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Geometric conjecture about phase transitions
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As phenomena that necessarily emerge from the collective behavior of interacting particles, phase transitions
continue to be difficult to predict using statistical thermodynamics. A recent proposal called the topological
hypothesis suggests that the existence of a phase transition could perhaps be inferred from changes to the
topology of the accessible part of the configuration space. This paper instead suggests that such a topological
change is often associated with a dramatic change in the configuration space geometry, and that the geometric
change is the actual driver of the phase transition. More precisely, a geometric change that brings about a
discontinuity in the mixing time required for an initial probability distribution on the configuration space to
reach the steady state is conjectured to be related to the onset of a phase transition in the thermodynamic limit.
This conjecture is tested by evaluating the diffusion diameter and ε-mixing time of the configuration spaces of
hard-disk and hard-sphere systems of increasing size. Explicit geometries are constructed for the configuration
spaces of these systems and numerical evidence suggests that a discontinuity in the ε-mixing time coincides with
the solid-fluid phase transition in the thermodynamic limit.
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I. INTRODUCTION

Phase transitions are essential to a variety of scientific and
engineering applications, but continue to be difficult to predict
from fundamental considerations. Instead, a phase transition
is usually identified by an observed discontinuity in one of
the derivatives of a thermodynamic potential. There have been
several proposals concerning the origin of these discontinu-
ities. For example, Landau theory [1,2] associates first-order
phase transitions with spontaneous symmetry breaking as
quantified by an appropriately constructed order parameter.
Such order parameters often need to be defined ex post facto
though, after the characteristics of the phases involved in
the phase transition are already known. An understanding of
phase transitions that derives from more fundamental consid-
erations would therefore be valuable.

Statistical thermodynamics suggests that thermodynamic
observables can be calculated as time averages of the relevant
microscopic quantity along the system’s trajectory through
the phase space. The ergodic hypothesis [3,4] implies that
provided such time averages are conducted over a period
longer than a characteristic mixing time, they can be replaced
by an average over the entire phase space using a measure
that is independent of the system’s initial microstate; that is,
they can be replaced by an ensemble average. One question
that has been raised about this procedure is whether the en-
semble average could really be independent of the system’s
initial conditions in general. Consider that any system with
a disconnected configuration space (i.e., a system that is
not metrically transitive [5,6]) is necessarily confined to the
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component of the configuration space where it begins, mean-
ing that the average behavior of an ensemble of such systems
would not resemble the time-averaged behavior of any one
system. Instead, the measure used for the average should
depend on the system’s initial microstate since that defines
the component of the configuration space to which the system
is confined. Following this line of thought further, changes
to the connectivity of the configuration space could dis-
continuously change the support of the measure used for
thermodynamic averages, and thereby lead to the disconti-
nuities in thermodynamic observables required for a phase
transition. This is one way to motivate the topological hypoth-
esis [7,8] which roughly proposes that changes in the topology
of the accessible part of the configuration space are necessary
for a phase transition to occur.

The application of these ideas to a toy model is shown
in Fig. 1. Suppose that there is an isolated system with the
configuration space in the left panel, and that the potential
energy is strictly monotone increasing with the y coordinate
in the figure. The system’s internal energy then defines a
value of y called the filtration value above which the sys-
tem’s trajectory cannot pass. Further suppose that the system’s
initial microstate corresponds to a point in the bottom left
corner of the configuration space, and that the observable of
interest is the x coordinate in the figure. The middle panel
shows the ensemble average of this observable as a function
of filtration value for both the ergodic hypothesis and the topo-
logical hypothesis. Since the configuration space is symmetric
about x = 0 and the ergodic hypothesis stipulates that the
measure should be independent of the initial microstate, the
ensemble average of the observable is zero for all filtration
values. By comparison, the topological hypothesis recognizes
that for sufficiently small filtration values, the configuration
space is disconnected, the system is confined to the left side
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FIG. 1. The left panel shows the evolution of a model configuration space with points colored (shaded) by their y coordinate. The filtration
value is an upper bound for the y coordinate of any point on the system’s trajectory. The middle panel shows the average x coordinate 〈x〉
calculated using the ergodic hypothesis and the topological hypothesis as a function of filtration value, assuming that the system starts at the
lower left corner of the configuration space. The right panel shows the diffusion diameter and ε-mixing time of the configuration space as
functions of filtration value and that they are sensitive to changes in the configuration space geometry. The diffusion diameter, but not the
ε-mixing time, is also sensitive to the bottleneck. The five dotted lines show the filtration values used in the left panel.

of the configuration space, and the ensemble average of the
observable should be zero only when the filtration value in-
creases enough for the space to become connected. Moreover,
the discontinuous change in the integration measure at this
filtration value leads to a discontinuous observable, precisely
of the type that would be expected for a system undergoing a
phase transition. It is significant that it was not necessary at
any point to pass to the thermodynamic limit for there to be a
discontinuity in the observable, though this line of reasoning
does require that the limiting distribution of microstates be
described by the microcanonical ensemble. Connecting the
system to a heat bath formally introduces a nonzero probabil-
ity of arbitrarily large thermal fluctuations, makes the entire
configuration space accessible, and only allows discontinuous
changes in observables to occur in the thermodynamic limit.
That said, since experimental systems are necessarily finite,
there is utility in further exploring the indications and predic-
tors of nascent phase transitions in finite systems.

