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Out-of-equilibrium dynamics of repulsive ranked diffusions: The expanding crystal
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We study the nonequilibrium Langevin dynamics of N particles in one dimension with Coulomb repulsive
linear interactions. This is a dynamical version of the so-called jellium model (without confinement) also known
as ranked diffusion. Using a mapping to the Lieb-Liniger model of quantum bosons, we obtain an exact formula
for the joint distribution of the positions of the N particles at time t , all starting from the origin. A saddle-point
analysis shows that the system converges at long time to a linearly expanding crystal. Properly rescaled, this
dynamical state resembles the equilibrium crystal in a time-dependent effective quadratic potential. This analogy
allows us to study the fluctuations around the perfect crystal, which, to leading order, are Gaussian. There are
however deviations from this Gaussian behavior, which embody long-range correlations of purely dynamical
origin, characterized by the higher-order cumulants of, e.g., the gaps between the particles, which we calculate
exactly. We complement these results using a recent approach by one of us in terms of a noisy Burgers equation.
In the large-N limit, the mean density of the gas can be obtained at any time from the solution of a deterministic
viscous Burgers equation. This approach provides a quantitative description of the dense regime at shorter times.
Our predictions are in good agreement with numerical simulations for finite and large N .

DOI: 10.1103/PhysRevE.107.064105

I. INTRODUCTION AND MAIN RESULTS

The Coulomb potential in one dimension is linear in the
distance. Particles interacting with this potential have been
much studied. Many of these studies address the canonical
equilibrium at some temperature T . In the attractive case it
is related to the statistical mechanics of the self-gravitating
one-dimensional (1D) gas [1–3]. In the repulsive case, in the
presence of a background charge or in a finite box, it is called
jellium and its fluctuations at equilibrium have been well
studied [4–9], with a recent renewed interest, in particular, in
edge fluctuations and large deviations [10–14].

In this paper we study the out-of-equilibrium dynamics of
this system and demonstrate that it exhibits rather rich and
interesting behaviors, as a function of time. In one dimension,
the Coulomb force (either attractive or repulsive) acting on
each particle is proportional to its rank, i.e., the number of
particles in its front minus the number of particles at the back
of it. The Langevin dynamics of this system is called ranked
diffusion. The diffusion of N particles in one dimension under
a drift which depends only on their ranks has been studied in
finance [15] and in mathematics [16,17].

Recently, the nonequilibrium dynamics of this model was
studied [18] using a mapping to the Lieb-Liniger model,
or 1D delta Bose gas. Since the latter is integrable by the
Bethe ansatz, in principle it allows one to obtain a formula
for nonequilibrium observables in the ranked diffusion model
for any N . In practice, however, this approach is analyti-
cally complicated and not all initial conditions can be easily
treated. Hence this program has yet to be fully completed.

Furthermore, the exact solution does not allow one to add an
external potential, since it breaks integrability. Another more
versatile approach was thus also studied in [18], which ex-
ploits a connection to the noisy Burgers equation. This method
is most efficient to study the large-N limit, where the effect of
the noise term is reduced.

In this paper we focus on the repulsive gas and show
that many exact results on its dynamics can be derived us-
ing the two aforementioned complementary approaches. We
study a gas of N particles on the line, in the absence of
an external potential, performing thermal diffusion at tem-
perature T , and mutually interacting via the linear Coulomb
potential of strength c > 0 [see the definition of the model in
(4)]. In addition to diffusion, each particle thus experiences
a drift proportional to its rank, typically of O(c N ) for large
N . There is no additional hard-core interaction and therefore
the particles are free to cross each other. We focus on the
case where all the particles start at t = 0 from the origin
at x = 0. Several realizations of this dynamics are shown in
Fig. 1 for N = 500, where one can see that there are several
interesting regimes as a function of time. Since the gas is
expanding from a point source, it is dense at short times and
particles experience many mutual crossings [see Fig. 1(a)]. At
long time, the gas is diluted and the particles are far from
each other, but, as we will show, they nevertheless form a
well-ordered expanding crystal due to the long-range nature
of the interaction [see Fig. 1(c)]. In fact, we find that when
N is large one can distinguish three different regimes [see
Figs. 1(a)–1(c)]. Indeed, there are two characteristic length
scales associated with the diffusion and the drift, respectively,
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FIG. 1. (a)–(c) Summary of the values of the dimensionless final time c2t used in (a′)–(c′) and (a′′)–(c′′). (d) Size of the gas as a function
of time (in ln-ln scale), which shows a crossover between regimes I and II and time t∗

