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Traversing the nucleation-growth landscape through heterogeneous random walks
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The nucleation-growth process is a crucial component of crystallization. While previous theoretical models
have focused on nucleation events and postnucleation growth, such as the classical nucleation theory and
Lifshitz-Slyozov-Wagner model, recent advancements in experiments and simulations have highlighted the
inability of classical models to explain the transient dynamics during the early development of nanocrystals. To
address these shortcomings, we present a model that describes the nucleation-growth dynamics of individual
nanocrystals as a series of reversible chain reactions, with the free energy landscape extended to include
activation-adsorption-relaxation reaction pathways. By using the Monte Carlo method based on the transition
state theory, we simulate the crystallization dynamics. We derive a Fokker-Planck formalism from the master
equation to describe the nucleation-growth process as a heterogeneous random walk on the extended free energy
landscape with activated states. Our results reveal the transient quasiequilibrium of the prenucleation stage
before nucleation starts, and we identify a postnucleation crossover regime where the dynamic growth exponents
asymptotically converge towards classical limits. Additionally, we generalize the power laws to address the
dimension and scale effects for the growth of large crystals.
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I. INTRODUCTION

The nucleation-growth process plays a pivotal role in
the intricate nonequilibrium dynamic phase transitions in
condensed matter systems [1–3]. The two-stage process of
nucleation and growth elucidates the emergence of a new
phase, wherein small nuclei form due to fluctuations, followed
by their successive growth driven by thermodynamic forces.
The occurrence of crystal growth via an intermediate poly-
morph that is not thermodynamically preferred is commonly
referred to as Ostwald’s ripening, in the context of crystal-
lization [4–6]. The Wilson-Frenkel model provided a succinct
elucidation of the nucleation rate, hinging on the free energy
of the critical nucleus [7,8]. This model was further extended
by computing the critical value from a free energy profile that
incorporated both bulk energy and interfacial interactions [9].
Notably, Becker and Doring (BD) developed a kinetic model
that utilized ordinary differential equations to describe Ost-
wald’s ripening [10]. Lifshitz, Slyozov, and Wagner (LSW)
subsequently derived growth exponents of 1/2 and 1/3 for the
reaction and diffusion limits, respectively, under flux-balance
conditions [11,12]. Later research demonstrated that the long-
time behavior of the BD model was in agreement with the
diffusion-limited scenario of the LSW model [13–15]. De-
spite the initial triumph of classical models, modern studies
have revealed unprecedented phenomena that transcend the
conventional scope of these early theories.

Recent simulations and experiments have demonstrated
that the Wilson-Frenkel model is inadequate for providing a
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quantitative explanation of crystal growth kinetics [16–18].
For instance, the important role played by the structural order
in the nucleation-growth dynamics was reported by simula-
tions [19,20]. Different power-law relations that cannot be
accounted for by the LSW model were characterized by
time-resolved measurements of nanoparticle crystallization,
where continuous transitions across different growth regimes
were also observed [21–23]. A multistep process in which
nanocrystal growth was coupled with transient structural reor-
ganization was observed in liquid-cell transmission electron
microscopy experiments [24–27]. Utilizing super-resolution
techniques, researchers have further elucidated the structural
reordering during the prenucleation stage at atomic scale res-
olutions [28,29]. These emergent phenomena have prompted
significant theoretical advancements aimed at explaining the
physicochemical mechanism of microscopic crystallization,
particularly during the early stages of nanocrystal develop-
ment.

Here we report a theoretical work that delineates the evolu-
tion of individual nanocrystals through a series of intricately
linked chain reactions. This work captures the reaction mech-
anism via the activation-adsorption-relaxation pathway of a
single-particle exchange event. Utilizing the transition state
theory, we calculate the activation energy and perform Monte
Carlo simulations (MCSs) to showcase the stochastic reaction
dynamics throughout both the prenucleation and postnucle-
ation stages. We describe the evolution of the probability
density function through the master equation (ME), solving
it in a continuous-time fashion. Additionally, we establish
that the nucleation-growth dynamics can be characterized as
a generalized heterogeneous random walk on the activated
free energy landscape, with the Fokker-Planck equation (FPE)
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derived from the ME. This finding contrasts with previ-
ous works on anomalous diffusion processes in real space
[30–34]. Our mathematical derivations provide quantita-
tive relationships for the different transient regimes of the
nucleation-growth process. In the prenucleation stage, the
system reaches a transient quasiequilibrium state following
initial crystallization. After nucleation events, the nanocrystal
experiences rapid growth before the long-time linear-growth
regime. Finally, we present generalized characteristic growth
exponents that account for the dimension and scale effects
observed during the late-stage growth of large nanocrystals.

