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Random sequential adsorption of extended objects deposited on two-dimensional regular lattices is studied.
The depositing objects are chains formed by occupying adsorption sites on the substrate through a self-avoiding
walk of k lattice steps; these objects are also called “tortuous k-mers.” We study how the jamming coverage,
0; ., depends on k for lattices with different connectivity (honeycomb, square, and triangular). The dependence
can be fitted by the function 6, = 0; . + B/k + C/k*, where B and C are found to be shared parameters
by the three lattices and 6 .o, (>0) is the jamming coverage for infinitely long k-mers for each of them. The
jamming coverage is found to have a growing behavior with the connectivity of the lattice. In addition, 6 is
found to be higher for tortuous k-mers than for the previously reported for linear k-mers in each lattice. The
results were obtained by means of numerical simulation through an efficient algorithm whose characteristics
are discussed in detail. The computational method introduced here also allows us to investigate the full-time
kinetics of the surface coverage 6;(t) [0 = 6;(t — 00)]. Along this line, different time regimes are identified

and characterized.
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I. INTRODUCTION

The adsorption (or deposition) of particles on solid surfaces
is a challenging theoretical problem with important applica-
tions related to thin surface films. Using equilibrium statistical
mechanics, numerous studies have been carried out on the
problem of reversible adsorption [1]. However, in many ex-
periments on adhesion of colloidal particles and proteins on
solids substrates, the relaxation timescales are much longer
than the times of the formation of the deposit. This situation
has encouraged the scientific community to explore research
on irreversible adsorption [2].

In the most common picture for systems out of equilibrium,
the change of state of surface sites from empty or vacancy
to filled or occupied (or vice versa) occurs randomly, se-
quentially, and irreversibly. This process is known as random
sequential adsorption (RSA) [3-6], and has been applied to
a large number of systems where the deposition of objects
is irreversible over timescales of physical interest. Among
others, a variety of biological [3], physical [7], chemical [8],
and ecological [9] processes have been modeled by using an
RSA scheme.
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The assumptions of the RSA models are easily stated: ob-
jects are placed randomly one after another in a d-dimensional
volume [4]. In the case that the last placed object overlaps
with any of those already present, it is immediately removed;
otherwise its position is permanently fixed. The scheme is ap-
plied to model objects of different shapes and sizes deposited
on a discrete or continuous surface [10—16]. The quantity of
interest is the fraction of surface, 6(¢), covered in time, ¢, by
the depositing particles or objects. Under these conditions,
each deposited particle affects the geometry of all later place-
ments. Thus, the dominant effect in RSA is the blocking of the
available substrate area, and the limiting (jamming) coverage
0; = 0(t — 00) is less than in close packing.

In the framework of the RSA and discrete models (which
is the topic of this paper), several authors investigated
the isotropic deposition of straight rigid k-mers on two-
dimensional (2D) square lattices [17-20]. In Ref. [17], linear
k-mers with k between 2 and 512 were randomly and isotrop-
ically deposited on a 2D square lattice. By using computer
simulations, the authors found that the jamming concentra-
tion monotonically decreases and tends to 0.660(2) as the
length of the rods increases. Bonnier et al. [17] reported that
the jamming coverage as a function of size k follows a law
0k = 0.660 + 1.071/k — 3.47/k* (k > 48).

Kondrat and Pekalski [18] extended the study to longer
objects (2 < k < 2000) and corroborated that, as reported
by Bonnier et al. [17], the jamming coverage decreases
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monotonically approaching the asymptotic value of 6; .o =
0.66(1) for large values of k. In Ref. [18], a power law was re-
ported for 6; vs k: 0; = 0.66 + 0.44k =7, Recently, Slutskii
et al. [19] obtained the percolation thresholds and jamming
concentrations for lengths of k-mers up to 2!7.

In the case of triangular lattices, the jamming problem cor-
responding to straight rigid k-mers was studied in Ref. [21].
Using values of k between 2 and 20, the authors found that
0)k—o00 = 0.56(1). Later Perino et al. [22] extended the anal-
ysis to larger lattices and longer objects: 2 < k < 128 and
L/k = 100, 150, 200, 300. The results obtained showed that
the jamming coverage decreases monotonically approaching
the asymptotic value of 0.5976(5) for large values of k:
0;x = 0.5976 + 1.268/k — 3.61/k* (k > 12). The finding in
Ref. [22] improves previous estimate in Ref. [21], showing
the advantages of having reached larger k-mer sizes.