1 = T/(Nc)2, which is indicated by a vertical dashed line.
Symbols are the results of numerical simulations. The pink solid line at short time represents the prediction in regime I, �T = √

2 T t (here
T = 1), and the green one at longer time corresponds to the prediction in regime II, � = 2Nct [see Eq. (1)]. (a′)–(c′) Examples of trajectories
xi(t ) vs t of N = 500 particles evolving via the Langevin equation (4). One can identify three different regimes determined by the value of the
dimensionless time c2t . (a′′)–(c′′) Corresponding densities of particles ρ(x, t f ) at the final time t = t f for each of (a)–(c). They are obtained
by averaging over 104 realizations of the noise and using 100 bins to construct the histograms. Here, for convenience, we chose t f = 50 and
varied c. These three values fall in each of the three regimes I–III discussed in the text.

namely,

�T ∼
√

2T t, � ∼ 2cNt . (1)

The first length �T is the typical thermal diffusion length of
independent particles. Since the rightmost (leftmost) particle
experiences a drift of approximately cN (−cN) the second
length � is the total size of the gas at long time. Comparing
the two length scales, we see that there is a characteristic
timescale

t∗
1 ∼ 1

N2

T

c2
(2)

such that for t < t∗
1 the diffusion dominates over the drift.

In that regime, which we call regime I, the particles are

almost independent and the gas is very dense [see Fig. 1(a)].
For time t > t∗

1 the drift, i.e., the interaction, dominates over
the diffusion. This is regime II, where the gas evolves from
being dense to being dilute. The crossover from regime I to
regime II in the behavior of the size of the gas (i.e., distance
between the rightmost and leftmost particles) is shown in
Fig. 1(d). As we will show, in regime II, as time increases,
the density converges to a square shape, being uniform over
[−�/2, �/2], with a boundary layer at the two edges of size
�T ∼ √

2T t � �. In this regime II, however, the particles still
experience many crossings [see Fig. 1(b)] and the size of
the boundary layer is still much larger than the interparticle
distance a = �/N = 2ct . As time further increases the den-
sity becomes so low that the particles cross each other only
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rarely. This happens when a ∼ �T , which defines the second
timescale

t∗
2 ∼ T

c2
. (3)

Beyond this timescale, for t � t∗
2 , one has �T � a = 2ct , and

the particles are well separated and do not cross anymore; this
is regime III (dilute regime). These three regimes, together
with the formation of a square density, can be clearly seen in
Fig. 1. Note that if the initial condition has instead a finite ex-
tension �0, there exists another timescale t∗

0 ∼ �0/cN at which
most features of the initial density are erased and the plateau
forms. Here we mainly focus on the case �0 = 0, so this
timescale is absent. Note that for finite N these timescales are
all identical and there is only a short-time regime c2t/T � 1
and a long-time regime c2t/T � 1.

These three regimes exhibit quite different density and
particle correlation properties. To obtain a quantitative de-
scription of the system, we first derive in Sec. II, using the
Bethe ansatz, an integral formula for the joint probability
distribution function (PDF) of the positions of the particles,
all starting from the origin, given in Eq. (12), which is exact
for any N and t . By analyzing this formula via a saddle-point
method, we obtain in Sec. III the asymptotic form of the
joint PDF at long time [see Eq. (25)]. It is a priori valid for
any fixed N and for c2t/T � 1. At large N it thus describes
regime III (the dilute regime). From that formula we find that
in that regime the system is a well-ordered expanding crystal,
with most probable particle positions x j = c(N + 1 − 2 j)t .
To compute the fluctuations of the particle positions in this
crystal, we proceed in two stages. We first approximate the
formula (25) for the joint PDF by neglecting the rational
prefactor, in which case it becomes formally identical to the
equilibrium distribution given in Eq. (32) of the 1D jellium
model [defined in (28)]. Although this analogy holds for any
N , it is especially useful for large N , where many results are
known for the jellium model [10,11]. We find that, within that
approximation, regime III corresponds to the jellium model
with a dimensionless interaction strength α � 1. It correctly
predicts the leading order of the fluctuations of the particle
positions around their ordered positions, which in this regime
are small and independent Gaussian random variables. The
amplitude of these fluctuations is of the order of the diffusion
length �T ∼ √

2T t . Next we treat more accurately the asymp-
totic joint PDF in Eq. (25) and show that there are nontrivial
additional position fluctuations, which are of O(T/c). We
characterize them completely by computing analytically all
the joint cumulants of the particle positions, given in Eq. (68).
These formulas show that there are nontrivial correlations of
purely dynamical origin, which persist for c2t/T � 1 and go
beyond the analogy with the equilibrium jellium model. It is
yet unclear how to extend these results to the case c2t/T =
O(1) and in particular to the more correlated regime II, i.e., for
c2t/T � 1, where the particle crossings cannot be ignored.
We expect that some of these effects will be captured by the
analogy with the jellium model at finite interaction strength
α, but that additional dynamical correlations will also exist.
Note that we also treat exactly the case N = 2, which is quite
instructive, in particular, in analyzing systematically the role

of the initial condition (which we were not able to do for
general N).