II. MODEL AND RESULTS

A. Reaction mechanism and activation-adsorption-relaxation
pathway

In the context of developing a single nanocrystal, the local
system constitutes a biphase mixture comprising a liquid so-
lution, where solute particles dissolve homogeneously in the
solvent, along with a solid multiparticle crystalline cluster. To
simplify matters and ensure generality, we model the solute
particles as identical particles, irrespective of the specific type
of solution, be it ionic or molecular. The total free energy
of this system comprises three extensive components: (1) the
bulk free energy of the solution, (2) the bulk free energy of the
crystal, and (3) the surface free energy of the solution-crystal
interface. In an open system linked to an ideal constant bath,
the solution remains fixed and is deemed to be an implicit
background reference. Therefore, its free energy is not ex-
plicit. Owing to the extensive nature of the interfacial free
energy, the ground-state condition necessitates that the area
of the solution-crystal surface be minimized. As a result, the
ground-state free energy of such a system in three dimensions
is expressed as follows:

G(n) = 4aπr2(n) + bV0n, (1)

where n is the number of particles in the crystalline cluster,
a and b are the interface and bulk free energy density respec-
tively, r(n) = 3

√
3V0n/4π is the crystal radius, and V0 is the

volume of a single particle. In this paper, we set V0 as the
unit volume so that n plays the role of the normalized crystal
volume. In crystallization, a > 0 and b < 0, as 4aπr2(n) and
bV0n contribute to the driving forces for solvation and crys-
tallization respectively. The total free energy G, as the sum of
these components, reaches a global maximum when n = nc.
When n < nc, the growth of crystal is thermodynamically
unfavored, but when n > nc, the crystal growth is favored by
the net thermodynamic force.

The evolution of an individual nanocrystal is modeled as
a series of reversible chain reactions where the elementary
event is the single-particle exchange between the solution
and crystal phases and no multicrystal coalescence is taken
into account [Fig. 1(a)]. The reaction mechanism is demon-
strated through an activation-adsorption-relaxation pathway,
as an analog of Marcus theory of electron transfer [35,36].
Each particle-exchange event consists of three transient steps:
(1) an activation step from the initial ground state to the
preadsorption activated state, driven by thermal fluctuation;
(2) a fast adsorption step from the pre- to the postadsorption
activated state, as a single particle hops across the solution-

(a)

(b)

(c)

FIG. 1. Reaction mechanism and free energy profiles of acti-
vation energies. (a) The scheme of the chain reactions and the
activation-adsorption-relaxation pathway of crystallization. n de-
notes the normalized crystal volume. (b) The free energy profile
along the reaction pathway, when n < nc. �G∗

± is the forward or
backward activation energy. The activated conformations are in the
shapes of lune and gourd. (c) The size-dependent activation energy.
At nc, �G∗

+ = �G∗
−.

crystal interface; (3) a relaxation step from the postadsorption
activated state to the final ground state. Since the adsorption
is completed instantaneously, it is an infinitely small step on
the reaction pathway, so that the free energies of the pre- and
postadsorption activated states are the same. According to the
transition state theory, the energy of the activated states is
the maximum on the minimum-energy pathway, as the saddle
point on the potential energy surface. In a forward reaction
where n → n + 1 as shown in Fig. 1(b), the preadsorption
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activated crystal is in the shape of a lune, i.e., a relative
complement of a single particle in the crystal ball, and the
postadsorption activated crystal is the shape of a gourd, i.e., a
union of a single particle and the crystal ball. These distorted
conformations exhibit the facilitating role of surface defects as
the extension of the nucleation sites in heterogeneous nucle-
ation. Because they have the same free energy, the area of the
red-shaded spherical cap in Fig. 1(b) is determined as follows:

Aδ = 1
2 A0(1 + λ), (2a)

where λ = bV0
aA0

∈ (−1, 0) and A0 = 4πr2(1) is the surface
area of a single particle. Therefore, the base radius and the
volume of the spherical cap is solved and expressed as fol-
lows:

rδ = r0

√
(1 − λ2), (2b)

Vδ = π

3
r3

0 (2 − λ)(1 + λ)2, (2c)

where r0 = r(1) is the radius of the single particle. The height
of the preadsorption activated crystal at transition state of the
(n → n + 1) forward reaction is denoted by the function h(n),
which is defined through the following equation:

π

6
h
(
3r2

δ + h2
) = V0n + Vδ. (3)

The activation energy is the free energy difference between
the transition state and the ground state, so in the forward
reaction, it is determined by the change of total interfacial area
associated with the preadsorption activation:

�G∗
+(n) = aA+ + aπ [h2(n) − 4r2(n)], (4a)

where A+ = Aδ + πr2
δ . Following the same procedure, the ac-

tivation energy of the backward reaction is solved as follows:

�G∗
−(n) = aA− + aπ [h2(n − 1) − 4r2(n)], (4b)

where A− = A0 − Aδ + πr2
δ . We plot the n-dependent acti-

vation energies �G∗
± for forward and backward reactions in

Fig. 1(c). The critical size effect is manifested when n ap-
proaches nc. When n is smaller than the critical value, the
forward activation energy is higher than the backward, which
indicates that a small cluster is thermodynamically favored.
This shows that the birth of small nanocrystals is driven by
fluctuation rather than thermodynamic force. At the critical
size, the forward and backward reactions are balanced with the
identical activation energies. After n becomes larger than nc,
the forward activation energy becomes smaller than the back-
ward, and the continuous growth of large crystals is driven by
thermodynamic force.

Based on the equations of ground-state free energy and
activation energy, we analyze the convergence and asymp-
totic behaviors of several functions. (See the Appendix for
a detailed derivation). It is shown that (1) the ground-state
free energy profile converges to local flat geometry in a
−1/3-power law as n increases; (2) the activation energy con-
verges to constant in a similar way; (3) the forward-backward
activation difference, �G∗

+(n) − �G∗
−(n), converges to the

ground-state free energy gap, G(n) − G(n−1), in a −4/3-
power law. These asymptotic behaviors of free energy

landscape are crucial to the crystal growth at long times and
will be further addressed in the following sections.

B. Stochastic nucleation-growth dynamics of chain reactions

MCSs have been widely applied among topics in statistical
physics [37–39], especially in the stochastic diffusion kinetics
during phase transition where other methods, such as molec-
ular dynamics simulation, were not feasible for long-time
simulations [40,41]. Since the early 1990s, the development of
kinetic MCSs has inspired the dynamic simulations for crystal
growth [42–44], but the previous works have been mostly
built on the ground-state free energy profiles and missed the
transition states in the reaction mechanism [45–48]. Thus,
the activation-adsorption-relaxation pathway enables us to
overcome this disadvantage with the activated free energy
landscape as an extension of classical theories. Based on the
activation energy, we conduct the MCS for the stochastic
chain reactions of the crystallization process. The forward or
backward reaction probability is calculated as follows:

w±(n) = 1
2 e−�G∗

±(n)/kBT , (5)

where �G∗
±(n) is the activation energy of forward or back-

ward reaction. The details of the simulation algorithm are
presented in the Appendix.

The MCS results unveil the distinct crystallization stages
at various time scales. We plot the dynamic evolution of the
mean volume 〈n〉 and mean radius 〈r〉 of the nanocrystals in
Fig. 2(a). The crystallization process is separated into two
stages: prenucleation and postnucleation. The prenucleation
stage describes the early development of small nanocrystals
before they reach the critical size. A transient slowdown is
denoted by the intermediate plateau of the growth curve. Af-
terwards, nucleation events occur and lead to the transition
towards the postnucleation stage.

At the beginning of the prenucleation stage, the evolution
reflects the birth dynamics of nanocrystals from the initial
system without any crystal denoted as n = 0. The subsequent
enlargement is hindered by the dominant backward reaction
probability w−, as it is larger than the forward reaction proba-
bility w+, leading to the slowing down of the prenucleation
growth. Around the slowdown regime, a quasiequilibrium
state is reached, where the nanocrystals follow the Maxwell-
Boltzmann distribution. At the quasiequilibrium state, the
characteristic mean volume and radius are expressed as fol-
lows:

n̄c = 1

Z

nc∑
n=0

ne−G(n)/kBT , (6a)

r̄c = 1

Z

nc∑
n=0

re−G(n)/kBT , (6b)

where Z = ∑nc
n=0 e−G(n)/kBT . These values characterize the

quasiequilibrium limit of the prenucleation stage and play the
role of the threshold for the nucleation events.

After entering the postnucleation stage, the nanocrystals
continue to grow. At the beginning of the postnucleation
stage, the nucleation events promote crystallization with the
emergent large crystals of volume larger than nc. In the
late postnucleation stage where 〈n〉 � nc, the growth rate
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(a)

(b)

FIG. 2. Time-resolved evolution of the nucleation-growth dy-
namics. The curves denote the numerical solutions of ME and FPE.
The markers show the results of MCS. (a) Mean crystal volume
and mean crystal radius versus time. The horizontal line denotes n̄c

and r̄c at quasiequilibrium. (b) Dynamic growth exponents based on
mean volume and mean radius versus time. The upper and lower
horizontal lines respectively denote the asymptotic limits as αn → 1
and αr → 1/3.

becomes stable because the activation energies converge to-
wards n-independent constants. As a result, a crossover from
superlinear- to linear-growth regimes is observed in the post-
nucleation stage. To characterize this dynamic crossover,
we define the time-resolved growth exponents based on the
time-resolved evolution of mean crystal volume and radius
in the logarithmic scale as αn = d ln〈n〉/d ln t and αr =
d ln〈r〉/d ln t [Fig. 2(b)]. In the superlinear regime right after
the transition from pre- to postnucleation growth, αn is larger
than 1. In the linear regime at long times, αn converges to-
wards 1, indicating a linear growth of the nanocrystal volume
as time passes.

