validated using
models, using either Clauset’s approach for PL, the LRT, the
residual CV methodology for LPD, or better yet, all options at
once.

V. DATA ANALYSIS OF REAL-WORLD EXAMPLES

Three well-known examples will be discussed since they
show disparities in the application of the approaches de-
scribed, emphasizing the importance of weighing the different
indicators before deciding on the final model. The analyzed
examples present distributions that have been conjectured to
have heavy tails. For this reason, no previous studies have
been presented to rule out exponentiality or light tails.

As explained in part by Proposition II.1 and Fig. 1, it is
habitual for LPD to be accepted with a low threshold and PL
to be accepted only for a high threshold. Adopting a model

with little data, on the other hand, is easier than accepting one
with a large number. As a result, the more data with which
we can accept a model, the more evidence we have that it is
valid. We usually specify the standard error in parenthesis for
the the estimators of parameters. However, when referring to
a threshold next to a value, we usually specify the number of
observations in parentheses that are larger (exceedances), for
instance, “μ = 30 (152 exceed).” Standard errors are calcu-
lated using this sample size from (15).

A. Daily rainfall

This example is based on the rainfall dataset rain in the
R package ismev. The vector contains 17 531 daily rainfall
accumulations in mm (48 years) at a location in southwest
England over the period 1914 to 1962. These data form part
of a study made in [41] and was discussed in [10, Sec. 4.4].
The author, in the latest publication, states that a residual
mean MR plot for these data suggests a threshold of μ = 30
(152 exceed); see Fig. 3(b). Then the parameters of LPD are
estimated by α̂ = 5.420 (2.822), δ̂ = 10.327 (6.292).

Clauset ’s methodology indicates that the dataset is consis-
tent (at the tail) with the PL hypothesis, with p-value 0.63, for
the threshold μ = 27.7 (210 exceed) and tail index estimated
by α̂0 = 4.170 (1.487). The chosen threshold is very close to
the one suggested in [10, Sec. 4.4], and the LRT does not
reject PL against LPD. On the other hand, PL is rejected when
the LRT is applied to μ = 25 (284 exceed), with a p-value of
0.047, and to μ = 20 (554 exceed), with a p-value of 0.001.
These details cannot be disclosed with the Clauset technique.
The Hill plot, Fig. 3(a), explains why PL has been rejected
with lower thresholds, since the evolution of the MLE of α

parameter for the PL model as a function of the threshold
grows steadily and stabilizes only in a “small” interval in the
part top right of the graph.

The methodologies of Coles (package ismev) and Clauset
(package poweRlaw) are coincident with respect to threshold
selection, although in the first case the LPD model is esti-
mated and in the second the PL model. In the first case the
choice of the threshold is a subjective interpretation of the
interval where a linear growth of the MR plot is observed;
see Fig. 3(b). In the second, is derived from an automatic
algorithm that may be used to any dataset.

The residual CV methodology (package ercv) takes a
different approach. The plot of the residual CV above the
threshold μ = 2 [Fig. 3(c)] shows a stable behavior that is
equivalent to the fact that the α estimate in the LPD model is
also stable. This fact can be verified in [10, Fig. 4.1], or using
function gpd.fitrange in R package ismev, where the MLE es-
timate is approximately constant. Nevertheless, surprisingly,
the author accepts the threshold μ = 30, contrary to his own
recommendations; see Sec. IV C.

The LPD hypothesis can be tested as explained in
Sec. IV B. The Tm function (package ercv) is applied from
μ = 2 (6619 exceed) averaging the CV for 100 approximately
equally separated thresholds. The test allows us to accept
LPD, with the p-value 0.245. The MLE estimator is α̂ = 7.527
(0.789) and δ̂ = 42.671 (5.031). The LRT does not deny that
the data are supported by a PL above the threshold μ = 30.
This is clearly compatible with accepting LPD above the
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TABLE I. The parameter estimates (in bold) for daily rainfall accumulations made with three methodologies, as well as estimates of the
expected value over thresholds for a period of 48 years. To provide confidence intervals, the models have been reestimated from α̂ estimates
plus (up) and minus (down) twice its standard error.

