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Nonsteady dynamics at the dynamic depinning transition in the two-dimensional
Gaussian random-field Ising model
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With large-scale Monte Carlo simulations, we investigate the nonsteady relaxation at the dynamic depinning
transition in the two-dimensional Gaussian random-field Ising model. The dynamic scaling behavior is carefully
analyzed, and the transition fields as well as static and dynamic exponents are accurately determined based on
the short-time dynamic scaling form. Different from the usual assumption, two distinguished growth processes
of spatial correlation lengths for the velocity and height of the domain wall are found. Thus, the universality
class of the depinning transition is established, which significantly differs from that of the quenched disorder
equation but agrees with that of the recent experiment as well as other simulations works. Under the influence
of the mesoscopic time regime, the crossover from the second-order phase transition to the first-order one is
confirmed in the weak-disorder regime, yielding an abnormal disorder-dependent nature of the criticality.
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I. INTRODUCTION

Magnetic domain-wall motions in random media have been
extensively studied over the past two decades because of their
potential application to memory, logic, and neuromorphic de-
vices [1–5]. Intense experimental and theoretical efforts have
been devoted to manipulating domain walls in response to var-
ious external forces, including magnetic fields, electric fields,
spin-orbit torques, spin waves and so on [6–12]. As shown in
recent studies [13–17], there exists the so-called “depinning
transition” separating the pinned state from the moving phase
with a nonzero steady-state velocity due to the competition
between the driving force and disorder at zero temperature.
When the temperature is low but nonvanishing, the sharp
transition is softened, and thermally activated creep motion
occurs even when the driving force is far below the depin-
ning threshold [18–20]. Under a periodic harmonic driving,
domain-wall motions exhibit four different states, i.e., relax-
ation, creep, sliding, and switching. Rich and novel transitions
have been found among them, e.g., the relaxation-to-creep
transition [21–24]. However, the understanding of such dy-
namic transitions is still limited, especially for the growth of
the correlation length.

Besides domain-wall motions in ferromagnetic and ferro-
electric materials [25,26], in fact, the dynamic depinning tran-
sition is also the focus of researches on contact lines in wetting
[27], charge-density waves [28], liquid invasion in porous
media [29], vortices in type-II superconductors [30,31], and
dislocation dynamics in crystal plasticity [32]. However, ex-
perimental studies of depinning transitions are likely to be
challenging since a very low temperature is required to mini-
mize the thermal rounding of the velocity-force characteristics
[16,33,34]. Very recently, depinning behaviors have been
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experimentally evidenced for a wide set of materials, and a
universal scaling function accounting for both drive and ther-
mal effects has been given [35]. Moreover, direct experimental
determination of critical exponents has been performed for
the depinning transition, yielding the velocity exponent
β = 0.30(3) and correlation-length exponent ν = 1.3(3) [36].

Theoretically, a phenomenological model called as the
Edwards-Wilkinson equation with quenched disorder (QEW)
is commonly used to study the depinning transition wherein
the domain wall is effectively described by a single-
valued elastic string [37–39]. However, simulations of the
QEW equation consistently yield the “superrough” behav-
ior at the depinning transition with the roughness exponent
ζ = 1.25(1) > 1, which goes beyond the simple description
of the domain wall. Besides, the velocity exponent β =
0.245(6) [40] has been determined recently, smaller than
the experimental result. It suggests that detailed microscopic
structures and interactions of real materials should be con-
cerned, which allows a closer comparison with experiments.

With Monte Carlo simulations as well as micromagnetic
simulations based on the stochastic Landau-Lifshitz-Gilbert
(LLG) equation, depinning transitions in microscopic lattice
models have been well studied in recent years [41–44]. Both
static and dynamic critical exponents have been accurately
estimated, and the results show that they are not in the uni-
versality class of the QEW equation. However, the issue
regarding whether these microscopic details lead to a new
universality class remains unaddressed, and hyperscaling re-
lations have yet to receive full support [45]. Very recently,
an unusual disorder-dependent nature of criticality has been
revealed by simplified LLG simulations based on the La-
grangian dynamics equation, associated with the proliferation
of Bloch lines within the domain wall at strong disorder [17].
It is worth noting that the quenched disorder with Gaussian
distribution and a nonzero correlation length was different
from those used in lattice simulations. The latter employed
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uniformly distributed random fields which were simple and
bounded. It begs the question of what happens when the disor-
der realization shifts to the unbounded Gaussian distribution.
Further research is necessary to determine the universality of
the transition.