More recently [23], the RSA of linear k-mers on hon-
eycomb lattices was investigated for k ranging between 2
and 128. Following the procedure in Refs. [17,22], simula-
tion data were fitted by the function 6, = A+ B/k —C k2.
In this case, A = 0.6007(6), B = 1.84(5) and C = 8.36(70)
(k > 16). The value of A represents the limit concentration by
infinitely long k-mers: 6 ;oo = A = 0.6007(6).

The jamming behavior of objects that have any shape is
more complex than the linear one. In the square lattice, the de-
position of different objects has been studied: squares [3,24—
32], rectangles [33], T-shaped objects and crosses [34], ring
polymer chains [35], etc. Y-shaped particles and tetrominoes
have also been investigated in honeycomb lattices [36,37].
With respect to triangular lattices, Budinski-Petkovi¢ et al.
[21,38-40] examined the kinetics of the RSA of objects of
various shapes (linear segments, angled objects, triangles, and
hexagons) on homogeneous lattices [21,38,39] and lattices
with quenched impurities [40]. The coverage of the surface
and the jamming limits were calculated by Monte Carlo (MC)
simulation. In all cases, the authors found that the jamming
coverage decreases monotonically as the k-mer size increases:
0j.x = 0o + 61 exp (—k/r), where 6, 01, and r are parameters
that depend on the shape of the adsorbing object. The depo-
sition of more complex shapes, made by self-avoiding lattice
steps whereby the size of the objects is gradually increased by
wrapping the walks in several different ways (wrapping trian-
gles, wrapping hexagons, and wrapping rhombuses), has also
been investigated in triangular lattices [41,42]. The obtained
results demonstrate that the symmetry properties of the shapes
determine the kinetics of the late stage of deposition. Kondrat
[43] studied the effect of the temperature on the flexibility of
chains adsorbed onto a triangular lattice. Several temperature
regimes were identified and discussed.

In all of the above cases, identical (monodisperse) objects
or mixtures of a few shapes were considered in the deposition
process. However, if the number of available configurations
of the depositing objects increases, the statistical problem
becomes exceedingly difficult. For example, this is the case
of polymer chains generated by a self-avoiding random walk
(SAW) on the lattice [44], whose treatment is still limited.
Along this line Wang and Pandey [45] studied the dependence
of coverage on time in a RSA of SAW chains on square lat-
tices. Using a highly efficient event-driven algorithm [26,46],
the authors found that (1) the jamming coverage decreases

with the chain length and (2) it is not clear a priori that the
jamming coverage goes to zero as the size k tends to infinity.
The percolation of SAW k-mers on 2D lattices has also been
studied [47-50]. The percolation analysis does not require an
accurate determination of the jamming coverage.

Although the RSA problem of SAW k-mers is less de-
veloped than the corresponding RSA problem of simple
objects, the experimental evidence has shown that the ad-
sorbed molecules can, in many cases, be modeled as SAW
chains of k single units. Large polymers and proteins are
examples of adsorbates that can be well described by SAW
configurations [51-53]. In this context, the main objectives of
this paper are (1) to develop a numerical strategy to obtain
the full-time kinetics of the surface coverage for structured
objects deposited on discrete lattices; (2) to identify the dif-
ferent time regimes that can be observed during the deposition
process; (3) to calculate the jamming coverage; (4) to verify
the proposed method by comparing with (a) exact results for
linear k-mers on one-dimensional (1D) lattices [54,55], (b)
MC results for linear k-mers on 2D lattices [17,20,22,23], and
(c) MC results for SAW chains on square lattices [45]; (5)
to apply the proposed method to determine the dependence
of 6; with the size k for the RSA problem of SAW k-mers
on honeycomb and triangular lattices; and (6) to discuss the
general behavior of 6 ; for SAW k-mers on 2D lattices.

The present work is a natural extension of our previous
research in the area of the RSA model, and the method de-
veloped here could be applied to study irreversible adsorption
of proteins and other complex molecules characterized by
the wide polydispersity of their adsorption configurations.
The paper is organized as follows: the model and and basic
definitions are given in Sec. II. The results are presented in
Sec. III. Finally, the conclusions are drawn in Sec. I'V.