Next, in Sec. IV, we recall the hydrodynamic approach of
[18] using the Burgers equation, which gives a prediction for
the time-dependent density at large N for arbitrary time. It
thus allows us to derive an analytical formula for the time
evolution of the average particle density within the crossover
between regimes I and II, when the gas is still sufficiently
dense. For that study it is convenient to scale c = γ /N with
γ = O(1), in which case the timescale t1 = O(1). Finally, we
perform numerical simulations and compare the results with
the predictions of both methods (the Bethe ansatz and the
hydrodynamic approach). We confirm the Gaussian character
of the fluctuations in regime III and we test the accuracy of
the predictions for the density using the deterministic Burgers
equation.

Finally, in Appendix A we study in detail the case N = 2.
In Appendix B we study the corrections to the cumulants of
the particle positions, which are exponentially small at long
time. In Appendix C we derive the form of the boundary layer
for the Burgers equation.

II. MODEL AND MAIN FORMULA

In this paper we consider N particles on the real line at po-
sitions xi(t ), i = 1, . . . , N , evolving according to the Langevin
equation

dxi

dt
= −∂xiW (�x) +

√
2T ξi(t )

= −c
N∑

j=1

sgn(x j − xi ) +
√

2T ξi(t ), (4)

where ξi(t ) are N unit independent white noises with zero
mean 〈ζi(t )〉 = 0 and delta correlator 〈ζi(t )ζ j (t ′)〉 = δi, jδ(t −
t ′). Here T is the temperature and by convention sgn(0) =
0. The particles interact via the linear pairwise poten-
tial energy W (�x) = −c

∑
i< j |xi − x j |, where we define �x =

{xi(t )}i=1,...,N . The particles may cross (and they will) and if
we denote by x(i)(t ) the ordered sequence of their positions
at time t in increasing order, then the ordered particle x(i)

experiences a drift

δi = −c
N∑

j=1

sgn(x( j) − x(i) ) = −c(N + 1 − 2i), (5)

which depends on the label or rank i of the particle, this is
just proportional to the number of particles in front minus the
number of particles at the back of the ith particle. For c > 0
the interaction is thus repulsive, the case considered here.

Next we introduce the PDF P(�x, t ) of a given configuration
�x of the particles. It satisfies the Fokker-Planck equation

∂t P = −HFPP =
∑

i

⎛
⎝T ∂2

xi
− c∂xi

∑
j

sgn(xi − x j )

⎞
⎠P. (6)
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For c < 0 this equation formally admits a zero-current
stationary solution

P0(�x) = 1

ZN

0(�x)2,


0(�x) := e−(1/2T )W (�x) = exp

⎛
⎝ c

4T

N∑
i, j=1

|xi − x j |
⎞
⎠, (7)

where ZN is a normalization constant. For c > 0 this solution
is however not normalizable and is not the stationary state.
Indeed, in the absence of an external potential the gas expands
linearly with time [18], an expansion that we will study here
in more detail.

It is useful to note at this stage that the two parameters of
the model, T and c, can be absorbed in a change of units.
More precisely, T/c is a length scale and T/c2 is a timescale.
In terms of these scales one can always write

P(�x, t ) =
(

c

T

)N

P̃

(
c�x
T

,
c2t

T

)
, (8)

where P̃(�x, t ) is the PDF for the model with c = T = 1. We
have seen in the Introduction that at large N there are several
distinct timescales. These can be explored conveniently by
scaling c in various ways with N . Hence we will not fix the
parameter c. However, for the calculations in the remainder of
this section, as well as in Sec. III, we will set T = 1. Since
c and T can be absorbed in the units, there is no intrinsic
dimensionless parameter in the model, besides N and some
parameter characterizing the initial condition, such as c�0/T ,
if �0 is the initial interparticle distance (below we focus on
�0 = 0). Hence all the regimes can be obtained by looking at
the particular scale of interest.