LPD parameters Expectation over threshold

Method Model size α̂ μ δ̂ 60 70 80 100

Coles up2 152 11.06 30.0 58.51 6.0 2.5 1.1 0.2
Coles at 152 5.42 30.0 10.33 7.5 3.6 1.9 0.6
Coles down2 152 −0.22 30.0 −33.95

Clauset up2 210 7.14 27.7 0.00 0.8 0.3 0.1 0.0
Clauset at 210 4.17 27.7 0.00 8.4 4.4 2.5 1.0
Clauset down2 210 1.19 27.7 0.00 83.4 69.4 59.1 45.3

Resid. CV up2 6619 9.11 2.0 53.31 9.7 4.5 2.2 0.6
Resid. CV at 6619 7.53 2.0 42.67 12.6 6.3 3.0 1.1
Resid. CV down2 6619 5.95 2.0 32.10 17.9 9.7 5.6 2.1

Empirical 17 531 0.0 6 5 3 0

μ = 2, as explained in Proposition II.1 and Fig. 1. However,
accepting the null hypothesis of a test done with 6619 data
points gives more credibility than accepting the hypothesis
of another test with 152 or 210. The standard error of the
estimated parameters for LPD clearly shows an improvement
in accuracy with sample size.

Table I shows (in bold) the parameter estimates for daily
rainfall accumulations made with the three methodologies
we call “Coles,” based on the classic EVT methodology,
“Clauset,” and “residual CV,” as well as estimates of the ex-
pected value of observations over the 60, 70, 80, and 100 mm
thresholds for a period of 48 years, equal to the observed
dataset; see Sec. IV C. Moreover, to provide confidence in-
tervals, we have reestimated the models and expected values
from the estimates of α̂ plus (up) and minus (down) twice
its standard error. The last row of the table corresponds to
the observations made empirically, the maximum of which is
86.6 mm.

When we compare with the empirical results in Table I,
we can see that the estimations of the expected value for 70
and 80 mm are similar in all three models, allowing us to
extrapolate above 100 mm. The Coles model, on the other
hand, understates the expected values slightly and shows a
negative value α = −0.22 when its estimation is reduced by
two standard errors. This result is not compatible with the
LPD model and is interpreted within the GPD model leading
to the estimation of a light tail model with a support bounded
by 33.95 mm (−δ), which makes it impossible to set values
above this threshold The Clauset model, which assumes the
PL distribution (δ = 0), provides very wide confidence inter-
vals for the expected values over the thresholds. The limited
sample size explains these findings, of course.

The first two methodologies use 152 and 210 observations
that represent the values above the empirical quantiles 99.13%
and 98.80%. With these models we estimate the observations
above the quantiles 99.96 (60 mm), 99.97 (70 mm), and 99.98
(80 mm). These models cannot be used to estimate values
above the usual quantiles 90, 95, 97.5, and 99. On the other
hand, the 6619 observations (larger than 2 mm) represent
62.24% of the sample and allow us to estimate with the

residual CV methodology the quantiles for these probabilities
as well. It represents well in general the daily accumulation
of rainfall and can be used to see if significant differences are
observed over time.

B. Danish fire insurance

The Danish fire insurance dataset, “danish” in the R pack-
age evir, is a highly heavy-tailed, infinite-variance model used
to illustrate the basic ideas of extreme value theory; see [9],
[11, Example 7.23], and [15, Example 9.8]. Using Clauset ’s
methodology, the LRT, and the results of [15] the study on
dataset danish in [29] is expanded below.

In the last work [29] is reported that the automatic thresh-
old selection algorithm from ercv (thrselect function) chooses
for danish the threshold 9.2 (116 exceed) with the estimate
α̂ = 2.242 (0.675). In this case, the technique of Proposi-
tion III.1 was applied on data that had been transformed
using the strictly increasing function tdata (ercv) because this
duality allows us to work with finite moments. The result is
compared to that obtained in [11] by MLE above threshold
10 (109 exceed) with the estimate α̂ = 2.0 (0.56). Although
they are not the same, the results are not significantly differ-
ent. Figure 4 compares the estimation of the complementary
cumulative distribution function in log-log scale to the previ-
ously discussed estimations for Danish fire insurance data.