To model the nucleation-growth dynamics in the
continuous-time fashion and explicate the evolution of
the probability distribution, we use the following ME to
describe the stochastic kinetics of the chain reactions:

∂ p(n, t )

∂t
=

+∞∑
n′=0

[Kn,n′ p(n′, t ) − Kn′,n p(n, t )], (7)

where p(n, t ) is the time-dependent probability density
function and Kn,n′ is the transition operator for the reaction-
induced transition from n′ to n. According to the reaction
mechanism, only single-particle exchange is considered, so K
forms a sparse transition matrix whose off-diagonal terms are
shown as follows:

Kn+1, n = k+e−�G∗
+(n)/kBT , (8a)

Kn−1, n = k−e−�G∗
−(n)/kBT , (8b)

where k± is the reaction prefactor that characterizes the
basic reaction frequency of forward or backward reaction.
With a transform of �G∗

+ → �G∗
+ + kBT ln k+

k and �G∗
− →

�G∗
− + kBT ln k−

k , we could unify the prefactor in a sym-
metric form as k = √

k+k−. The numerical solution of ME
extends the results of MCS in a continuous-time fashion and
further provides the evolution dynamics of probability distri-
bution.

In the prenucleation stage [Fig. 3(a)], the probability den-
sity function evolves from the initial condition of a delta
function to the quasiequilibrium where p ∝ exp[−G(n)/kBT ].
During the continuous broadening of the probability density
function, the small-n part is almost conserved, while the large-
n tail gets boosted slowly. It is a nonequilibrium relaxation
driven by fluctuation that counterbalances the thermodynam-
ical driving force −∇nG favoring a diminishing nanocrystal
when n < nc. Such a negative thermodynamical force im-
pedes the propagation of the probability density function at
the large-n tail, and the small-n region is allowed to approach
transient detailed balance at the quasiequilibrium limit of the
prenucleation stage where 〈n〉 = n̄c.

Then, the postcritical crystals start to emerge and thus
nucleation events begin. During the nucleation, the probability
density function shows a transition from the monotonic to
bimodal pattern [Fig. 3(b)]. At the small-n region, despite
the stability of the curvature that indicates the preserved lo-
cal quasiequilibrium, the probability drops significantly with
time. At the large-n region, not only is the fast tail propa-
gation observed, but a second peak also emerges and rises,
illustrating the nucleation of the large nanocrystals beyond nc.
This transition reflects Ostwald’s ripening that describes the
generation of large crystalline clusters through the thermody-
namically unfavored intermediates.

Apart from the monotonic-bimodal transition of the prob-
ability density function, the nucleation dynamics is also
characterized by an exponential decay of the small nanocrys-
tals [Fig. 3(c)]. Elicited from MCS and ME results, the
phenomenological equation of nucleation process could be
written as follows:

P0 = e−kN t , (9)

where P0 = ∑nc
n=0 p(n, t ) is the cumulative probability of

the nanocrystals that are smaller than or equal to the critical
size, and kN is the nucleation rate. With kN , crystallization is
characterized as a multistage process across the correspond-
ing time scales. When t  k−1

N , nucleation events have not
started and P0 almost remains stationary as 1, indicating the
prenucleation stage. When t ≈ k−1

N , the emergence of crystals
beyond the critical size denotes the early postnucleation stage,
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(a)

(b)

(c)

(d)

FIG. 3. The probability density functions at different crystallization stages. (a) Prenucleation stage. (b) Transition from prenucleation to
early postnucleation stage. (c) Exponential decay of small clusters during nucleation. The solid lines denote the numerical solutions of ME and
FPE. The markers show the results of MCS. (d) Late postnucleation stage.

whereas t � k−1
N implies the end of nucleation events and

the late postnucleation stage. Based on the numerical results,
we extract the value of kN and compare it with previous
studies. Evaluation of kN with the nucleation rate from the
classical nucleation theory gives a Zeldovich factor of around
10−3–10−2, consistent with experiments and simulations of
the liquid-phase crystallization [49,50]. Besides, kN is of the
same order of magnitude as the Kramers escape rate but is
around twofold smaller [51]. This difference will be explained
with the Fokker-Planck formalism in the next section.