Let E be the potential energy of a system, qi be the
coordinates of the system’s particles, and V (q1 . . . qN ) be a
smooth, stable, confining, and short-range interaction poten-
tial. The topological hypothesis [9,10] initially claimed that a
topological change in the equipotential energy submanifolds
�E = V −1((−∞, E ]) of the configuration space was a neces-
sary condition for a phase transition. Kastner and Mehta [11]
observed a second-order phase transition in a two-dimensional
�4 system at an energy where no topological change occurred,
disproving this claim. Gori et al. [12] subsequently refined the
hypothesis and observed that the phase transition in the two-
dimensional �4 system was caused by a diverging transition
time between two parts of the configuration space, and that
this was associated with an asymptotic topological change.
That is, a continuous change in the configuration space geom-
etry brought about a divergence in the mixing time, and while
such events are often accompanied by topological changes,
they are not always. The significance of the configuration
space geometry is supported by a recent study of the topo-
logical and geometric properties of the two-dimensional XY
model by Bel-Hadj-Aissa et al. [13]; they computed the mean
geometric curvature of the equipotential energy level sets and
observed that the location of the phase transition could be
inferred from the level set curvatures.

With this as background, the fundamental conjecture of this
work is as follows:

Conjecture 1. A necessary condition for a first-order phase
transition is a discontinuity in the mixing time on the config-
uration space.

This is not intended to suggest that the mixing time directly
regulates the appearance of phase transitions, but merely that
the mixing time is sensitive to any geometric changes that
could discontinuously change the integration measure for
thermodynamic averages.

A natural question at this point is whether it is actually pos-
sible to measure the mixing time of a thermodynamic system
by means of the convergence of an initial probability distri-
bution on the configuration space to the limiting distribution.
We hypothesize that the relevant geometric changes are so
severe that any geometric quantity reasonably sensitive to the
accessible volume of the configuration space and the length
and number of paths connecting distant regions should exhibit
measurable discontinuities for the same values of the control
variable as the mixing time. The two quantities used here are
the diffusion distance [14,15] and the ε-mixing time. The first
measures the difference between two distributions that start as
Dirac δ distributions at different locations on the configura-
tion space and evolve by diffusion; maximizing the diffusion
distance over all starting locations of the two distributions
gives the configuration space’s diffusion diameter. The second
measures the time required for a Dirac δ distribution to dif-
fuse to the steady-state distribution within a tolerance defined
by ε, averaged over all starting locations of the distribution
in the configuration space. This is intended to resemble the
thermodynamic mixing time, though the distribution evolves
by the diffusion equation rather than the Liouville equa-
tion and the similarity to the steady-state distribution is
quantified by the Kullback-Leibler divergence [16].

Of course, there have been considerable prior efforts to
predict the onset of phase transitions that do not involve the
topological hypothesis or considerations along the lines of
Conjecture 1. The Yang-Lee theory stands out as a particularly
successful approach for predicting the locations and orders of
equilibrium phase transitions for a variety of model systems
[17–19]. Suppose that the partition function of a system can
be written in the form of a polynomial with real positive coef-
ficients; the grand canonical partition function can be written
as such a polynomial in the fugacity z = exp[μ/(kBT )],
where μ is the chemical potential. Provided that the degree
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M of the polynomial is finite (a generic property of finite
systems), this polynomial necessarily has M roots that occur
as complex-conjugate pairs on the complex-fugacity plane. A
nonanalyticity in the free energy as is required for there to be
a phase transition can only occur at one of these roots of the
partition function. The Yang-Lee theory therefore considers
the distribution of these roots and particularly their proximity
to the real positive semiaxis, as a function of system size,
to infer the existence and properties of equilibrium phase
transitions. While this is an elegant approach, not all systems
of interest allow a partition function with the necessary form,
and even when they do, solving for the distribution of complex
roots can be an extremely difficult task.

The conjecture made above is tested here by evaluating
the diffusion diameter and ε-mixing time for the configura-
tion spaces of hard-disk and hard-sphere systems, collectively
called hard-disk systems in the following. These systems are
frequently used to model simple fluids [20] and are governed
by the hard-disk potential for which the energy is infinite if
any disks overlap and is zero otherwise. The phase transitions
for these systems have been studied extensively, starting with
the seminal work of Alder and Wainwright [21] who observed
a phase transition in a system of hard disks as a function of
packing fraction η (the fraction of the area covered by the
disks). The solid for η > 0.72 is characterized by the presence
of a long-range translational and orientational order, whereas
the fluid for η < 0.70 is characterized by the absence of any
long-range order [22,23]. The interval 0.70 < η < 0.72 was
initially believed to contain coexisting solid and fluid phases
as would be expected of a first-order transition, but more
recent evidence [24–26] suggests that this interval contains
a hexatic phase [27,28]. It is significant that the phases and
phase transitions that have been observed are surprisingly
complex and varied, even for this simple system. Similar stud-
ies of hard spheres in three dimensions include those by Isobe
and Krauth [29] and Pieprzyk et al. [30], who observed solid-
fluid phase coexistence in the 0.49 < η < 0.548 interval.

The configuration spaces of hard-disk systems have been
studied before. Carlsson et al. [31] explored the topology of
the configuration space of five hard disks in a unit square
box by regularizing the potential energy surface (explained
in Sec. II B) and using classical Morse theory [32,33] to cal-
culate the Betti numbers of the configuration space, roughly
indicating the number of holes of various dimensions. Barysh-
nikov et al. [34] developed a min-type Morse theory for the
configuration spaces of hard-disk systems and proved that the
critical points where the topology changes as a function of
packing fraction are precisely the mechanically balanced disk
configurations (explained in Sec. II B). Ritchey [36] studied
configuration spaces of hard disks in the hexagonal torus
(shown in the left of Fig. 2) for n = 1 . . . 12 disks, created
a database of the critical points, defined their critical index
(specifying the nature of the associated topological change),
and found their plane symmetry groups. The authors previ-
ously [37] proposed distance functions on the configuration
spaces of hard disks quotiented by various symmetry groups,
where quotienting means that configurations related by a sym-
metry operation are considered the same. They subsequently
[38] used these distances to explicitly triangulate the quotients
of the configuration space of two spheres in the rhombic

FIG. 2. A two-dimensional torus T 2 (left) and a three-
dimensional torus T 3 (right) are shown with some of their periodic
images. The unit vector a1 points in the x direction in both cases. All
the unit vectors pass through the centers of the corresponding faces.

dodecahedron (shown in the right of Fig. 2) and measure
the diffusion diameters of the resulting spaces. They also ob-
served an accumulation of critical points in the configuration
space at packing fractions in the phase coexistence inter-
val, suggesting the possibility of a topological and geometric
catastrophe there in the thermodynamic limit.