Thanks to the short-time critical dynamics (STCD) method
originally developed by Janssen and collaborators [46], one
can obtain equilibrium critical exponents from the scaling
analysis of the relaxation dynamics far away from the equilib-
rium, without being hindered by critical slowdown [47–50].
Recently, this efficient method has been employed to tackle
the dynamic depinning transition in both the QEW equa-
tion [39,40,51] and the lattice models [43–45]. Compared
with those from steady-state motions, more precise results of
the critical exponents along with the transition fields can be
extracted from the nonsteady relaxation owing to large-scale
simulations. Besides, it is known that the growing correlation
length plays a crucial role in the critical dynamics. For the
dynamic transition, however, there are two kinds of spatial
correlation lengths for the velocity and height of the do-
main wall, respectively. The former is related to the phase
transition because the velocity is the order parameter. The
latter governs the roughening process of the domain wall but
has always been mistaken for the velocity correlation length
[40,44,45,51].

The aim of this paper is to identify the universality of
the depinning transition in the two-dimensional Gaussian
random-field Ising model. By extensive simulations based on
the extended Monte Carlo algorithm, nonsteady dynamics at
the dynamic depinning transition is carefully examined, and
critical exponents as well as the transition fields are accurately
determined by the STCD method, in comparison with those
of the QEW equation and recent experiment. In addition, the
growths of the correlation lengths extracted from the fluctu-
ations and correlations are analyzed, and the influence of the
disorder on the depinning transition is investigated. In Sec. II,
the models and scaling analysis are described, and in Sec. III,
the numerical results are presented. Finally, Sec. IV includes
the conclusion.

II. MODEL AND SCALING ANALYSIS

A. Model

The Hamiltonian of random-field Ising model with a driv-
ing field is given by

H = −J
∑
〈i j〉

SiS j −
∑

i

(hi + H )Si, (1)

where Si = ±1 is the Ising spin at site i of a rectangle lattice
2L × L, 〈i j〉 denotes a summation over nearest neighbors, H
represents a homogeneous driving field, and hi stands for a
random field of Gaussian distribution with zero mean and
standard deviation σ . In this paper, Monte Carlo simulations
are performed at zero temperature with the time up to tmax =
20 000 Monte Carlo step (MCS), and the number of samples
for average is about 20 000. Statistical errors are estimated by
dividing the total samples into two subgroups. If the fluctu-
ation in the time direction is comparable with or larger than
the statistical error, it will be taken into account. The initial

condition is a semiordered state with a flatted domain wall in
the y direction where the spins are positive on the left side and
negative on the right side. Antiperiodic and periodic boundary
conditions are used in the x and y directions, respectively.
An extended Monte Carlo algorithm is adopted to improve
the efficiency of simulations [45]. Maintaining the bulk spin
invariant throughout the simulations is crucial in this paper
as we only focus on the depinning transition with a single
domain interface. Thus, domain nucleation in the bulk has
been precluded entirely during the simulations, even under
strong disorder conditions.

Denoting a spin at site (x, y) by Sxy(t ), the height function
of the domain wall is given by

h(y, t ) = Lx

2
[m(y, t ) + 1], (2)

where m(y, t ) is the line magnetization defined as

m(y, t ) = 1

Lx

[
Lx∑

x=1

Sxy(t )

]
. (3)

Local velocity can be calculated from the height function,

v(y, t ) = dh(y, t )

dt
. (4)

The average velocity v(t ) of the domain wall is then obtained

v(t ) = 〈v(y, t )〉, (5)

where 〈· · · 〉 includes both the statistical average over samples
and in the y direction. Moreover, local and global velocity
fluctuations are introduced

ω2
v (t ) = 〈v(y, t )2〉 − v(t )2, (6)

and

v(2)(t ) =
˝⎡⎣ 1

L

L∑
y=1

v(y, t )

⎤⎦2˛
− v(t )2. (7)

Considering that ω2
v (t ) and v(2)(t ) also reflect the line and

planar susceptibility of the velocity, respectively, the second-
order cumulant of the order parameter is derived

Fv (t ) = v(2)(t )

ω2
v (t )

. (8)

Another important observable is the velocity correlation func-
tion,

Cv (r, t ) = 〈v(y + r, t )v(y, t )〉 − v(t )2, (9)

which describes the pure correlation of the velocity in the y
direction.

Besides, the roughening process of domain walls is also
investigated by means of the roughness function ω2

h(t ) and the
correlation function Ch(r, t ),

ω2
h(t ) = 〈h(y, t )2〉 − 〈h(y, t )〉2, (10)

and

Ch(r, t ) = 〈h(y + r, t )h(y, t )〉 − 〈h(y, t )〉2. (11)
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Similar to the cumulant Fv (t ), the function Fh(t ) is introduced
as the ratio of the planar and line susceptibilities,

Fh(t ) = M (2)(t ) − M(t )2

ω2
h(t )

, (12)

where M(t ) and M (2)(t ) represent the magnetization and its
second moment, respectively.