II. MODEL AND BASIC DEFINITIONS

The surface is represented by a honeycomb, square, or
triangular lattice of M = L x L adsorptive sites, with lattice
constant a and periodical boundary conditions. Initially, the
lattice is completely empty. Then, particles composed by k
identical units (each one occupying a lattice site) are se-
quentially, randomly, and irreversibly deposited following a
RSA process [4]. The depositing objects are called “tortuous
k-mers,” and its structure is modeled as a SAW [44]. As
mentioned in Sec. I, the RSA deposition leads to a blocked
configuration in which no more objects can be deposited due
to the absence of free space of appropriate size and shape; this
blocking configuration is known as jamming state.

The irreversible deposition of structured objects on solid
surfaces can be simulated as successive self-avoiding random
walks on lattices. A common approach consists in randomly
choosing a lattice site from which a k-step self-avoiding ran-
dom walk is performed and, if all the k visited sites are empty,
a SAW k-mer is deposited. If any of the sites is occupied, the
attempt is rejected. One unit time in the deposition procedure
(or Monte Carlo step, MCS) corresponds to L? repetitions of
the elemental step (L? deposition attempts). Figure 1 shows
k-mers (with k = 4) deposited on honeycomb [Fig. 1(a)] and
square [Fig. 1(b)] lattices, and k-mers (with k = 3) on trian-
gular [Fig. 1(c)] lattices. Black spheres, joined by thick lines,

064106-2



RANDOM SEQUENTIAL ADSORPTION OF SELF-AVOIDING ...

PHYSICAL REVIEW E 107, 064106 (2023)

A'A'A'A'A'A'A'
(©)

FIG. 1. (a) Available configurations for tetramers (k = 4) ad-
sorbed on honeycomb lattices. (1) and (2) correspond to U -shaped
and step-shaped, respectively. Black spheres, joined by thick lines,
represent adsorbed k-mer units. Open circles correspond to empty
sites. (b) The same as part (a) for tetramers (k = 4) adsorbed on
square lattices. (1), (2), (3), (4) correspond to linear, step-shaped,
U-shaped, and L-shaped tetramers, respectively. (c) The same as
(a) for trimers (k = 3) adsorbed on triangular lattices. (1), (2), (3)
correspond to linear, 120°, and 60° trimers, respectively.

represent adsorbed k-mer units. Open circles correspond to
empty sites.

Repeating the elemental step, the particles are sequentially
deposited. The surface coverage 6 is defined as 6 = kN/M

(N is the number of the deposited k-mers), and the goal is to
find the jamming coverage. This “attempt-reject” scheme is
widely used to study percolation and jamming properties of
linear k-mers. However, this mechanism becomes inefficient
when dealing with tortuous k-mers and is very time consum-
ing as coverage and particle size increase. In order to cope
with these difficulties, we introduce an efficient rejection-free
algorithm based on an systematic search of available states for
deposition.

An alternative deposition scheme consists of creating an
exhaustive list of all possible k-uples (sets of k empty sites)
where a SAW object could be deposited. This can be achieved
with an algorithm capable of tracing (in a recursive way) all
the possible SAWs of k steps starting from a given site. The
procedure is repeated for every site in the lattice. Once the
list is built, the following steps are carried out: (1) a random
k-uple is chosen from that list and is occupied by a k-mer; (2)
at each step, the list is updated by eliminating all the k-uples
that shared a common site with k-uple selected in (1); and (3)
the process is repeated until the list is emptied.

This rejection-free algorithm provides a true jamming final
state in which no other object can be deposited. The weakness
of this method is the amount of memory needed to manage
the list. Note that for an empty square lattice of L? sites, the
number of configurations in the list (memory usage) rises from
18L% (7 MB) for k =4 to 120292L (1.2 TB) for k = 12
and 237444412 (47 TB) for k = 15 (the memory data were
calculated using a modest ratio of L/k = 40). This task is
illustrated in Fig. 2 for the case of tetramers (k = 4) on square
lattices. The initial site (head) is shown as an empty circle, and
the tail is represented by full circles with a gray background
(from light to dark). There is a total of 18 distinguishable SAW
configurations in the case of the figure.

In Ref. [45] the growth of coverage in a RSA of SAW
chains on a square lattice was studied. The authors observed
that the coverage rapidly increases in the short-time regime,
and then because of the large number of conformational states
of SAW chains, the deposition becomes very slow in the long
time. Thus, in the late stage, an event-driven method [26,46]
was used to speed up the simulation by identifying partial
chains available for deposition.