The technical contribution of this work is a set of
techniques described in Sec. II that collectively allow the
configuration space geometries for hard-disk systems with
n � 7 disks and hard sphere systems with n � 6 spheres to be
evaluated in practice. The diffusion diameters and ε-mixing
times (defined in Sec. III) of these spaces are computed as
functions of particle diameter and particle number, and in
Sec. IV, significant discontinuities are observed at the pack-
ing fractions of critical points close to the phase coexistence
intervals. Along with the observation [38] that critical points
accumulate in the phase coexistence intervals with increasing
particle number, this suggests that there should be a disconti-
nuity in the mixing time at the packing fraction of the phase
transition in the thermodynamic limit, offering preliminary
support for Conjecture 1.

II. CONFIGURATION SPACES

A. Tautological function

The configuration space of n points on a d-dimensional
torus T d is

�(n) = {x = (x1 . . . xn) | xi ∈ T d}. (1)

A two-dimensional torus T 2 for hard disks is obtained by
identifying opposite edges of a regular hexagon, whereas a
three-dimensional torus T 3 for hard spheres is obtained by
identifying opposite faces of a rhombic dodecahedron. Fig-
ure 2 shows these domains with some of the periodic images
of the fundamental unit cells. The center-to-center distance to
the neighboring cells is one in both cases.

The tautological function τ : �(n) → R is the maximum
radius that the disks could have without overlapping, or

τ (x) = min
1�i< j�n

ri j, (2)

where ri j is half the geodesic distance between the centers of
disks i and j. This allows the configuration space of n disks of
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radius ρ to be written as


(n, ρ) = τ−1([ρ,∞)), (3)

or the set of all configurations of points where the minimum
point separation is at least ρ.

B. Critical configurations

Morse theory [32,33] stipulates that the topology of the
sublevel sets of a generic real-valued function f defined on
a smooth manifold M can change only at the critical points
of f . Intuitively, a critical point is a point where the gradi-
ent of the function vanishes. The index of a critical point is
defined as the number of negative eigenvalues of the Hessian
matrix there, and roughly indicates the number of indepen-
dent directions along which f decreases to second order. Let
Ma = {x ∈ M| f (x) < a} be a sublevel set of M. One of the
results of Morse theory is that the topology of Ma and Mb is
equivalent if the interval [a, b] does not contain any critical
points of f .

Classical Morse theory does not apply to the tautological
function in Eq. (2) though since it is a min-type function that
is not differentiable everywhere. For this reason, Baryshnikov
et al. [34] began to develop a min-type Morse theory specifi-
cally for hard-disk configuration spaces and proved that the
critical points of the tautological function are precisely the
mechanically balanced configurations. Consider the critical
points of the configuration spaces of four hard disks in Fig. 3
where they are ordered from index-0 (bottom) to index-3
(top). An edge exists between any pair of disks if the distance
between the disk centers is exactly twice the value of the
tautological function for that configuration (reported below
the figure). Suppose that the edge between disks i and j exerts
a force on those disks with magnitude fi j directed along the
edge. A configuration is mechanically balanced if there is a
way to apply forces along the edges such that at least one force
is nonzero and the net force on each disk vanishes. The result
is then that such configurations are precisely those associated
with changes to the topology of the superlevel sets of the
tautological function.

The critical points of the configuration spaces of hard disks
can also be shown to coincide with the critical points of a reg-
ularized hard-disk potential energy function in the following
way. Observe from the definition of the tautological function
that the radius ρ of the disks in a given configuration could be
increased by as much as

τ − ρ = min
1�i< j�n

(ri j − ρ)

≈ − 1

w
ln

{ ∑
1�i< j�n

exp [−w(ri j − ρ)]

}
,

without the disks overlapping, where the second line uses
a soft-min approximation. The argument of the logarithm
is interpreted as a regularized hard-disk potential E =∑

i< j exp [−w(ri j − ρ)] that converges to the true hard-disk
potential in the w → ∞ limit. Since the equation above re-
lates τ to E by strictly monotonic transformations and these
preserve the locations of any critical points, the critical points
of E should converge to the critical points of τ in the limit.
This allows the critical points of τ to be found by applying

FIG. 3. The equivalence classes of the critical points of the con-
figuration space of four hard disks. The tautological function values
are reported below the figures. The critical points are ordered from
index-0 (bottom) to index-3 (top).

standard numerical minimization procedures to ‖∇E‖2 since
the minima of this function are, by definition, the critical
points of E . Interactive databases of the critical points found
in this way for the hard-disk and hard sphere configuration
spaces are available online; see [35]. The distributions of
critical points as functions of index and packing fraction in
Refs. [36,38] suggest that an accumulation of critical points in
a narrow packing fraction interval with increasing number of
disks could be associated with the onset of a phase transition;
one of the purposes of this work is to explore this observation
further.

C. Geometric representation

The procedure followed previously [37,38] when studying
hard-disk configuration spaces involved repeatedly sampling
points in the configuration space of points �(n), connecting
nearby points in the resulting point cloud to reconstruct �(n),
and restricting to the hard-disk configuration space 
(n, ρ)
by retaining only those regions with suitable values of the
tautological function. The difficulty with this procedure is that
the dimension and complexity of 
(n, ρ) increases rapidly
with n, quickly requiring a point cloud with an overwhelming
number of points to accurately capture the geometric details.
This section describes several techniques that while they do
not solve the problem, reduce the required number of points
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FIG. 4. The configuration space quotient by rigid translations
�(2)/T (left) and the configuration space quotient by rigid trans-
lations, disk label permutations, and point group symmetries
�(2)/{T ,P,L} (right) for two hard disks. Color (shading) rep-
resents the tautological function values and arrows indicate the
locations of the critical points.

enough to allow us to study the geometry of configuration
spaces with up to 18 dimensions.