B. Scaling analysis

The dynamic scaling form of the depinning transition can
be derived by the STCD arguments [44,47],

v(t, τ, L) = b−β/νG[b−1ξ (t ), b1/ντ, b−1L], (13)

where b is an arbitrary rescaling factor, β and ν correspond to
the static exponents for the velocity and correlation length,
respectively, τ = |H − Hc| denotes the deviation from the
critical field, and ξ (t ) represents the spatial correlation length.
The scaling theory holds in the macroscopic regime t > tmic

where tmic denotes a microscopic timescale. Generally speak-
ing, the value of tmic is not universal, and relies on microscopic
details of the dynamic systems. For the simple Ising model
with the nearest-neighbor interactions, tmic is rather short
about 20 MCS [48]. Setting b = ξ (t ), the scaling form can
be simplified to

v(t, τ ) = ξ (t )−β/νG[ξ (t )1/ντ ], (14)

in the short-time scaling regime with ξ (t ) � L. Thus, a
power-law behavior of the velocity is expected at the transition
point τ = 0,

v(t ) ∼ ξ (t )−β/ν. (15)

From Eq. (14), the time derivative of v(t, τ ) is simply derived
to determine the exponent ν,

∂ ln v(t, τ )

∂τ

∣∣∣∣
τ=0

∼ ξ (t )1/ν . (16)

At the second-order transition, it is believed that the spatial
correlation length grows as

ξ (t ) ∼ t1/z, (17)

where z is the dynamic critical exponent. Thus, one can de-
termine the values of transition point Hc and critical exponent
β/νz by searching for the best power-law behavior of v(t ),
which is a standard procedure in the STCD method. Due
to the existence of strong correction in ξ (t ), however, the
above procedure suffers. Here we present an alternative way
by investigating the scaling behavior of v(ξ ). With Eq. (15),
the transition point as well as the critical exponent can be
accurately estimated.

Now the problem is how to measure the intrinsic length
scale ξv (t ) at the depinning transition. Similar to that of the
order parameter, the scaling form of the velocity fluctuation is
derived,

v(2)(t ) = ω2
v (t )G[ξv (t )/L]. (18)

For a sufficiently large lattice ξv (t ) � L, the scaling behavior
of the cumulant Fv (t ) is expected by using the finite-size

scaling analysis,

Fv (t ) = G[ξv (t )/L] ∼ [ξv (t )/L]d , (19)

where d = 1 is the dimension of the domain wall. Therefore,
the correlation length ξ (t ) in Eq. (15) can be replaced by the
cumulant Fv (t ) to locate the transition point Hc. Moreover,
the dynamic exponent z and the correction to scaling of ξv (t )
are extracted from the time dependence of the cumulant Fv (t ).
Further analyses give power-law behaviors of local and global
velocity fluctuations at the transition Hc,

ω2
v (t ) ∼ t d1/z−2β/νz−δ,

v(2)(t ) ∼ t d2/z−2β/νz−δ/L, (20)

where δ is a critical exponent characterizing the dynamic
effect of overhangs and islands [52], and d1 = 1 and d2 = 2
correspond to the spatial dimensions of the line and planar
velocity susceptibilities, respectively.

Besides, the correlation length ξv (t ) can also be measured
by the velocity correlation function Cv (r, t ) defined in Eq. (9)
with the scaling form

Cv (r, t ) = ω2
v (t )C̃v (r/ξv ). (21)

A power-law behavior of the scaling function C̃v (s) is as-
sumed based on general scaling arguments,

C̃v (s) ∼ s−2β/ν−δz, (22)

when the ratio s = r/ξv (t ) � 1.
Similarly, the correlation length related to the height ξh(t )

can be obtained from the susceptibility ratio Fh(t ) and corre-
lation function Ch(r, t ) with the scaling forms

Fh(t ) = G(ξh(t )/L) ∼ ξh(t )/L, (23)

and

Ch(r, t ) = ω2
h(t )C̃h(r/ξh), (24)

respectively. However, the scaling function C̃h(s = r/ξh)
decays exponentially,

C̃h(s) ∼ exp[−s2ζloc ], (25)

much faster than C̃v (s), where ζloc represents the local rough-
ness exponent. With the correlation length ξh(t ) at hand, the
roughness exponent ζ can be measured by

ω2
h(t ) ∼ [ξh(t )]2ζ . (26)

Finally, corrections to scaling are also considered by ex-
tending the fitting to early times, though power-law behaviors
of v(t ), v(2)(t ), ω2

v (t ), C̃v (s), and ω2
h(t ) are expected at the

critical point. Usually, a power-law correction form is adopted

y = axb(1 + c/x), (27)

where the fitting parameter b stands for the critical exponent.