Following the line of Ref. [45], a mixed algorithm is pro-
posed here combining two stages: a first one of “brute-force”
search (acceptance-rejection algorithm) plus a second one of
“systematic search” (rejection-free algorithm). In this way,
the memory limitations of the second stage can be overcome
by preceding the systematic search with a limited number of
steps of the standard RSA process. With this strategy, the
initial size of the rejection-free list is drastically reduced.
The complete algorithm is as follows. First, k-mers are de-
posited according to the acceptance-rejection scheme until
a certain time #; at which the ratio between rejections and
successful attempts exceeds a cutting parameter, Rc. The
second stage of the deposition process consists in an ex-
haustive search by using the rejection-free algorithm. This
stage starts from the final configuration reached in the first
stage, which is expected to be relatively close to the jamming
condition.

The whole process (first and second stages) guarantees to
reach, in a significantly shorter computational time, a true
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FIG. 2. Example of systematic generation of SAW configura-

tions with k = 4 in the square lattice. The initial site (head) is showed
in yellow, and the tail is represented by gray (from light to dark).

jamming state in which no more k-mers can be adsorbed
due to absence of free space of appropriate size or shape.
The developed strategy replaces the computational time con-
sumption of the usual RSA algorithms (acceptance-rejection
algorithm, stage 1) by memory consumption to allow the man-
agement of the list in stage 2 (rejection-free algorithm). The
choice of the parameter R is of some importance, although it
is not crucial. For k sizes between 2 and 9, we set Rc in the
range 10'-10°, and the jamming configurations are reached
in a reasonable time. As k is increased above kK = 9, we set
Re = 10* to avoid having memory usage problems in the
second stage.

In order to illustrate how the two-stage method works,
we analyze in detail the dependence on time of the surface

coverage 6 for one sample corresponding to SAW chains with
k =13 on a square lattice with L = 1300. The results are
shown in Fig. 3. During the first stage, Fig. 3(a) shows how
the surface coverage 6 increases asymptotically as a function
of the simulation time ¢. This is because the rejection rate
of the algorithm grows as the lattice is increasingly covered.
In this stage the time increment for each elementary step of
acceptance or rejection is At = 1/L?, that is, the unit time
corresponds to L? attempts of the standard RSA algorithm.
We establish a maximum for the acceptance-rejection ratio,
and, once this maximum is reached, the first stage is finished.
This occurs at time #; &~ 74 MCSs, as can be seen at the end of
the curve in Fig. 3(a). The value of the surface coverage after
stage 1is 0; = 0(t = t1) = 0.66409.

The second stage begins by first building the exhaustive
list of all the possible SAWs of k steps that can be lo-
cated in the available empty sites. In this manner, the list
of all possible SAWs that can be deposited on the lattice is
obtained. It is worth mention that the size of this list can
easily get too large if the starting configuration is not close
enough to a final (jamming) condition. There is a compromise
between how long the first stage is (time consuming) and
the initial size of the list (amount of memory) that can be
handled.

From now on, the second stage proceeds by choosing at
random a SAW configuration from the list. Then the selected
SAW configuration is occupied and removed from the list. At
this point, any other configuration that shares sites with the
selected one is also removed from the list, since these config-
urations are not longer possible to be occupied. Thus, the list
is reduced and the process continues until the list is empty.
As a result of this, we obtain a true jamming state, that is, a
configuration where there is no possibility of accommodating
any other SAW chain of k units.

Since the second stage guarantees that at each step a new
SAW chain is deposited (there is no rejection), the coverage
increases linearly with the steps [left axis and solid circles
in Fig. 3(b)], unlike the asymptotic behavior observed for the
coverage in the first stage [Fig. 3(a)].

Figure 3(b) shows also the evolution of the size of the list
over simulation time. For this purpose, the number of remain-
ing k-uples in the list Ng (open orange circles) is plotted as a
function of the number of steps on the right axis (in logarith-
mic scale). At the beginning, for each SAW that is randomly
selected for occupation, the number of SAWs removed from
the list is very large. Towards the end, this number decreases,
and the list size decreases slowly. After 13 559 steps, the list is
completely empty and a jamming state is reached. In the case
of the figure, 6; = 0.74969.