The first is to quotient the configuration space by various
symmetry groups, thereby reducing the relevant volume. The
three isometry groups considered here are the group of rigid
translations T , the group of disk label permutations P , and
the point group symmetries of the fundamental unit cell L.
As described previously [37,38], the configuration space is
quotiented by these groups by changing the distance function
used to identify and connect nearby points in the point cloud.
More precisely, there is a natural distance function d�(x, y) =∑n

i=1 ‖xi − yi‖ on � that is the sum of the geodesic distances
each point in a configuration x would need to travel to be
converted into configuration y. Given an isometry group S ,
the distance d�/S in the quotient space �/S can be written
as [39]

d�/S (x, y) = inf
S∈S

d�[x, S(y)]. (4)

Observe that T is a continuous group, Eq. (4) involves solv-
ing a global optimization problem when T ⊂ S , and this
problem can have multiple local minima. While algorithms
such as Tabu search [40,41] can be used in such situa-
tions, the number of problems to be solved increases rapidly
with the number of considered isometry groups. For exam-
ple, when S = {T ,P,L}, the global optimization over rigid
translations needs to be solved n! × O(L) times to evaluate
Eq. (4), where O(L) is of the order of L. Figure 4 shows
the configuration spaces of two hard disks quotiented by
rigid translations �(2)/T (left) and by rigid translations,
permutations of disk labels, and point group symmetries of
the hexagon �(2)/{T ,P,L} (right) constructed using the
distance in Eq. (4) with the procedure of Ref. [37]. The
color represents the tautological function values at each point.
These configuration spaces have only two critical point types
[37], i.e., local minima (index-0) where each disk has three
connections and saddle points (index-1) where each disk has
two connections; these critical points are indicated with the
corresponding disk configurations. Observe that the topolo-
gies and geometries of these spaces are substantially different
and depend on the choice of symmetries by which to quotient.
This work mainly considers the quotient spaces �(n)/T and
�(n)/{T ,P,L} for increasing number of disks.

The second technique reduces the number of optimiza-
tion problems that need to be solved in Eq. (4). The idea is
to construct an approximation to the solution of the global
optimization problem over rigid translations, allowing the
discrete symmetry operations that are unlikely to realize the
minimum to be quickly rejected. The procedure followed here
samples a fixed number of random translations for a fixed
discrete symmetry operation, and uses the minimum over
the random translations as the approximation. The details of
this procedure and various numerical results are provided in
Appendix A. This reduces the computational cost enough to
be able to evaluate a small number of distances d�/S , but not
all the pairwise distances in the point cloud when identifying
nearby points to reconstruct �/S .

The third technique reduces the number of times that d�/S
needs to be evaluated. Points sampled from � are initially
mapped to a Cartesian space with coordinates given by de-
scriptors that are invariant to the action of T , P , and L [37,38].
This mapping is conjectured to be an embedding and therefore
to preserve the neighborhood of every point in �, but is not
isometric in the sense that distances between configurations
are distorted. That said, there are efficient algorithms to cal-
culate k′-nearest-neighbor graphs in the descriptor space with
the Euclidean metric. Since neighborhoods are preserved, the
k′-nearest-neighbor graph of a point in the descriptor space
should contain the k-nearest-neighbor graph of the point in
�/S for sufficiently large k′ > k; our numerical experiments
suggest that k′ ∼ 5k is usually sufficient. The procedure there-
fore involves constructing the k′-nearest-neighbor graph in the
descriptor space, evaluating d�/S for each edge of this graph,
and constructing the approximate k-nearest-neighbor graph in
�/S using these distances.

It is useful at this point to discuss the relationship of the
k-nearest-neighbor graph in �/S to the geometry of the un-
derlying space. It is clear that the apparent connectivity of
the space depends on the value of k; for very small k, the
graph would likely contain many disconnected components,
whereas for very large k, every point would share an edge
with every other point, regardless of the actual properties of
the space. While there does not seem to be an established
canonical approach to selecting the value of k, the strategy
followed here involves the use of topological information.
Observe that for any filtration of the k-nearest-neighbor graph
by the tautological function, the number of disconnected com-
ponents in the resulting graph should be, at most, the number
of index-0 critical points with disk radius larger than or equal
to the filtration value. Moreover, when the filtration value is
equal to the smallest value such that all of the index-1 critical
points (which correspond to saddle points) are included, only
a single connected component should remain. The smallest
value of k for which these conditions are satisfied seems a
reasonable choice, and for the numbers of points in our point
clouds (indicated in Fig. 5) is approximately k = 100 × n,
where n is the number of disks.

The fourth technique is to directly use the k-nearest-
neighbor graph rather than a simplicial complex (a triangula-
tion) to evaluate the geometric properties of �/S . Previously,
the configuration spaces for small numbers of hard disks
and spheres were triangulated as α-complexes [37,38]. While
such simplicial complexes can accurately represent all the
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FIG. 5. Number of points used in the graph representations for
hard disks and spheres.

geometric properties of the underlying space, the num-
ber of required simplices generally increases exponentially
with dimension, quickly making the computational memory
requirements prohibitive [42,43]. Fortunately, the only geo-
metric information required to calculate the diffusion diameter
and the ε-mixing time is geodesic distances, and these can be
reasonably approximated from the k-nearest-neighbor graph
alone. Figure 6 shows the quotient space �(2)/{T ,P,L} of
two points on T 2 represented as an α-complex (left) and as a
graph (right). While the shortest path connecting two points
is a straight line on the left, the path through the edges of the
graph on the right is slightly longer. Since both the diffusion
distance and the ε-mixing time are designed to be robust to
small geometric perturbations like these, using the k-nearest-
neighbor graph of �/S directly is sufficient for our purposes.