III. NUMERICAL SIMULATIONS

A. Determination of the transition point and critical exponents

With extensive Monte Carlo simulations, we investigate
nonsteady dynamics at the depinning phase transition under
Gaussian noise, taking the setting of the lattice size L = 8192
and disorder strength σ = 1.0. In Fig. 1, the domain-wall
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FIG. 1. The velocity of the domain wall v(t ) is displayed as a
function of Fv (t ) which is the second-order cumulant of the order
parameter for different driving fields H on a log-log scale. The upper
t scale corresponds to that of Fv (t ), and the dashed line represents a
power-law fit. In the inset, the fitting error within a very narrow H
regime is shown for different waiting time t0, and the transition point
Hc is indicated by the arrow.

velocity v(t ) against the cumulant Fv (t ) is plotted for dif-
ferent driving fields H . It drops rapidly for a smaller H
and approaches a constant for a larger H . One then locates
the transition field Hc ≈ 1.42 where the curve exhibits a
power-law behavior starting from the rather early time around
20 MCS. To obtain a more accurate value of the criti-
cal point, the fitting error, as measured by residual sum of
squares/degree of freedom (RSS/DoF) is carefully examined
within a very narrow window H ∈ [1.420, 1.421] as shown in
the inset. By judging the position of the minimal RSS/DoF,
one obtains Hc = 1.4206(1) for three different waiting times
t0 = 20, 50, and 100 MCS, showing the result is robust and
accurate. Without losing generality, all critical exponents in
the following are measured with t0 = 100 MCS. For example,
the exponent β/ν = 0.333(3) in Eq. (15) can be estimated
from the slope of the curve in such a time interval.

In Fig. 2(a), the time dependence of the velocity v(t ) and
second-order cumulant Fv (t ) at Hc are investigated with open
circles and open triangles, respectively. With the usual scaling
forms in Eqs. (15) and (17), the exponents β/νz = 0.217(4)
and 1/z = 0.654(8) are measured from the slopes of dashed
lines. However, a significant departure from the power-law
behavior is found in early times, suggesting the existence of
corrections to scaling. With the form in Eq. (27), we refine the
exponents β/νz = 0.222(4) and 1/z = 0.665(8) from which
one can calculate the dynamic exponent z = 1.50(2), in good
agreement with that of the QEW equation [40,51].

Moreover, the finite-size effect described by G[ξv (t )/L]
in Eq. (19) is studied. The cumulant Fv (t ) is displayed
in Fig. 2(b) on a log-log scale for different lattice sizes
L = 512, 1024, 2048, 4096, 8192, and 12 000. Subse-
quently, we fix a lattice size, e.g., L′ = 12 000, and change

100 1000 10000
t

0.1

0.2

0.3

v(t)

100 1000 10000
t

0.001

0.01

Fv(t)β/νz = 0.222

slope = 0.217

slope = 0.654

1/z = 0.665

Hc = 1.4206
L = 8192

100 1000 10000
t

0.001

0.01

Fv(t)

L = 512
L = 1024
L = 2048
L = 4096
L = 8192
L = 12000

σ = 1.0
Hc = 1.4206

slope = 0.663

(a) (b)

FIG. 2. (a) The time-dependent functions v(t ) and Fv (t ) are given with open circles and open triangles, respectively, at the critical point
Hc = 1.4206 for the disorder strength σ = 1.0 and lattice size L = 8192 on a log-log scale. The right and left arrows indicate the y coordinates
of v(t ) and Fv (t ), respectively. (b) The cumulant Fv (t ) is displayed for different lattice sizes L on a log-log scale. Dashed lines represent
power-law fits, and solid lines in (a) show power-law fits with the correction. All the curves in (b) are rescaled by the factor L/L′ where
L′ = 12 000 is fixed.
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FIG. 3. The velocity correlation function Cv (r, t ) in (a) and correlation of height function Ch(r, t ) in (b) are plotted for different time t
at the disorder strength σ = 1.0 and critical driving field Hc = 1.4206 on a linear-log scale. In the insets, scaling functions C̃v (r, t ) = Cv/ω

2
v

and C̃h(r, t ) = Ch/ω
2
h are shown with the variable r/ξ (t ) on a log-log scale, and data collapses are demonstrated. The dashed and solid lines

represent the fittings with the power-law and exponential forms, respectively.

the scale of Fv (t ) of another L to Fv (t )(L′/L)−1. All the data
of different sizes then collapse to the master curve with the
slope 0.663(3), confirming the finite-size dependence L−1 in
Eq. (19) when ξv (t ) � L. The dynamic exponent z = 1.51(1)
is estimated again, the same as that in Fig. 2(a) within the
error bar. The curves of L = 8192 and 12 000 are nicely
overlapped up to the time tmax = 20 000 MCS, suggesting
that the finite-size effect of the correlation length ξv (t ) is
already negligibly small.