In order to maintain the same dynamics, and as is stan-
dard in n-fold way-like algorithms [26,45,46,56], the time
increment per step in the second stage does not simply ad-
vance the time by At = L™? as before, but by an amount
At = (1/R)log(1/€), where R is the ratio Ng/Z5" . Here Ng
is again the (number of) remaining k-uples in the list, i.e.,
the number of potentially available k-uples to be occupied,
whereas Z3"W is the number of SAWs of k steps starting
from a certain point, which could be obtained numerically.
Finally, £ is an uniformly distributed random number between
O and 1.
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FIG. 3. (a) Surface coverage 6 as a function of time ¢ (solid
black circles) for one sample corresponding to SAW k-mers with
k = 13 deposited on a square lattice with L = 1300. The results were
obtained by following the acceptance-rejection deposition scheme
presented in Sec. II (stage 1) with #; & 74 MCSs. The value of the
surface coverage after stage 1 [0, = 0(t = t,)] is indicated. (b) Sur-
face coverage 6 (left axis, solid red circles) and remaining k-uples in
list Nk (right axis, open blue circles) as a function of the number of
steps for the same case in (a). The data were obtained by following
the rejection-free deposition scheme presented in Sec. II (stage 2).
The value of the jamming coverage (6;) is indicated. (c) Surface
coverage 0 as a function of time ¢ (6 axis in linear scale, ¢ axis
in log scale) for the same sample shown in (a) after the complete
deposition process. The red (blue) line represents results obtained in
stage 1 (2).

In Fig. 3(c) the complete time evolution of the surface cov-
erage 6 as a function of time ¢ is shown in a semilogarithmic
scale (0 axis in linear scale, ¢ axis in log scale). The red (blue)
line represents results obtained in stage 1 (2).

The procedure described in this section can be visualized in
a video available in the Supplemental Material [58]. Video S1
corresponds to the deposition dynamics, corresponds to stage
1 (or “brute-force search”) followed by stage 2 (or “systematic
search”). At the moment of passing from stage 1 to stage 2,
the work of the search algorithm for SAWs (shown in yellow)
can be seen. These SAWs will form the list needed for the
second stage. The configurations shown in Video S1 have
been obtained for square lattices with k = 15 and L = 80,
which are appropriate for illustrative purposes.

III. RESULTS

This section is organized in two parts. First, the two-stage
algorithm described above is used to calculate the jamming
coverage for SAW k-mer deposition onto hexagonal, square,
and triangular lattices (whose connectivity is ¢ = 3, 4, and 6,
respectively). Second, the technique is applied to study the
time evolution of the surface coverage (kinetics of packing
growth) for the same systems (SAW k-mers on hexagonal,
square, and triangular lattices).

The performance of the algorithm was tested by com-
paring the jamming value for linear k-mers with different
sizes deposited onto 1D and 2D lattices obtained through
the two-stage algorithm and the previously reported values
[17,20,22,23,54,55]. The comparison showed a good corre-
spondence between the two sets of values; for further details
see the Appendix.

A. Tortuous k-mers

We begin studying the dependence of the jamming cov-
erage on the size of the deposited objects for a system of
SAWS irreversibly deposited on 2D lattices. Following the
scheme presented in Sec. II, extensive computer simulations
were developed for k ranging between 2 and 15. For each
size k, 10° different samples were used to obtain the average
jamming coverage.

The numerical results strongly depend on the finite size
M =L x L of the calculation lattice. The situation can be
clearly visualized in Fig. 4, where the jamming coverage 0; ;
is shown versus the lattice size L/k for a typical case of
tortuous k-mers adsorbed on a square lattice: k = 5. The error
bars are included in the graph. From a simple inspection of the
figure it is observed that the simulation predictions improve as
the lattice size increases. In our study, we used lattice sizes
L/k =200 (k € [2,9]) and L/k =100 (k € [10, 15]). With
these values of the parameters, very accurate measurements
of the jamming thresholds can be obtained with reasonable
computational effort. The results are shown in Fig. 5 and
collected in Table I (triangular lattice, second column; square
lattice, third column; and honeycomb lattice, fourth column).
Statistical errors on the last digits are indicated by the numbers
in parentheses.

As is standard in the literature [17,22], the simulation data
can be fitted to the function 6 = A + B/k + C/k* (k > 2).
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FIG. 4. Jamming coverage 6, vs the lattice size L/k for SAW
k-mers adsorbed on a square lattice and k = 5. The error bars are
included.

In the case of Fig. 5,
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where the value of A represent the limit concentration by
infinitely long k-mers and depends on the connectivity of
the lattice. For the cases shown in Fig. 5 6;;_,oo = 0.675(4)
(honeycomb lattice), 0 r—oc = 0.687(5) (square lattice), and
0).k—o0 = 0.706(3) (triangular lattice).