The fifth and final technique is related to the construc-
tion of the point cloud on �, and is intended to reduce the
number of points required to accurately represent the relevant
geometric features of �/S . Figure 7 shows the distributions
of tautological function values ρ for point clouds on �(4)
sampled by three different procedures, with the dashed lines
indicating the radii of previously identified critical points. The
left panel shows the distribution of points sampled uniformly
on �(4) and reveals that the overwhelming majority of the
space’s volume has comparatively small values of ρ where
only a single pair of disks would be in contact. The critical
points are concentrated at relatively high values of ρ though.
This motivates the use of importance sampling [44] to sample
points more uniformly over ρ, concentrating points in the

FIG. 6. The quotient space �(2)/{T ,P,L} of two points on T 2

represented as an α-complex (left) and a graph (right), with color
(shading) indicating the value of the tautological function. The red
(outlined) path connecting two points is a straight line on the left, but
is slightly longer on the right.

regions where the topology and geometry of 
(4, ρ) are most
likely to change and giving the distribution in the middle
panel. The sampling density around the critical points can be
increased further by perturbing known critical configurations
and adding the resulting configurations directly to the point
cloud, giving the distribution in the right panel. The intention
is to ensure that the density of sampled points is high enough
to accurately reflect the parts of � that are most relevant to the
hypothesis without unnecessarily sampling points elsewhere
in the space.

III. CONFIGURATION SPACE GEOMETRY

Diffusion is a smoothing process. Flows from regions of
high concentration to low concentration necessarily make a
concentration field more uniform with time. This also makes
diffusion processes relatively insensitive to small perturba-
tions in the initial concentration field or to the geometry of the
underlying space. This property is likely one of the reasons
that diffusive processes are often used to learn about the
geometry of a space represented by a sampled point cloud
since the resulting insights do not sensitively depend on the
distribution of the points.

A. Diffusion distance

Let G be the k-nearest-neighbor graph on �/S constructed
by the procedure in Sec. II C. The diffusion distance di j,t on
G measures the L2 distance between two distributions that
begin as Dirac δ distributions on vertices i and j and diffuse
on G for a time t . Let the kernel matrix K have entries
ki j = exp(−l2

i j/σ
2), where li j is Dijkstra’s distance between

vertices i and j and σ is twice the median length of edges in
G, and the diagonal degree matrix D has entries dii = ∑

j ki j .
Then, P = D−1K is the transition rate matrix of a continuous-
time Markov process where the effect of raising P to the t th
power is equivalent to propagating the process by a time t .
Let {λl ,φl} be the set of eigenvalues and eigenvectors of P
for 0 � l � N − 1, where N is the number of vertices. Since
P is normalized, the largest eigenvalue λ0 is associated with a
constant eigenvector φ0. Discarding λ0 and φ0, the diffusion
coordinates are defined as

�t,i = [
λt

1φ1(i), . . . , λt
N−1φN−1(i)

]
, (5)

and encode a distribution starting as a Dirac δ distribution
on vertex i and diffusing for a time t . The diffusion distance
between vertices i and j is then defined as

di j,t = ‖�t,i − �t, j‖, (6)

where ‖ · ‖ is the Euclidean norm. Note that the significance of
the time t depends on the diffusion rate implicit in the kernel
K. Since the eigenspectrum of Pt decays very quickly for
sufficiently large t , the diffusion distance di j,t can often be ac-
curately approximated using only the first few eigenvalues and
eigenvectors for a substantial time and memory savings [15].
Details about this approximation are provided in Appendix B.

B. Mixing time

Thermodynamics is generally concerned with equilib-
rium or quasiequilibrium systems, where there is no net
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FIG. 7. Distributions of tautological function values for point clouds on �(4) sampled by three different procedures, with the dashed lines
indicating the radii of previously identified critical points. Sampling points uniformly gives the distribution on the left. The distribution in the
middle uses importance sampling and is more uniform. The distribution on the right is for a point cloud that both uses importance sampling
and samples additional points in the neighborhoods of the critical points.

redistribution of matter or energy and thermodynamic observ-
ables are time independent. From the standpoint of statistical
thermodynamics, this means that the time average of any ther-
modynamic observable over the system’s trajectory through
the phase space does not depend on the initial microstate
provided that the averaging is performed over a sufficiently
long time interval; the shortest such interval is known as the
mixing time.

Let � be the phase space of a thermodynamic system, q and
p be the canonical coordinates and momenta, and μ(q, p, t )
be the probability distribution of microstates on � at time
t . Suppose that the system has an arbitrary initial condition
μ0(q, p) = μ(q, p, 0). Briefly setting aside the specifics of
the time evolution of μ(q, p, t ), the steady-state distribution
μ∞(q, p) = limt→∞ μ(q, p, t ) defines the equilibrium condi-
tion on �, and the mixing time could, in principle, be defined
by the approach of μ(q, p, t ) to μ∞(q, p). That said, the litera-
ture does not seem to precisely define the necessary conditions
for the two distributions to be effectively indistinguishable,
nor the effect of the initial condition μ0(q, p) on the resulting
mixing time. A likely reason for this is the historical emphasis
on equilibrium states for which, by hypothesis, the observa-
tion time can be made as long as necessary for there to be
complete mixing.

Classically, the time evolution of μ(q, p, t ) is governed
by the Liouville equation [45,46]. Liouville’s theorem states
that the resulting convective derivative of the probability
distribution is zero, or that the flow of probability density re-
sembles that of an incompressible fluid. This raises questions
relating to the convergence of probability distributions that are
closely related to those about the origins of irreversibility and
that continue to be discussed in the literature. This discus-
sion is avoided by simply supposing that μ(q, p, t ) evolves
by the diffusion equation; there is evidence in the literature
that the relaxation behavior of similar systems is independent
of the choice of microscopic dynamics up to an overall multi-
plicative constant [47–49], meaning that the use of diffusive
dynamics likely does not substantially change the relative
values of the ε-mixing time as defined below as a function of
packing fraction. One consequence of this supposition is that
the marginal probability distributions on the configuration and
momentum subspaces evolve independently, though only the
marginal probability distribution on the configuration space
has a limiting distribution (the momentum subspace is un-
bounded). This suggests that the mixing time be defined by the

convergence of the marginal probability distribution ν(q, t ) on
the configuration space �q to the limiting distribution ν∞(q).