The tail plot of Eq. (20) presents for the whole dataset dan-
ish a roughly straight-line behavior. The Clauset’s method-
ology indicates that the dataset is consistent with the PL
hypothesis (p-value 0.52), for the threshold μ = 1.375 (1564
exceed), and the LRT clearly accepts PL against LPD (p-value
0.90) with the estimate α̂0 = 1.403 (0.085). Surprisingly this
value of α̂ practically coincides with the estimate obtained in
[15, Example 9.8] of α̂ = 1.41 with the ratio estimator intro-
duced there; Fig. 4 also compares all approximations. These
latest results, acquired with 1564 exceedances in a thoroughly
studied example, introduce a unique approach. Extrapolating
with the PL model appears to be preferable to the LPD model
in this case.
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FIG. 4. Empirical tail function of Danish fire insurance data in
log-log scale, adjusted first from McNeil (lower curve), second from
residual CV (middle curve), and third, simultaneously, from Novak
and Clauset’s methodology (upper curve).

C. Electrical blackouts

The dataset consists of 210 observations of the numbers
of customers affected in electrical blackouts in the United
States between 1984 and 2002. The values range from 646
to 7 499 000 with a median of 91 000. This example was
studied in [17], which does not reject PL for observations
above 229 000 (59 exceed) with p-value 0.62.

The tail plot (20) in Fig. 5(a) for the whole dataset does not
behave in a straight line, therefore PL can be considered only
on a higher threshold. In contrast, the tail plot in Fig. 5(b)
with parameter δ estimated for model LPD shows for the
whole dataset a roughly straight-line behavior, corresponding
to Eq. (3). It is well known that empirical observation alone
is insufficient to validate LPD, and an appropriate technique
should be used.

When the computations are repeated with the R package
powerRlaw, PL is accepted with the estimated threshold of
93 285 (104 excess) and p-value of 0.61. The LRT applied to
the 104 exceedances rejects PL with a p-value of 0.002, but PL
is accepted with LRT applied to the 59 exceedances (p-value
0.68), with the estimate of α̂0 = 1.27 (0.375).

This example has very heavy tails, and the methodology
of the residual coefficient of variation (ercv) must be applied

again by transforming the data with tdata function (ercv); see
Proposition III.1. Then the multiple thresholds test Tm accepts
LPD for the whole 210 observations (p-value 0.799). The
MLE for LPD parameters are α̂ = 1.764 (0.337), δ = 201 504
(56 146), for the whole dataset with minimum value μ = 646
(210 exceed). Figure 5(c) shows a stable behavior of the
residual CV for the whole sample, according to what the Tm
test suggests.

The methodology of the residual CV guarantees adjust
ingLPD to all dataset, and Clauset’s methodology guarantees
adjusting PL to the 59 largest values, above the threshold
229 000. Figure 5(a) shows the tail plot for the whole dataset,
a dotted vertical line at the minimum of the 59 largest values,
and the fit of these exceedances by PL. Morever, the dashed
vertical line at δ = 201 504 relates the displacement required
to adjust LPD to the threshold from which PL adjustment
is possible (the x-axis point 229 000/646 and 201 504/646,
normalizing to the minimum). Note that to adjust PL we must
discard 151 observations below the minimum of exceedances,
and to adjust LPD we can use all the data and simply move
them by δ (almost the same amount) to obtain a linear rela-
tionship to log-log scale as shown in Fig. 5(b).

The contribution of the LPD against PL model is shown in
this example, especially in the first two plots in Fig. 5. The
first model is broader, based on an asymptotic mathematical
solution that can be validated with a larger sample size (mak-
ing it more representative), and fits the PL model for higher
thresholds in real-world examples with power decreasing tails.

VI. CONCLUSIONS

(1) By adding an additional physical parameter to the
power law distribution (PL) the LPD model (location Pareto
distribution) is introduced. Moreover, LPD is a generalization
of the Pareto distribution (PD) that is not part of the GPD.