As in the case of linear k-mers on square lattices [17], the
jamming coverage of tortuous k-mers on square lattices shows
a decreasing behavior as a function of k, with a finite value
of saturation in the limit of infinitely long k-mers. However,
the 6 oo = 0.686(5) for tortuous k-mers is higher than the
value 6} ;. o = 0.660(2) obtained for linear k-mers on square
lattices [17]. It means that linear k-mers are less effective in
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FIG. 5. Jamming coverage 6;, as a function of k for tortuous
k-mers on honeycomb (hexagons), square (squares), and triangular
(triangles) lattices. Symbols represent simulation results, and dashed
line corresponds to the fitting function.

TABLE I. Simulation values of 6, for tortuous k-mers on 2D
lattices.

Tortuous k-mers on 2D lattices

k 0, « Triangular 0« Square 0« Honeycomb
2 0.91452(2) 0.90680(1) 0.87894(2)
3 0.87650(1) 0.85829(2) 0.84111(3)
4 0.85201(2) 0.83705(2) 0.82061(2)
5 0.83369(2) 0.81236(2) 0.79483(4)
7 0.79985(1) 0.78564(6) 0.76721(3)
9 0.78338(3) 0.76590(9) 0.75120(2)
11 0.76601(5) 0.75006(5) 0.73838(2)
13 0.75914(5) 0.73654(4) 0.72688(5)
15 0.75145(2) 0.73012(6) 0.71630(2)

filling the lattice than tortuous k-mers. The same behavior
it is found for the triangular and honeycomb lattices where
the jamming thresholds drops from 6, _, . = 0.706(3) (tortu-
ous) t0 0 r—0o = 0.5976(5)(linear [22]) and from 6; ;o =
0.675(4) (tortuous) to 6} ;o = 0.6007(6) (linear [23]), re-
spectively. When tortuous k-mers are considered, the jamming
threshold takes higher values as the connectivity of the lattice
grows for the whole range of k. This means that, as the con-
nectivity grows, it is easier for the tortuous k-mers to fill the
lattice. The latter is not trivial since previous results on jam-
ming for linear k-mer showed that the jamming threshold for
the square lattice takes higher values than the corresponding
ones for the triangular lattice (see Fig. 8).

In Ref. [45] the authors studied the RSA kinetics of self-
avoiding walk chains on a square lattice and found that the
jamming coverage decreases with the chain length according
to a power law. By means of a highly efficient MC algorithm
they were able to obtain, as here, true jamming values in
reasonable simulation times. Table II collects the jamming
values from [45] and the ones obtained here for the square
lattice. As can be seen, both results are in good agreement
within the statistical error for the interval [2,7]. In the case of
k = 15 our result is around 5% higher than the one reported;
due to the statistical differences in both studies (for k = 15
we use L = 1500 and 10° averages, and in [45], L = 500 and
700 averages), the result presented here is expected to be more
accurate.

B. Kinetics of packing growth

We now analyze the time evolution of the surface cover-
age for SAW k-mers. As an example, the results obtained

TABLE II. Simulation values of 6, for tortuous k-mers on the
square lattice.

Tortuous k-mers on square lattices

k 0, Ref. [45] 0 x Square
2 0.906820(2) 0.90680(1)
3 0.858296(4) 0.85829(2)
4 0.837055(13) 0.83705(2)
5 0.81235(2) 0.81236(2)
7 0.78558(1) 0.78564(6)
15 0.70178(2) 0.73012(6)
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FIG. 6. Surface coverage as a function of time for tortuous k-
mers on square lattices. The curves have been obtained for different
values of k as indicated.

for square lattices and various chain lengths are presented
in Fig. 6. The simulations are the same that were used in
Sec. III A to calculate the jamming coverage. As reported in
Ref. [45], a rapid increase in the coverage is observed in the
short-time regime. This is followed by a very slow growth in
the long time. The whole behavior can be divided into three
time regimes: (1) the short-time regime, (2) the intermediate
regime, and (3) the very late-stage regime. Similar behavior is
obtained for triangular and honeycomb lattices.

Our interest is to study the very long-time regime. In this
stage, the dynamics is controlled by filling independently the
last holes, and the approach to the jamming coverage follows
an exponential law in lattice deposition models [27,57],

014 — 06(t) ox exp [—1/T(K)), 2)
where 1/7(k) is the probability that a given hole is being filled
(in unit time), and [45]

nrrw c

(k) = k2 =§(c—1)k_2, k>1. (3)

Z}™ is the number of nonreversal random walk chains of
length k, and, as defined at the beginning of this section, ¢
is the lattice connectivity: ¢ = 3, hexagonal lattice; ¢ = 4,
square lattice; and ¢ = 6, triangular lattice.