The Kullback-Leibler divergence [16] is often called the
relative entropy and is a standard way to quantify how much a
probability distribution ν differs from a reference probability
distribution ν∞,

I (t ; ν0) =
∫

�

ν(q, t ) ln
ν(q, t )

ν∞(q)
dq. (7)

We propose that the condition for ν(q, t ) to have converged to
ν∞(q) be that I (t ; ν0) � ε, where ε is an adjustable parameter
analogous to a conventional convergence threshold.

Now suppose that ν0 is a Dirac δ distribution centered
at q0 (the initial configuration is precisely known) and that
tε (q0) is the minimum time required for this initial condi-
tion to converge to the limiting distribution ν∞(q) on �q in
the sense above. The ε-mixing time 〈t〉ε is defined as the
weighted average of tε over all possible choices of the initial
condition, or

〈t〉ε =
∫

�

tε (q)ν∞(q)dq, (8)

where the measure of integration is taken to be ν∞(q) in the
absence of a natural alternative; the purpose of averaging over
all possible choices of the initial condition is to make tε (q0)
independent of this choice. The ε-mixing time is employed as
a precisely defined proxy for the thermodynamic mixing time
on the configuration space in the following. While the reader
is cautioned that the ε-mixing time and the thermodynamic
mixing time should differ by at least an overall multiplicative
constant [47–49], this should not affect the detection of pack-
ing fractions where either mixing time changes rapidly.

This leaves only the definition of a diffusive process occur-
ring on a connected graph G instead of on a continuous space
�q. Let ν(t ) be the probability masses on the vertices of G
at time t , and define the graph Laplacian as L = D − K [50].
The governing equation for a diffusive process is

(∂/∂t + L)ν(t ) = 0. (9)

Let � be the diagonal matrix of the eigenvalues λ0 = 0 <

λ1 · · · � λN−1 of L, and � be the matrix of the corresponding
eigenvectors where the first column is a constant vector. Since
L is a symmetric matrix, the columns of � form an orthogonal
basis and the solution to the diffusion equation is

ν(t ) = �e−t��T ν0 (10)
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for the initial condition ν0. The steady-state distribution is
readily calculated using the fact that all of the diagonal ele-
ments of e−t� go to zero in the limit of long time, except the
first term which goes to one. This suggests that the steady-
state distribution ν∞ is always the uniform distribution over
all vertices of G.

The right panel of Fig. 1 shows the different behaviors
of the diffusion distance and the mixing time in practice.
Observe that while both exhibit a discontinuous jump at the
filtration value where the two components of the space merge,
the diffusion diameter has an additional peak at the filtra-
tion value of the bottleneck. The initial rise is attributed to
the probability mass having difficulty diffusing to the point
of the bottleneck through a small number of paths. Since the
space is constructed by means of k-nearest-neighbor graphs,
more paths spanning the neck appear with further increases
in the filtration value, subsequently reducing the diffusion
diameter. That is, the peak in the diffusion diameter is ef-
fectively an artifact of the construction of the space and the
precise sequence in which the edges appear. By comparison,
the average mixing time 〈t〉ε is unaffected by the bottleneck
since the small volume of that region reduces its contribution
to the average in Eq. (8). More details about the calculation of
the ε-mixing time for this system are given in Appendix C.

IV. RESULTS

The hard-disk equation of state usually appears in the
literature as a function of packing fraction η [51,52]. The
radius ρ of the disks appearing in Eq. (3) can be converted
to a packing fraction using η = nπρ2/A for hard disks and
η = 4nπρ3/(3V ) for hard spheres, where A = √

3/2 and V =√
2/2 are, respectively, the area of the fundamental hexagon

and the volume of the fundamental rhombic dodecahedron in
Fig. 2.

The authors previously constructed quotient spaces of two
hard disks [37] and two hard spheres [38] and studied the
topological and geometric properties of both the original and
quotient spaces as functions of packing fraction. They ob-
served that while the geometric and topological features of
these spaces changed dramatically with the choice of sym-
metry groups by which to quotient, the general behavior of
the diffusion diameter (and significantly the locations of the
discontinuities) as a function of packing fraction did not.
This suggests that the quotient space has the advantage of
a substantially reduced volume while retaining the essential
geometric and topological features of the full configuration
space. If the behavior of the ε-mixing time is similarly robust
to the choice of symmetry groups by which to quotient, this
would allow Conjecture 1 to be tested more easily and for
systems with larger numbers of disks.

Figure 8 shows the ε-mixing times of the quotient spaces

(2, η)/T and 
(2, η)/{T ,P,L} for hard disks (top) and
hard spheres (bottom). Since only relative changes in the ε-
mixing time are significant, all the results in this section are
normalized to their maximum value for ease of comparison.
Initially consider the hard-disk results in the top row. There
are only two critical points, one index-0 and one index-1.
The volumes and ε-mixing times of both spaces initially grow
slowly with decreasing η, with a discontinuity appearing at

FIG. 8. ε-mixing times of the quotient spaces 
(2, η)/T and

(2, η)/{T ,P,L} for hard disks (top) and hard spheres (bottom).
Dashed lines represent the packing fractions of the critical points.

precisely the packing fraction of the index-1 critical point; the
discontinuity is stronger for 
(2, η)/T since the geometric
change is more severe, though at the price of greatly increased
computational cost. The bottom row shows the results for
hard spheres, for which there are two distinct index-0, one
index-1, and one index-2 critical points. Since having distinct
index-0 critical points results in the space having multiple
disconnected components for certain intervals of η, the ε-
mixing times for each component are shown with an opacity
that indicates the fraction of vertices participating in that
component. As before, there is a discontinuity in the ε-mixing
time at the packing fraction of the index-1 critical point, in
this situation indicating that the disconnected components are
joined. Notice that a similar discontinuity does not occur at
the packing fraction of the index-2 critical point, nor indeed
at any other critical point of the tautological function. Since
the behavior of the diffusion diameter was previously found
to be similarly robust to the choice of symmetry groups by
which to quotient, the quotient spaces 
/{T ,P,L} will be
used exclusively in the following.