A more direct way to extract the correlation length is to
study the velocity correlation function Cv (r, t ) and the cor-
relation of the height function Ch(r, t ). As shown in Fig. 3,
numerical data at different time t can collapse to the curve at
t ′ = 12 800 MCS by rescaling r to [ξ (t ′)/ξ (t )]r and C(r, t )
to [ω2(t ′)/ω2(t )]C(r, t ) with an adjustable parameter ξ (t ) as
input. By adopting such a data collapse technique, we deter-
mine the correlation lengths ξv (t ) and ξh(t ) in the subgraphs
(a) and (b), respectively. The insets show the scaling behaviors
of C̃v (r/ξv ) and C̃h(r/ξh) defined in Eqs. (21) and (24). In the
left panel, a power-law decay of C̃v (r/ξv ) is found with the
slope 1.26(5), yielding the overhang exponent δ = (1.26 −
2β/ν)/z = 0.40(2). It is inferred that overhangs and islands
which naturally develop nearby the domain wall essentially
affect the dynamic scaling behavior of the velocity correlation.
Furthermore, the scaling function C̃v (r/ξv ) is not universal for
a short distance r � ξv (t ), consistent with steady-state results
reported in Ref. [37].

Unlike C̃v (r/ξv ), the scaling form of the height correla-
tion function C̃h(r/ξh) which is shown in the right panel is
universal over the entire range of r/ξh, indicating that the
contribution of the overhangs and islands to the roughening
process of the domain wall becomes suppressed due to the
definition of the domain-wall height in Eq. (2). An exponen-

tial decay of C̃h(r/ξh) rather than a power-law one is found,
and the local roughness exponent 2ζloc = 1.38(5) is measured
from the fitting to numerical data based on Eq. (25). The result
ζloc = 0.69 is comparable with the experimental results in the
ultrathin Pt/Co/Pt films [18,53,54].

A comparison between the correlation lengths ξv (t ) and
ξh(t ) obtained from Cv (r, t ) and Ch(r, t ) is performed in Fig. 4
with open circles and open triangles, respectively. Power-law
behaviors are found for both of them, but the difference in
the dynamic exponents, 1/z = 0.68(1) and 1/zh = 0.83(1),
reaches more than 20%, confirming that the growth of velocity
correlation length ξv (t ) is clearly distinguishable from that of
the height-function one ξh(t ). We then estimate the dynamic
exponent z = 1.47(2), consistent with that obtained from the
cumulant Fv (t ) in Fig. 2. So it makes sense to replace the
correlation length ξv (t ) with the cumulant Fv (t ) for determin-
ing the transition point Hc and critical exponents in Eqs. (15)
and (16).

Furthermore, velocity fluctuations including the line sus-
ceptibility ω2

v (t ) and planar susceptibility v(2)(t ) are inves-
tigated in Fig. 5. The former is expected to decay as a
power-law form according to Eq. (20), although there exists
a correction to scaling. Then one can roughly estimate the
critical exponent 1/z − 2β/νz − δ = −0.188(3). From the
scaling form in Eq. (21) and the critical behavior of C̃v (r, t )
mentioned in Fig. 3(a), one derives the formula Cv (r, t ) ∼
ξv (t )r−2β/ν−δz when the distance is short r < ξv (t ). It indi-
cates that the scaling behavior of the dynamic transition is
significantly different from that of the equilibrium transition
where C(r, t ) ∼ r−2β/ν is independent of the time. In con-
trast, the planar susceptibility v(2)(t ) follows a power-law
increase. A direct measurement of the slope gives the ex-
ponent 2/z − 2β/νz − δ = 0.477(5), yielding the overhang
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slope = 0.83
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FIG. 4. The correlation lengths of the velocity ξv (t ) and height
ξh(t ) extracted from the scaling functions C̃v (r, t ) and C̃h(r, t ) are
displayed with open circles and open triangles on a log-log scale,
respectively. The dashed lines show power-law fits.

exponent δ = 0.40(1), consistent with that obtained from
C̃v (r, t ).