(2) LPD allows for comparison between GPD (extreme
value theory) and PL at tail models. When a sufficiently high
threshold is considered, PL and LPD are confused.

(3) The likelihood ratio test clearly differentiates between
LPD and PL and shows an improvement over Clauset’s
methodology.
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(4) The residual coefficient of variation approach is the
best tool to validate the LPD model.
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APPENDIX: TABLES SHOWING TEST POWER

The tables for the Sec. IV A with connection to the LRT
test between LPD and PL distributions are included in this ap-
pendix. All tables are obtained by simulation. Table II shows
the critical points of the test at the significance levels p = 0.10
and p = 0.05, using 105 samples of a PL distribution. Ta-
bles III, IV, and V show the tests power at signicance levels
p = 0.10, using 104 samples of a LPD distribution. The first
two show the power for the LRT. The last one for the Clauset’s
methodology. The specifics that show how LRT is superior to
Clauset’s methods are covered in Sec. IV A.

TABLE II. The critical points for the LRT for sample size 10 to 500, and asymptotic values, tail index α = 0.1 to 8, corresponding to the
90th and 95th percentiles.

α Probability 10 25 50 100 250 500 Asymptotic

1,0 90 3.434 3.099 2.869 2.76 2.717 2.719 2.706
1,0 95 4.745 4.396 4.076 3.924 3.877 3.852 3.841
2,0 90 2.600 2.974 2.905 2.795 2.757 2.748 2.706
2,0 95 3.776 4.007 4.105 3.996 3.914 3.900 3.841
4,0 90 1.996 2.295 2.701 2.845 2.765 2.735 2.706
4,0 95 3.271 3.037 3.567 3.959 3.911 3.894 3.841
8,0 90 1.722 1.621 2.000 2.454 2.760 2.722 2.706
8,0 95 3.030 2.528 2.670 3.217 3.852 3.842 3.841

TABLE III. Power of the LRT for sample size n = 25 to 500, δ = −0.5 to 8, tail index α = 1 and 2, at significance level of p = 10%.

α = 1 α = 2

δ n = 25 50 100 250 500 25 50 100 250 500

−0.5 0.258 0.400 0.620 0.917 0.995 0.179 0.271 0.43 0.741 0.941
1.0 0.167 0.322 0.583 0.930 0.998 0.171 0.276 0.495 0.859 0.989
2.0 0.298 0.616 0.914 1.000 1.000 0.297 0.551 0.859 0.998 1.000
4.0 0.520 0.890 0.997 1.000 1.000 0.521 0.855 0.994 1.000 1.000
8.0 0.742 0.986 0.999 1.000 1.000 0.764 0.982 1.000 1.000 1.000

TABLE IV. Power of the LRT for sample size n = 25 to 500, δ = −0.5 to 8, tail index α = 4 and 8, at significance level of p = 10%.

α = 4 α = 8

δ n = 25 50 100 250 500 25 50 100 250 500

−0.5 0.143 0.164 0.237 0.435 0.671 0.139 0.138 0.146 0.215 0.335
1.0 0.190 0.223 0.333 0.645 0.901 0.182 0.219 0.239 0.370 0.600
2.0 0.303 0.423 0.674 0.969 1.000 0.292 0.354 0.461 0.769 0.965
4.0 0.500 0.744 0.958 1.000 1.000 0.454 0.608 0.819 0.992 1.000
8.0 0.744 0.955 0.999 1.000 1.000 0.677 0.882 0.988 1.000 1.000

TABLE V. Power of the Clauset methodology for sample size n = 100 to 500, δ = 2 to 8 and tail index α = 2 to 8, at significance level of
p = 10%.

α = 2 α = 4 α = 8

δ n = 100 250 500 100 250 500 100 250 500

2 0.081 0.141 0.16 0.080 0.157 0.227 0.056 0.107 0.211
4 0.096 0.138 0.148 0.113 0.196 0.203 0,087 0.202 0.261
8 0.105 0.113 0.161 0.105 0.154 0.181 0.115 0.188 0.227
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