Figure 9 shows the diffusion diameters and ε-mixing times
of the quotient spaces 
/{T ,P,L} for n = 3 . . . 7 hard disks
as functions of packing fraction, with dashed lines indicating
the packing fractions of the critical points. The first obser-
vation is that not all of the critical points correspond to
substantial geometric changes, at least not ones to which the
diffusion distance and ε-mixing time are sensitive. The second
is that the diffusion diameter is generally much noisier than
the ε-mixing time, and while the structure in the signal could
perhaps be analyzed for further geometric information, that
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FIG. 9. Diffusion diameters and ε-mixing times of the spaces 
/{T ,P,L} for n = 3 . . . 7 hard disks as functions of packing fraction.
Dashed lines shows the packing fractions of the critical points.

is not the purpose of our study. The third is that while the
discontinuities in the diffusion distance and ε-mixing time do
not always occur at the same packing fractions, the largest
discontinuities generally do.

Figure 10 shows the corresponding results to Fig. 9 for
n = 3 . . . 6 hard spheres. While the number of critical points
is greatly increased relative to the hard-disk systems in Fig. 9,
the number of discontinuities in the diffusion diameter and
ε-mixing time are approximately the same. This suggests that
there is perhaps a small class of critical points associated
with substantial geometric changes to the configuration space,
and that the distribution of these critical points is the most
relevant to the underlying hypothesis. Notice particularly that
the packing fraction of the largest discontinuities appears to
be approaching the packing fraction of the lower end of the
phase-coexistence interval with increasing n. Unfortunately,

even using all of the techniques in Sec. II C, the memory
requirements increase so rapidly with n that we could not re-
alistically examine the spaces for n � 7. Even for five and six
hard spheres, the volume of the space increases so rapidly with
decreasing packing fraction that we cannot report diffusion
diameters and ε-mixing times over the entire domain. This
does not substantially affect our conclusions though since the
sampled domain of η already extends well below the coexis-
tence interval, and notably includes all of the index-1 critical
points.

There is evidence that at least for the hard-disk systems,
the substantial geometric changes leading to discontinuities
in the ε-mixing time are often associated with the lowest-
packing-fraction index-1 critical point. Figure 11 shows the
packing fractions of the largest discontinuities in Figs. 9 and
10 as black squares, with the number of hard disks (top) and

FIG. 10. Diffusion diameters and ε-mixing times of the spaces 
/{T ,P,L} for n = 3 . . . 6 hard spheres as functions of packing fraction.
Dashed lines shows the packing fractions of the critical points.
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FIG. 11. The largest discontinuous jumps (black squares) ob-
served in Figs. 9 (top) and 10 (bottom) along with the packing
fractions of all known critical points, colored by their indices:
index-0 in purple (dark circles), index-1 in blue (medium circles),
all others in green (light circles).

hard spheres (bottom) increasing on the vertical axes. The
packing fractions of all known critical points are also shown,
with index-0 critical points in purple, index-1 critical points
in blue, and all others in green. While ε-mixing time data are
only available for n � 7 hard disks and n � 6 hard spheres,
populations of critical points for n � 12 hard disks and hard
spheres have been sampled using established techniques that
are described elsewhere [36–38]. Apart from the increasing
concentration of low-index critical points around the phase-
coexistence interval with increasing n, the most striking aspect

FIG. 12. The sorted true distances d�/T calculated for a fixed
generic configuration and the 7! × 12 symmetric versions of a second
generic configuration for 7 hard disks.

of the figure is that the largest discontinuities almost always
occur close to the packing fraction of the last index-1 critical
point to appear with decreasing packing fraction (each of
the black squares comes slightly before an index-1 critical
point due to finite sampling). This is not entirely unexpected
since each index-1 critical point either joins previously dis-
connected components or add a new class of closed paths
to the space. Supposing that discontinuities in the ε-mixing
time are associated with the former, it also makes sense that
the largest discontinuity would be observed at lower packing
fractions where the disconnected components being joined
had the opportunity to grow to substantial volumes. The in-
creasing concentration of low-index critical points around the
phase-coexistence interval draws the discontinuity closer to
the liquid limit with increasing n, though that is admittedly
a noisy trend for the small numbers of disks considered
here. Nevertheless, this does provide evidence that some-
thing along the lines of Conjecture 1 could be true for hard
sphere systems, and perhaps for thermodynamics systems as
well.

V. CONCLUSION

A phase transition is necessarily related to a discontin-
uous change in the probability density function describing
the distribution of the system’s microstates on the phase
space. The question of how this could occur as the thermo-
dynamic control variables are continuously varied has not
been conclusively answered in the literature. One proposal,
called the topological hypothesis [7,8], suggests that topo-
logical changes to the accessible region of the configuration
space is a necessary condition for a phase transition. This
paper instead suggests that a substantial change to the ge-
ometry of the accessible region is a necessary condition for
a phase transition, and that such a change is often (but not
always) associated with a topological change. More specif-
ically, Conjecture 1 proposes that a discontinuity in the
mixing time on the configuration space is a necessary con-
dition for a first-order phase transition in the thermodynamic
limit. Our main result is a preliminary test of this conjec-
ture for hard-disk and hard sphere systems with few enough
disks that the configuration space geometry can be explicitly
studied.