The asymptotic regime is shown in Fig. 7 for k =2,3,5
and square lattices. The values of t used in the plots were
obtained from Eq. 3): t =2, k=2;t=6,k=3;and 7 =
54, k = 5. The figure also includes previous results from [45]
for k = 2 and k = 5 (open squares). An excellent agreement
is found between our data and the predictions in Ref. [45].

The analysis in Fig. 7 was repeated for other values of
k and other geometries (honeycomb and triangular). In all
cases the simulation results confirm the theoretical predictions
in Egs. (2) and (3). These findings validate the use of the
two-stage algorithm to study the the kinetics of deposition of
extended objects. Future research will be devoted to the appli-
cation of the proposed method to investigate SAW deposition
on more complex lattices.

10° . .
107" 5
~
% 1024
)
| 10—3 4 E
e o k=2, Ref. [45] 3
S S o k=35,Ref. [45]
1044 k=2 (this work)
— k=3 (this work)
S —— k=5 (this work)
10 " T

g

t/'t

FIG. 7. Semilogarithmic plot for the difference between jam-
ming coverage and coverage at time ¢ for square lattices and different
chain lengths as indicated. For a better view of all the curves on the
same plot, we plotted again the normalized time 7 /7. The dashed line
is the pure exponential decay exp (—t) for k = 1. The value of T was
selected following the theoretical prediction in Eq. (3). Solid lines

correspond to our results, and square symbols correspond to previous
results in Ref. [45].

IV. CONCLUSIONS

Random sequential adsorption of extended objects de-
posited on 2D regular lattices has been studied by numerical
simulations. For this purpose, a computational scheme to
determine jamming thresholds has been introduced. The
proposed method is a hybrid approach that combines two
stages: “brute-force search” (acceptance-rejection algorithm)
and “systematic search” (rejection-free algorithm).

First, objects are sequentially deposited according to a
standard acceptance-rejection scheme until a certain time #; at
which the ratio between rejections and successful attempts ex-
ceeds a cutting parameter. The second stage of the deposition
process consists of an exhaustive search of available states for
deposition by using an efficient rejection-free algorithm. This
stage starts from the final configuration reached in the first
stage, which is expected to be relatively close to the jamming
condition. The whole process (first and second stages) guar-
antees to reach (in a reasonable computational time) a true
jamming state in which no more objects can be adsorbed due
to absence of free space of appropriate size or shape.

First, the case of straight rigid k-mers was tested with
analytical exact results obtained for 1D chains [54] and previ-
ous simulation data for 2D regular lattices [17,20,22,23]. An
excellent agreement was observed in the comparison study,
validating the applicability and accuracy of the MC method
introduced here.

Second, the analysis was extended to the more interesting
and complex case of tortuous k-mers deposited on honey-
comb, square, and triangular lattices. The depositing objects
were modeled as self-avoiding walks of k lattice steps. The
jamming coverage dependence on the k-mer size was re-
ported. On the basis of the behavior of 6; versus k in the
range 2 < k < 15, and the best fit to this curve, the expression
0;x = A+ B/k + C/k* was obtained, where B = 0.75(5) and
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TABLE III. Simulation and theoretical values of 6 for straight
rigid rods on 1D lattices.

Linear k-mers on 1D lattices

k 0« [Eq. (AD)] 0;« (Simulation)
2 0.8646647168 0.86466(4)
3 0.8236529632 0.82365(5)
4 0.8038934799 0.80389(6)
5 0.7922759137 0.79228(7)
6 0.7846301559 0.78463(7)
7 0.7792175929 0.77922(6)
8 0.7751848332 0.77519(6)
9 0.7720640600 0.77206(6)
10 0.7695774160 0.76958(6)
12 0.7658640911 0.76586(8)
14 0.7632239548 0.76323(8)
16 0.7612505524 0.76125(9)
18 0.7597196571 0.75973(9)
20 0.7584974456 0.75849(8)
100 0.74976335 0.74975(64)

C = 0.65(3) are found to be shared parameters by the three
lattices, and A = 0} ;_, », represents the limit coverage by in-
finitely long k-mers: 6; .o = 0.675(4) (honeycomb lattice),
0 k—o00 = 0.685(5) (square lattice), and 64—, = 0.706(3)
(triangular lattice). In the case of square lattice, the obtained
jamming values agree very well with corresponding ones re-
ported in Ref. [45]. In the case of honeycomb and triangular
lattices, the behavior of 6; as a function of k for tortuous
k-mers is presented here for the first time.