In Fig. 6, logarithmic derivative ∂τ ln v(t, τ ) is plotted
as a function of the cumulant Fv (t ) at the critical point
Hc = 1.4206 with open circles. Quadratic interpolation of
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ωv
2(t)

100 1000 10000
t

0.0005
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v(2)(t)

slope = 0.477slope = 0.188

v(2)(t)~t2/z-2β/υz-δ
ω2

v(t)~t1/z-2β/υz-δ

FIG. 5. The line susceptibility ω2
v (t ) and planar susceptibility

v(2)(t ) of the domain-wall velocity are plotted with open circles and
open triangles on a log-log scale, respectively. The dashed line rep-
resents a power-law fit, and the solid line shows a power-law fit with
the correction. The right and left arrows indicate the y coordinates of
ω2

v (t ) and v(2)(t ), respectively.

10.0100.0 Fv(t)
10

100

∂τln v(t,τ) 1/ν = 1.02

slope = 1.03

FIG. 6. The logarithmic derivative of v(t, τ ) with respect to the
transition deviation τ = |H − Hc| is displayed against the cumulant
Fv (t ) on a log-log scale. The dashed line represents a power-law fit,
and the solid line shows a power-law fit with the correction.

v(t, τ ) is taken between the driving fields H = 1.420 and
1.421 for the convenience of calculations. The exponent
1/ν = 1.03(3) is measured from the slope of the dashed
line. After introducing a power-law correction to scaling
in Eq. (27), the fitting to numerical data extends to early
times, and it yields the exponent 1/ν = 1.02(3). Accord-
ingly, the velocity exponent β = 0.325(5) is calculated from
β/ν = 0.333(1) in Fig. 1, in agreement with experimental
results [36].

Finally, the roughening process of the domain wall is
studied for the depinning transition. In Fig. 7, the roughness
function ω2

h(t ) is plotted against the ratio Fh(t ) on a log-log
scale. The dashed line indicates a power-law behavior with
the slope 1.90(2). The correction to scaling is also considered
for extending the fitting to earlier times, which leads to the
exponent 2ζ = 1.94(6). Thus, the roughness exponent ζ =
0.97(3) ≈ 1 is obtained, showing a significant discrepancy
with that of the QEW equation.

B. Influence of the disorder

In this subsection, the influence of the disorder on the
depinning transition is studied by comprehensive simulations
with the disorder strength ranging from σ=0.2 to 1.5. The val-
ues of the critical exponents including the dynamic exponent
z, roughness exponent ζ , correlation-length exponent ν, veloc-
ity exponent β, and overhang exponent δ are estimated from
a variety of measurements mentioned before, and disorder-
dependent behaviors are demonstrated in Fig. 8. The robust-
ness of the exponents is affirmed for the disorder σ>0.5,
yielding a new universality class: β=0.34(1), z = 1.49(2),
ζ = 0.97(5), ν = 0.96(4), and δ = 0.40(1). It significantly
differs from that of the QEW equation with depinning
exponents β = 0.245(6), z = 1.433(7), ζ = 1.250(5), and
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Fh(t)

103

104
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ω2
h(t)

slope = 1.902ζ = 1.94

FIG. 7. The roughness function ω2
h (t ) is plotted versus the sus-

ceptibility ratio Fh(t ) on a log-log scale. The dashed line represents
a power-law fit, and the solid line shows a power-law fit with the
correction.

ν = 1.333(7) which were also obtained from nonsteady dy-
namics simulations [40].

In addition, the hyperscaling relation ν = 1/(2 − ζ ) re-
flecting the statistical tilt symmetry is examined. Within the
error bars, our results support this hyperscaling, showing the
reliability of the universality class. Due to the existence of two
distinct correlation lengths ξv and ξh, another dynamic expo-
nent zh = 1.20(5) characterizing the roughness of the domain
wall should also be taken into account, which is much smaller
than the value of z. Thus, the scaling relation β/νz + ζ/zh ≈ 1
is satisfied, refining the usual hyperscaling β = ν(z − ζ ). It
shows that the roughening process of the domain wall is
profoundly affected by the depinning transition.

However, all critical exponents exhibit strong departures
from those of the universality class when the disorder is weak
σ � 0.5. In order to understand what happens, nonsteady crit-
ical behavior of the domain wall is analyzed, subsequently, for
weaker disorders. At the disorder σ = 0.5, the cumulant Fv (t )
is displayed in Fig. 9 at the transition point Hc = 1.2666 on a
log-log scale. A two-stage increase in the correlation length is
found with the values of the dynamic exponent 1/z = 0.41(1)
and 0.72(1) at earlier and later times, respectively, quite dif-
ferent from that in Fig. 4. It implies the existence of the
crossover in the nonsteady relaxation. As reported in the liter-
ature [40], there are three different stages of the dynamics at
the depinning transition, which are microscopic, mesoscopic,
and macroscopic, respectively. They are separated by two
characteristic timescales tmic and tmes, and critical exponents
are universal only in the macroscopic critical regime. In this
paper, all the results are measured at t � t0 > tmic = 20 MCS
where the waiting time is t0 = 100 MCS, so the effect of the
microscopic time regime is negligible. The nontrivial long
crossover, i.e., mesoscopic time regime, appears in the case