After nucleation, the small-n region of the probability den-
sity function decays and the large-n region dominates the
statistics. The probability density function is a moving mix-
ture of exponential and Gaussian components, and the net
propagation is driven by the gradient of free energy profile.
The exponential component is associated with the nucle-
ation dynamics and the Gaussian component is related to the
stochastic fluctuation, which will be explained in the next
section as well.

C. Fokker-Planck formalism of nucleation-growth dynamics
as heterogeneous random walk

In this paper, the activation energies are expressed through
differentiable functions, so the ME could be formulated in the
Fokker-Planck fashion when n is a continuous variable (see
the Appendix). The corresponding FPE is written as follows:

∂ p(n, t )

∂t
= ∂

∂n
D1 p + ∂2

∂n2
D2 p, (10a)

where

D1 = 2ke−[�G∗
+(n)+�G∗

−(n)]/2kBT sinh
�G∗

+(n) − �G∗
−(n)

2kBT
,

(10b)

D2 = ke−[�G∗
+(n)+�G∗

−(n)]/2kBT cosh
�G∗

+(n) − �G∗
−(n)

2kBT
.

(10c)
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The two terms on the right-hand side of Eq. (10a) denote
the drift and diffusion components of the FPE respectively.
Equation (10a) is equivalent to the following stochastic differ-
ential equation for the generalized Langevin dynamics:

dn

dt
= − k

kBT
∇nF + √

D2ξ, (11a)

where ξ is a Gaussian white noise, and F is defined as follows:

F = kBT

k

∫ n

0
D1dn. (11b)

Hence, we describe the nucleation-growth process as a
heterogenous random walk. Since D1 denotes the reaction-
induced driving force as a function of �G∗

±, F is the potential
function characterizing the activated free energy landscape.
Besides, the explicit n dependence of D2 demonstrates the het-
erogeneity of the diffusion term and induces a spurious drift.
These features help to explain the discrepancy between the
nucleation rate kN and the Kramers escape rate. The potential
function depicted by F does not have parabolic behaviors at its
local extremes, in contrast to the condition used in Kramers’
derivation, leading to high-order corrections that reduce the
escape rate [51]. Also, D2 varies with n, which is different
from the state-independent diffusion constant in Kramers’
calculation.

However, the heterogeneous effect decays as n increases.
From the analysis of the asymptotic behaviors of the activation
energy, it is shown that the ground-state free energy tends
to a constant-gradient flat geometry, and the forward and
backward activation energies converge to two constants, when
the crystal size approaches infinity. The related convergence
could be described by a 1/3-power law. In such a limit, D1 and
D2 becomes n independent, so Eqs. (10a) and (11a) describe
a simple random walk. This scenario is consistent with the
linear-growth regime in the late postnucleation stage, and the
corresponding dynamics could be simplified as follows:

d〈n〉
dt

= − kb

kBT
e−a(A0−2πr2

δ )/2kBT . (12)

Since D1 and D2 converge to constants in the linear-growth
regime, the transition probability of FPE turns out to be a
Gaussian kernel. The probability density function could be
expressed as the convolution of the Gaussian kernel and the
nucleation dynamics:

p = −
∫ t

0

1√
4πD2(t − τ )

e−[n−nc+D1(t−τ )]2/4D2(t−τ ) dP0(τ )

dτ
dτ.

(13)
This equation explains the postnucleation probability density
function shown in Fig. 3(d). The left part of probability den-
sity function depicts an exponential behavior because of P0

[Eq. (9)], and the right part is a Gaussian tail with the variance
of 2D2t . Over time, while the exponential component remains
stable, the Gaussian component undergoes broadening, result-
ing in the long-time probability density function converging
towards a simple Gaussian curve.

Moreover, we examine the robustness of the power-
law relations between the mean volume and radius of the
nanocrystals in the postnucleation stage. In general, 3αr =
αn does not always hold for an arbitrary probability density

function, because this equality requires that 〈r〉3 ∝ 〈n〉, which
breaks down due to the nonequilibrium heterogeneous random
walk at the prenucleation stage and the bimodality behavior
during nucleation. However, there are two specific regimes
where 3αr = αn is preserved: the quasiequilibrium limit of the
prenucleation stage and the late postnucleation stage where
〈n〉 � nc. During the transient quasiequilibrium, the growth
of the nanocrystals pauses, so both αr and αn are close to zero.
On the other hand, when the postnucleation linear-growth
regime is approached, 4π〈r〉3 = 3〈n〉, so that αr = 1/3 and
αn = 1 (see the Appendix for the detailed derivation).