Two important conclusions can be extracted from the study
of the jamming properties of tortuous k-mers: (1) the func-
tionality of 6; vs k (given by parameters B and C) does not
depend on lattice connectivity and (2) the value of the critical
coverage for particles with k£ tending to infinity tends to a
nonzero value. However, more simulations are necessary in
order to confirm this tendency for large values of k and other
space dimensions d > 2.

The full-time kinetics of the surface coverage 6;(t) was
also investigated. Three different time regimes were identi-
fied: (1) the short-time regime, (2) the intermediate regime,
and (3) the very late-stage regime. Special interest was de-
voted to the study of the very long-time regime, where the
law 0, — 0 (2) o exp [—t/T (k)] [with (k) = Z"™ /2] was
confirmed for the three studied geometries. In the case of
square lattices, our results showed an excellent agreement
with those of Wang and Pandey [45], validating the two-stage
algorithm to adequately keep track of time control.

The proposed scheme is simple and seems to be a promis-
ing way toward the description of irreversible adsorption of
structured objects. Further applications to more complex RSA
problems would in principle be feasible. In this sense, future
efforts will be directed in two main directions: (1) extend-
ing the present analysis to other d-dimensional hypercubical
lattices (d > 2), fractals, random graphs, and multilayer (and
layer-by-layer) deposition and (2) analyzing the applicability
of the model to interpret experimental data of protein activity
in some well-known systems [52].

¢ Honeycomb lattice

09 ® = Square lattice
® Triangle lattice
9. - O Honeycomb lattice Ref. [23]

Jik O Square lattice Ref. [17,20]

084 L Triangle lattice Ref. [22]

]
0]
ew.
@ " .

0.7 e , 7 v .

® . ®

4 8 12 16 20

FIG. 8. Jamming coverage 6, ; as function of k for linear k-mers
on honeycomb (hexagons), square (squares), and triangular (trian-
gles) lattices with k between 2 and 20. Solid symbols correspond to
results obtained in this work, and open symbols to data previously
reported in the literature as indicated.
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APPENDIX: STRAIGHT RIGID k-MERS

As discussed in Sec. I, the complexity of the problem of
irreversible adsorption of structured objects presents a major
difficulty for the development of accurate analytical solutions
for (t), and only the case of straight rigid rods (or linear k-
mers) on 1D lattices has been exactly solved [54]. In this limit,
6(t) can be written as

1 —e 4

¢ k—1
9(t)=k/ exp —u—22<—_> du. (A1)
0 = J

From Eq. (A1), the dependence on k of the jamming coverage
can be obtained (as an example, some values are shown in the
first column of Table I). For k — oo, the jamming threshold
tends to Rényi’s parking constant 6; — cg =~ 0.7475979202
[55].

Taking advantage of the solution in Eq. (A1), we proceed
first to obtain the jamming coverage for the 1D problem
through our method in order to compare with the exact result
presented in Ref. [54]. The simulations were performed using
a set of n = 10° independent samples with k ranging between
2 and 100, and L/k = 100000. The obtained results, which
are shown in the second column of Table III, agree to five
significant figures with previous exact results.
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The RSA problem of straight rigid k-mers on 2D lattices
was also revisited based on our two-stage algorithm. In Fig. 8
the dependence of 6; on the size k (2 < k < 20) is shown for
linear k-mers on honeycomb (solid hexagons), square (solid
squares), and triangular (solid triangles) lattices. The calcu-
lations were done for lattices with L/k = 100. In addition,
n = 10° runs were carried out for each value of k (and for
each type of lattice). The figure includes also similar data
obtained previously in the literature: linear k-mers on 2D

honeycomb lattices (open hexagons, Ref. [23]), straight rigid
k-mers on 2D square lattices (open squares, Refs. [17,20]),
and straight rigid k-mers on 2D triangular lattices (open tri-
angles, Ref. [22]). The present results and those previously
reported in the literature coincide within the statistical uncer-
tainty.

The excellent agreement obtained for linear k-mers (Ta-
ble III and Fig. 8) validates the applicability of the method
introduced here to calculate jamming thresholds.
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