0.4 0.6 0.8 1 1.2 1.4
σ

0

0.5

1

1.5

2

z

ζ

ν

δ

β

FIG. 8. Variations of the critical exponents are shown as a func-
tion of the disorder strength σ on a linear scale. Open circles, open
triangles, open diamonds, open squares, and stars correspond to the
dynamic exponent z, roughness exponent ζ , correlation-length expo-
nent ν, overhang exponent δ, and velocity exponent β, respectively.
Most of the error bars are smaller than the symbols.

100 1000 10000
t

0.0005

0.001

0.004

0.008

Fv(t)

Hc =1.2666
σ=0.5

1/z=0.72

1/z=0.41

FIG. 9. At the medium disorder σ = 0.5, the cumulant of the
domain-wall velocity Fv (t ) is plotted at the transition field Hc =
1.2666 on a log-log scale. The dot-dashed line indicates a two-stage
kinetics with the values of the dynamic exponent 1/z ≈ 0.41 and
0.72, respectively. The solid line shows a power-law fit with the
correction.
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0 0.2 0.4 0.6 0.8
τ

10-4

10-2

100

0.0001 0.001
Fv(t)

0.49

0.5

0.51

v(t) H=1.00
H=1.05
H=1.10
H=1.19
H=1.20
H=1.26
H=1.28
H=1.30
H=1.40

σ=0.2

Δvs=0.5-vs

slope=51

FIG. 10. For the weak disorder case with σ = 0.2, the domain-
wall velocity v(t ) is displayed as a function of the cumulant Fv (t )
for different driving fields H on a log-log scale. In the inset, the
shift of the steady-state velocity �vs = 0.5 − vs is plotted against the
transition deviation τ = |H − Hc| on a log-linear scale. The dashed
line represents an exponential fit.

of weak disorder, and the timescale tmes diverges in the limit
σ → 0. Taking σ = 0.45 as an example, tmes is larger than
tmax = 200 MCS, showing the simulations we perform are
always in the mesoscopic time regime, resulting in nonuni-
versal values of the exponents. In contrast, tmes ≈ 200 MCS

is obtained at a strong disorder σ = 1.0 as shown in Fig. 2.
The mesoscopic time regime, thus, has little influence on the
critical behaviors, which can be fairly described as a power-
law correction to scaling.

Furthermore, the case far away from the universality
regime is investigated at σ = 0.2, and the results are presented
in Fig. 10. The order parameter v(t ) versus the cumulant Fv (t )
is displayed for different driving fields H . Obviously distinct
from that in Fig. 1, no power-law behavior is detected, and the
curves are almost overlapped for the fields H > Hc = 1.26
wherein the correlation length represented by the cumulant
Fv (t ) drops rapidly with H . It indicates that the transition may
be not of second order. In the inset, the shift of the steady
velocity �vs = 0.5 − vs is plotted against the transition de-
viation τ = H − Hc. An exponential fit is carried out with
the dashed line, and the value of the slope 51 is quite large,
indicating that there is a sharp decline of the velocity when the
driving field H is close to the transition point Hc. It suggests
that the depinning transition is discontinuous when the dis-
order strength is low enough. Moreover, a crossover from the
first-order to second-order phase transition is observed, just as
that in the model with uniformly distributed disorder [45].

Time evolution of the spin configurations in the weak-
disorder regime (σ = 0.2) and strong-disorder regime
(σ = 1.0) is displayed in Fig. 11 to provide a better under-
standing of the depinning transition. The black and white
squares correspond to Si = ±1, respectively. In the subfigure
(a) the domain wall moves fast but roughens slightly with
the width much smaller than the lattice size. The reason is
that the correlation length does not diverge at the first-order
phase transition. Conversely, the width of the domain wall in
the subfigure (b) increases sharply with time, and finally
diverges if the lattice size is infinite, signifying the system ex-
hibits a divergent correlation length at the second-order phase

FIG. 11. Time evolution of the spin configurations under the Gaussian distribution of the random fields is shown at the disorder strengths
σ = 0.2 in (a) and σ = 1.0 in (b). The black and white correspond to the spin up Si = 1 and down Si = −1, respectively. The critical driving
fields Hc = 1.26 and 1.4206 are set.
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t=3200
t=6400100 1000 10000t

0.001

0.01

v(2)(t)