D. Scale effect in collision frequency
and activation relaxation steps

In previous sections, we studied the nucleation-growth
dynamics based on the stochastic chain reactions with the
assumption that the dilute solution remains constant. This
is consistent with the situation of the early development of
nanocrystals where only small crystalline clusters are formed
and most particles stay in the solution phase. Under this
circumstance, the reaction kinetics follows the mass action
law and is determined by the activation energies and the
concentrations of different components, while the prefactor
k is independent of the volume or radius of nanocrystals.
However, when the crystals keep growing, especially in the
late postnucleation stage where the crystal radius approaches
one hundred nanometers or even beyond one micrometer, the
scale effect starts to play an important role in modifying the
collision frequency [52]. When the crystal radius is at the
same scale as the average interparticle distance in the solu-
tion, the crystal could not be treated as a volumeless point,
and the collision frequency is no longer a simple product of
the concentrations, because the scattering cross section scales
with the crystal size. Besides, the scale effect would also affect
the activation and relaxation time along the reaction pathway.
Since the activation and relaxation steps characterize reorga-
nizations of the crystal conformation driven by fluctuation
dissipation, their rates also vary with the crystal size. For a
small nanocrystal, the activation and relaxation time is neg-
ligible, so k is simply determined by the collision frequency.
But for a large crystal, the reorganization time enlarges and
slows down the overall reaction kinetics.

These factors invoke a generalization of the model for
large-crystal growth with a scale-dependent k. Hence, we
extend the model with a radius-dependent k as follows:

k ∼ rβ. (14)

Since this scale effect is significant for large crystals in the
late postnucleation stage where the growth dynamics follows
a characteristic power-law relation, the corresponding power
law is extended as follows:

〈r〉 ∝ tα
′
r = tαr/(1−αrβ ). (15)

This equation broadens the spectrum of the power ex-
ponent from the scenario of a constant k to that of a
scale-dependent k. In the trivial case of β = 0, we restore
the simple relation of α

′
r = αr = 1/3. If the collision between

the spherical crystal and solute particles is the rate-limiting
mechanism, β = 2 and α

′
r = 1. On the condition that the
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activation and relaxation dynamics follows a heat diffusion
equation, we have β = 1 and α

′
r = 1/2, consistent with the

classical solution of the one-phase Stefan problem [53,54] and
the reaction-limited solution of LSW model [11,12].

III. DISCUSSION

The activation-adsorption-relaxation pathway provides a
detailed depiction of the evolution of free energy along the
reaction coordinate. This pathway aids in formulating the
reaction kinetics by utilizing the activation energy from the
transition-state configuration, and in turn, sheds light on
the underlying physicochemical mechanism that underpins
the interplay between crystal growth kinetics and transient
structural reorganization. The intermediate transition states
extend the ground-state free energy profile with the acti-
vated conformations induced by fluctuation. Our utilization
of the activation-adsorption-relaxation mechanism allows us
to model the elementary reaction events via transition state
theory. Furthermore, by computing the size-dependent ac-
tivation energy, we account for a crucial aspect that has
been overlooked in classical nucleation-growth theories. Pre-
vious works, such as the Wilson-Frenkel, BD, and LSW
models [7,8,10–12], commonly estimated nucleation kinet-
ics based solely on ground-state free energy, neglecting the
crucial role of activation energy in nonequilibrium processes
across reaction barriers. By incorporating the activated free
energy landscape, our approach provides a more complete
and nuanced understanding of crystallization dynamics from
a reaction-centric viewpoint, thereby potentially reconciling
discrepancies between experimental findings and classical
theoretical models. The size-dependent activation energies
contribute to the heterogeneity of the stochastic reaction ki-
netics, as an extension of diffusion models for varying power
laws [32,33]. This scenario remained obscure until the recent
development of experimental and simulation techniques. The
state-of-art electron microscopy and NMR methods have en-
abled the time-resolved measurements of crystal growth with
subnanometer resolution, and the evolution of the structural
heterogeneity has been observed during the early development
of the small nanocrystals [28,29,55]. Thus, the theory reported
in this work provides quantifiable relationships that can be
verified in future experiments and simulations [19,20].

Our quantitative findings pertaining to the postnucleation
stage exhibit high levels of generalizability across diverse
systems, as evidenced by their agreement with a broad range
of experimental and simulation studies. The exponential nu-
cleation dynamics is in general consistence with previous
measurements, and the nucleation rate calculated in our model
extends the Kramers escape rate with heterogeneous effect.
Besides, our model explains the different power-law rela-
tions during the late postnucleation growth. In an ideal dilute
system, the mean crystal volume grows linearly with time,
i.e., αn = 1. For spherical nanocrystals, αr takes 1/3 for the
reaction-based growth exponent. When the scale-dependent
collision and activation-relaxation mechanisms are consid-
ered, we find αr = 1/2, which could be generalized to the
system of any integer dimension. This result agrees with
the classical solution of the multidimension one-phase Stefan
problem and the reaction-limited solution of the LSW model

[11,12,53,54]. It has been observed in the reaction-limited
growth of faceted nanoflakes [21] and liquid-liquid phase sep-
aration systems [22]. The growth exponent could be further
reduced if the activation or relaxation is slow and plays the
rate-limiting role. For instance, a power law of around 1/8 has
been seen in the growth of spherical nanocrystals, indicating
that the relaxation of crystal conformation is achieved through
the stochastic reptation motion [21]. By this means, Eq. (15)
broadens the power-law relations for different dimensions and
scale-dependent relaxation, which could explain the diverse
growth exponents observed in various systems. Moreover, the
transient superlinear regime at the beginning of the postnu-
cleation growth displays a dynamic feature that has not been
studied and invokes future endeavors.