The configuration spaces of hard disks and hard spheres
are represented as graphs with vertices representing specific
configurations of disks and edges indicating the distances
between the configurations. The vertices of the graph are
sampled more densely around critical points, or locations
where the topology of the configuration space is known
to change as a function of disk radius, to more accurately
capture the topological and geometric changes in those re-
gions. The diffusion diameters and the ε-mixing times of
the resulting graphs are calculated as functions of packing
fraction for n � 7 and n � 6 hard spheres; the ε-mixing
time is proposed here and is designed to be a proxy
for the thermodynamic mixing time that can be explicitly
evaluated.

The geometric signals obtained for the diffusion diame-
ter and the ε-mixing time are consistent in the sense that
their discontinuities generally occur at the same packing
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FIG. 13. The same configurations as in Fig. 12 are sorted by the approximate values of d�/T [x, S(y)] for m = 1, 10, 50, and 100 and are
plotted with the true values of d�/T [x, S(y)] on the vertical axis.

fractions. Apart from relating more directly to the content of
Conjecture 1, the ε-mixing time is a much smoother func-
tion of packing fraction than the diffusion diameter. The
discontinuities in the ε-mixing time are found to occur at
comparatively few critical points; for the hard-disk and hard
sphere systems at least these are predominantly index-1 crit-
ical points. Along with the observation that the low-index
critical points are increasingly concentrated around the phase
coexistence interval with the number of disks, this suggests
that a discontinuous change in the ε-mixing time could in-
deed coincide with the first-order phase transitions in the
hard-disk and hard sphere systems in the thermodynamic
limit.

Future studies along these lines would likely need to extend
the analysis to larger numbers of disks to make the trends
in the approach to the thermodynamic limit clearer. Given
the rate of increase in the computational requirements with
number of disks, this would require, at a minimum, more
efficient algorithms to search for critical points and calcu-
late the distances between configurations. The computational
requirements would also be reduced by using a further-
reduced representation of the spaces by means of witness
graphs [53] or by restricting to particular intervals of disk
radius close to the phase-coexistence region. Further devel-
opment of a suitable min-type Morse theory would also be
helpful [34,54].
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FIG. 14. The t th powers of the eigenvalues of P for
�(4)/{T ,P,L} at times t = 1, 5, and 10. The values generally
decay rapidly and are often numerically indistinguishable from zero
for sufficiently large t .

APPENDIX A: HEURISTIC FOR THE DISTANCE

Let S = {T ,P,L} in Eq. (4). Since T is a continuous
group and {P,L} is discrete, Eq. (4) can be rewritten as

d�/S (x, y) = min
S∈{P,L}

d�/T [x, S(y)],

d�/T [x, S(y)] = inf
t∈T

d�[x, S(y) + t],

d�[x, S(y) + t] =
n∑

i=1

‖xi − S(yi ) − t‖.

Evaluating d�/T [x, S(y)] involves solving a global optimiza-
tion problem over rigid translations for a fixed discrete
symmetry operation S. Since evaluating d�/S (x, y) involves
solving n! × O(L) of these global optimization problems, the
computational cost could be significantly reduced if a suitable
approximation for d�/T [x, S(y)] could be found to quickly
reject some of the S.

Such an approximation is constructed, for a fixed num-
ber of iterations m, by randomly sampling a translation t,
calculating the distance d�[x, S(y) + t] for that translation,
and accepting that translation only if it reduces d�[x, S(y) +
t] [55]. The resulting approximations for d�/T [x, S(y)] are
sorted by increasing magnitude, and the full optimization
problem is solved only for the first M symmetry operations
in the sorted list. The rationale for this procedure is that

FIG. 15. Individual mixing times tε (q0) of the example system
shown in Fig. 1. The average mixing time 〈t〉ε is around 15 000.
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calculating the approximations using a moderate m is less
expensive than solving the global optimization problem.

For two generic configurations of 7 hard disks, there are
7! × 12 = 60 480 symmetric versions of the second config-
uration due to the actions of P and L. Figure 12 shows
the sorted true distances d�/T , and d�/S is the minimum of
this set. Figure 13 shows the same configurations sorted by
the approximate values of d�/T [x, S(y)] for m = 1, 10, 50,
and 100 plotted with the true values of d�/T [x, S(y)] on the
vertical axis. Observe that with increasing m, these curves
should converge to the one in Fig. 12, and that even for small
m, the true minimum distance should appear within the first
M � 60 480 symmetry operations. Numerical experiments
suggest that m = 50 and M = 200 are generally sufficient for
an approximation with a relative error of the order of 10−4.

APPENDIX B: EIGENSPECTRUM ANALYSIS

The diffusion coordinates in Eq. (5) involve the t th pow-
ers of the eigenvalues of P sorted by decreasing magnitude.
This means that for sufficiently large t , the computational
expense of calculating the diffusion distance can be consid-
erably reduced with negligible loss of accuracy by truncating

the eigenspectrum and only considering the first few diffu-
sion coordinates [15]. Figure 14 shows the t th powers of the
eigenvalues of P for �(4)/{T ,P,L} at times t = 1, 5, and
10. Observe that even for the relatively small t = 5, most of
the diffusion coordinates will be numerically indistinguish-
able from zero. Only the first 200 diffusion coordinates are
used here unless otherwise specified, changing the diffusion
diameter to a relative error of less than 10−8 and making this
source of error negligible compared to other sources.

APPENDIX C: MIXING TIME OF AN EXAMPLE SYSTEM

Figure 15 shows the ε-mixing times tε (q0) as a function of
q0 for the example system in Fig. 1. The k-nearest-neighbor
graph is constructed with k = 7, the length of an edge is given
by the Euclidean distance between the corresponding vertices,
and ε = 0.001 is used since the steady-state probability mass
at each vertex is 0.0005 (the inverse of the number of ver-
tices). Points closer to the center have smaller ε-mixing times
since the initial Dirac δ distribution can spread to the upper
and lower regions more easily as compared to distributions
starting near the corners. The average mixing time 〈t〉ε for
this example is around 15 000.
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