  ~
  Cv ~ s-2β/υ−δz

2/z-2β/νz-δ=0.482

δ=0.41

slope=1.28

δ=0.41

slope=0.480

Δ=5.0,Hc=2.1571

FIG. 12. In the model with the disorder uniformly distributed
within an interval [−�, �], the scaling function of the velocity
correlation C̃v (s) is shown with respect to s = r/ξv (t ) for different
times on a log-log scale. The strength of the disorder � = 5.0 is
taken as an example in the strong-disorder regime. Data collapse
is demonstrated at the critical field Hc = 2.1571, and the overhang
exponent δ = 0.41(2) is estimated. In the inset, the global velocity
fluctuation v(2)(t ) is presented. The dashed lines represent power-law
fits, and the solid line shows a power-law fit with the correction.

transition. Moreover, complicated spin structures, such as
overhangs and islands, are found nearby the domain interface
at the time t = 1000 MCS, which differ considerably from
those in the subfigure (a). It indicates overhangs and islands
have an essential effect on the nonsteady critical dynamics
when the disorder is strong. However, the effect becomes
negligible in the weak-disorder regime, agreeing well with the
behavior of the overhang exponent δ in Fig. 8.

For comparison, additional simulations have been con-
ducted in the random-field Ising model with uniform disorder
ranging from [−�,�]. The disorder strength � = 5.0 is set
as an instance in the strong-disorder regime. At the critical
point Hc = 2.1571, nonequilibrium dynamics of the depin-
ning transition has been investigated with the same lattice size
L = 8192 and timescale tmax = 20 000 MCS. In Fig. 12, the
scaling function of the velocity correlation C̃v (s) is plotted for
different times t on a log-log scale. In the same way, data
collapse onto a single curve is obtained, and the overhang
exponent δ = 0.41(2) is estimated from the slope 1.28, which
is almost identical to that in the inset of Fig. 3(a). Besides,
global velocity fluctuation v(2)(t ) has been analyzed in the
inset, and the value δ = 0.41(1) again corroborates the notion
that the contribution of overhangs and islands in the model

with uniform distribution converges to that in the model with
the Gaussian one at strong disorder. Further studies on critical
exponents β, ν, z, and ζ show that the transitions in both
models belong to the same universality class.

IV. CONCLUSION

The dynamic depinning transition in two-dimensional
Gaussian random-field Ising model has been systematically
investigated with large-scale simulations up to L = 8192 and
tmax = 20 000 MCS based on the extended Monte Carlo algo-
rithm. The nonsteady dynamics at the dynamic transition has
been carefully examined, and dynamic scaling behaviors of
the order parameter and its fluctuation and correlation have
been identified as well as the roughness and height corre-
lation of the domain wall. The transition fields, static and
dynamic exponents have been accurately determined by the
STCD analysis, and the influence of the disorder has also been
revealed. Unlike the equilibrium transition, two distinguished
growth processes of spatial correlation lengths ξv (t ) and ξh(t )
have been found for the dynamic depinning transition. Be-
sides, a new dynamic exponent δ related to the effect of
overhangs and islands has been extracted from the dynamic
scaling behaviors of the velocity fluctuation and correlation.

In particular, we have uncovered the universality class
of the depinning transition in Ising-type lattice models:
β = 1/3, ν = 1, ζ = 1, δ = 2/5, and z = 3/2, which dif-
fers from that of the QEW equation. Both the hyperscaling
relations ν = 1/(2 − ζ ) and β/νz + ζ/zh = 1 hold, lend-
ing strong support to the reliability of the universality
class. Moreover, our results agree well with those of re-
cent experiments β = 0.30(3) and z = 1.5(2) in ferrimagnetic
GdFeCo thin films [36], dislocation depinning simulations
β = 0.30(5), ν = 1.05(5), and ζ = 0.96(2) in dispersion-
strengthened steels [55], and molecular dynamics simulations
β = 0.29(3) and ν = 1.04(4) in two-dimensional vortex lat-
tices [56]. What they have in common is that detailed
microscopic structures and interactions are contained which
are lacking in the QEW equation.

In the weak-disorder regime, however, the crossover from
the second-order phase transition to the first-order one takes
place due to the appearance of the mesoscopic time regime,
yielding the exponents deviating dramatically from those
of the universality class. Interestingly, both models with
Gaussian and uniformly distributed disorder feature such a
crossover in the phase diagram, despite differing in the tran-
sition boundary and exponents. They converge to the same
universality class when subjected to strong-disorder regime.
It suggests that the disorder strength is relevant for the criti-
cality of the depinning transition as it is claimed in the recent
numerical work based on the LLG equation [17].
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