Given that our model describes the nucleation-growth
dynamics of individual nanocrystals in an ideal constant solu-
tion, these results can be applied to open systems coupled with
well-controlled baths, provided that the solute concentration
remains higher than that of the nanocrystals. Nevertheless, it
is worth noting that as the crystal radii approach hundreds of
nanometers or even exceed one micrometer, the majority of
solute particles have already crystallized. Hence, the further
crystallization process is driven by the coalescence of multiple
crystals, resulting in a reduction in the total number of individ-
ual nanocrystals [52]. Likewise, in a closed finite-size system,
particularly during spontaneous homogeneous nucleation, our
model is solely applicable for elucidating the early stages of
crystallization, i.e., the prenucleation stage. This is because
during the late-stage development of large crystals in a closed
system, the coalescence of multiple crystals becomes the
dominant process instead of solute adsorption, as the solute
concentration is relatively low and crystal-crystal interactions
assume greater significance.
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APPENDIX

1. Convergence of G(n) and �G∗
±(n)

We analyze the convergence of several important functions
based on the ground-state free energy and activation energy
from Eqs. (1) and (4). Here, we show the derivations.

(i) �G(n) = G(n) − G(n−1): Substituting the expression
of the ground-state free energy in Eq. (1), we get

�G(n) = a 3

√
36πV 2

0 [n2/3 − (n − 1)2/3 ] + bV0. (A1)

The terms in the bracket on the right-hand side of Eq. (A1)
could be expressed as follows:

n2/3 − (n − 1)2/3 = 2

3

∫ n

n−1
x−1/3dx. (A2)
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Because n−1/3 < ∫n
n−1 x−1/3dx < (n−1)−1/3, �G(n) − bV0

converges to 0 faster than 2a
3

3
√

36πV 2
0 /(n−1). In other words,

the ground-state free energy profile shows (−1/3)-power-law
convergence to a local flat geometry.

(ii) �G∗
±(n): From Eq. (3), the height of the transition-state

crystal is solved as follows:

h(n) = p(n) − r2
δ

p(n)
, (A3a)

where

p(n) = 3

√
1

2

[√
4r6

δ + q2(n) + q(n)
]
, (A3b)

q(n) = 8r3(n) + 6

π
Vδ. (A3c)

Substituting Eq. (2), we find that p is monotonically increas-
ing with respect to λ ∈ (−1, 0), and thus 2r(n) < p(n) <

2r(n + 1). We define the function σ as

σ (x, y) = h2(x) − 4r2(y) + 2r2
δ . (A4)

As a result, we have the following inequalities:

r4
δ

16r2(n + 1)
<

σ (n, n)

4
< r2(n + 1) − r2(n) + r4

δ

16r2(n)
,

(A5a)

r2(n − 1) − r2(n) <
σ (n − 1, n)

4
<

r4
δ

16r2(n − 1)
. (A5b)

With the same procedure for the convergence of G(n) −
G(n−1), we see that σ (n, n) and σ (n−1, n) both show
(−1/3)-power-law convergence towards zero as n → +∞.
Together with Eqs. (4), it indicates that both forward and back-
ward activation energies follow the same type of convergence
towards their n → +∞ limits:

lim
n→+∞ �G∗

+(n) = a
(
Aδ − πr2

δ

)
, (A6a)

lim
n→+∞ �G∗

−(n) = a
(
A0 − Aδ − πr2

δ

)
. (A6b)

(iii) We define the function ψ (n) =
[�G∗

+(n) − �G∗
−(n)]−[G(n) − G(n−1)], and based on

Eq. (A4), it could be expressed in terms of σ function as
follows:

ψ (n) = aπ [σ (n, n) − σ (n − 1, n − 1)]. (A7)

Since σ (n, n) − σ (n−1, n−1) = ∫ n
n−1

d
dnσ (n, n)dn, we

get the inequality aπ inf{ d
dx σ (x, x) : x ∈ [n−1, n]} <

ψ (n) < aπ sup{ d
dx σ (x, x) : x ∈ [n−1, n]}. Therefore, σ

contributes to the (−4/3)-power-law convergence of ψ so that
�G∗

+(n) − �G∗
−(n) converges towards G(n) − G(n−1) in

the same way.

2. Monte Carlo simulation algorithm

Throughout the chain reactions, each elementary reaction
is modeled as a stochastic single-particle exchange event
between the solution and crystal phases. The overall chain
reactions of the nucleation-growth process start with the initial
condition denoted by n = 0, where no crystal exists, i.e., all
crystals are in a trivial state of zero volume. The forward and

backward transition probabilities between n = 0 and n = 1
are calculated from the ground-state free energy gap instead
of the activation energies, and all other transition probabilities
are calculated from �G∗

±. The basic simulation procedure fol-
lows the Metropolis-Hastings algorithm [37–39]. We conduct
1000 simulation runs, each of 2×108 time steps.

3. Parameter values in numerical methods

In this study, all the parameters and variables are set as
unitless quantities in numerical methods, including MCS and
numerical solutions of ME and FPE. The unit volume is set
as the volume of a single particle, i.e., V0 = 1. The radius is
calculated from the unitless volume. The unitless time in ME
and FPE equals the index of the corresponding time step in
MCS. The transition probabilities between the 0 and 1 state
are determined by the ground-state free energy gap, while
others are calculated from �G∗

±. The scale-independent k is
assigned 1. The values of other physical parameters are shown
as follows: kB = 1, T = 3, a = 1.1, and b = −1.0.

4. Derivation of Fokker-Planck equation

From Eqs. (7) and (8), we have the form of the ME as
follows:

∂ p(n, t )

k∂t
= e−�G∗

+(n−1)/kBT p(n − 1, t )

+ e−�G∗
−(n+1)/kBT p(n + 1, t )

− [e−�G∗
−(n)/kBT + e−�G∗

+(n)/kBT ]p(n, t ). (A8)

After substituting the expression of Eqs. (10b) and (10c), we
get

∂P(n, t )

∂t
= [D2(n − 1)P(n − 1, t ) − 2D2(n)P(n, t )

+ D2(n + 1)P(n + 1, t )]

+ 1

2
[D1(n + 1)P(n + 1, t )−D1(n − 1)P(n − 1, t )].

(A9)

Although �G∗
± are originally defined as the forward and

backward activation energies for discrete states of integer n,
their explicit forms are expressed by differentiable functions,
so they could be directly generalized to differentiable
functions as well as D1 and D2. When n is a continuous
variable, the first term on the right-hand side of Eq. (A9) is
equivalent to ∂2

∂n2 D2(n)P(n, t ) and the last term is equivalent
to ∂

∂n D1(n)P(n, t ). In other words, Eq. (10a) is a generalized
partial differential equation from Eq. (7) in the continuous-n
limit.

5. Mean volume and mean radius in the linear-growth regime

In the continuous limit, the mean values of n and r are
calculated as follows:

〈n〉 =
∫ +∞

0
np(n, t )dn, (A10a)

〈r〉 =
∫ +∞

0

3

√
3n

4π
p(n, t )dn. (A10b)
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In the late postnucleation stage, the probability density
function follows Eq. (13), and since D1t � nc, we have

〈r〉 =
∫ t

0

∫ +∞

0

3

√
3n

4π
e−[n+D1(t−τ )]2/4D2(t−τ )

× kN e−kN τ

√
4πD2(t − τ )

dndτ. (A11)

The integration of n could be solved by the following
relation:

∫ ∞

0

3
√

ne−(n−y)2/xdn = x2/3

2


(
2

3

)
f

(
−1

6
;

1

2
;

y2

−x

)

+ y 6
√

x

(
7

6

)
f

(
1

3
;

3

2
;

y2

−x

)
, (A12)

where f is the Kummer confluent hypergeometric function,
x = 4D2(t−τ ), and y = −D1(t−τ ). Because y2 � x at large
times, we conduct series expansion of f at infinity and keep

the nonvanishing terms:

lim
y2/x→∞

∫ ∞

0

3
√

ne−(n−y)2/xdn = √
πxy1/3. (A13)

Substituting Eq. (A13) into Eq. (A11), we get the expression
as follows:

〈r〉 = 3

√
−3D1

4π

∫ t

0
kN e−kN τ (t − τ )1/3dτ. (A14)

The integration of τ involves a Gamma function and an expo-
nential integral. Because at the large times, t � k−1

N , we also
conduct series expansion of the exponential integral at infinity
and keep the largest nonvanishing term:

〈r〉 = 3

√
−3D1t

4π
. (A15)

Following the same procedure, we calculate 〈n〉 and get the
closed-form expression as follows:

〈n〉 = −D1t . (A16)

As a result, the equality 4π〈r〉3 = 3〈n〉 is preserved in the
late postnucleation stage.
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