Let us consider now the δ initial condition where all parti-
cles are at the same position �x(0) = �0 in space at time t = 0,

P(�x, t = 0) =
∏

i

δ(xi ). (9)

Hence P(�x, t ) is the Green’s function of the Fokker-Planck op-
erator HFP, i.e., P(�x, t ) = GFP(�x, �0, t ), where GFP(�x, �y, t ) =
〈�x|e−tHFP |�y〉. It is easy to check that

GFP(�x, �y, t ) = 
0(�x)


0(�y)
Gs(�x, �y, t )eE0t , (10)

with E0 = − c2

12 (N3 − N ), where Gs(�x, �y, t ) is the Green’s
function of the Schrödinger Hamiltonian Hs, i.e., the solution
for t > 0 of ∂t Gs = −HsG with initial condition Gs(�x, �y, t =
0) = ∏

i δ(xi ). Here Hs is the Lieb-Liniger Hamiltonian [19]

Hs = −
∑

i

∂2
xi

+ 2c
∑

1�i< j�N

δ(xi − x j ), (11)

which describes quantum particles with delta repulsive inter-
actions. Note that the initial condition (9) is symmetric in the
exchange of particles. In this symmetric sector the model (11)
is also called the δ Bose gas, which is integrable by the Bethe
ansatz [19,20]. The quantity E0 is the ground-state energy of
the model. The relation (10) can be checked by applying HFP

on each side.

For the δ initial condition the Schrödinger problem can
be solved and there exists a multiple integral formula
for Gs(�x, �0, t ) valid for all times. From Proposition 6.2.3
[Eq. (6.6)] in [21] (for earlier works see [20,22]) and using
(10), we obtain for c > 0, for any N and t > 0 and for the
sector x1 � x2 � · · · � xN ,

P(�x, t ) = GFP(�x, �y = �0, t )

= exp

⎛
⎝ c

4

N∑
i, j=1

|xi − x j |eE0t

⎞
⎠∫

R

dk1

2π
. . .

×
∫

R

dkN

2π

∏
1�a<b�N

ika − ikb

ika − ikb + c

× exp

⎛
⎝−t

N∑
j=1

k2
j + i

N∑
j=1

x jk j

⎞
⎠, (12)

where the variables ki are integrated over the real axis and
E0 is given in Eq. (10). Being a fully symmetric function
of its arguments, P(�x, t ) is obtained in the other sectors by
symmetry. Note that, by construction, P(�x, t ) in Eq. (12) is
normalized to unity on RN for all time t � 0, although this
property is not so obvious to check from (12). This explicit
expression in Eq. (12) is our main formula, which we analyze
in the following sections.

III. TIME EVOLUTION OF P(�x, t )

In this section we analyze the time evolution of P(�x, t ). In
Sec. III A we verify the validity of the formula (12) for N =
2 by finding directly the exact solution of the Fokker-Planck
equation (6). The case N = 2 being already very instructive,
we study in detail its long-time asymptotics. In Sec. III B we
perform a saddle-point analysis of the formula in (12) for large
t , for any fixed N . In Sec. III C we make an analogy between
this expanding Coulomb gas at large t and the static properties
of a one-dimensional one-component plasma in a harmonic
potential. Finally, in Sec. III D we obtain the higher cumulants
of the position fluctuations from a more precise analysis of the
long-time limit.

A. Two particles N = 2

Let us start with two particles, i.e., N = 2. Introducing
the center-of-mass coordinate x(t ) = 1

2 [x1(t ) + x2(t )] and the
relative coordinate y(t ) = x2(t ) − x1(t ), the Fokker Planck
equation (6) is easily solved directly by a Laplace transform.
Denoting by P(y, t ) the PDF of y(t ) (with a slight abuse of
notation), we find (see details in Appendix A)

P̃(y, s) =
∫ +∞

0
dt e−st P(y, t )

= e(c/2)|y|

2(c + √
c2 + 2s)

e−√
c2+2s|y|/2, (13)

which upon Laplace inversion gives

P(y, t ) = e−(|y|−2ct )2/8t

2
√

2π
√

t
− 1

4
cec|y|erfc

(
2ct + |y|
2
√

2
√

t

)
, (14)
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(a) (b) (c)

FIG. 2. Probability distribution P(y, t ) of the relative coordinate y(t ) = x2(t ) − x1(t ) for two particles for different times (a) t = 5000,
(b) t = 15 000, and (c) t = 50 000. The blue dots are obtained by the simulation with c = 0.01, T = 1, and averaging over 106 realizations.
The orange solid lines represent the analytical expression for the distribution derived in Eq. (14). One can see that the distribution becomes
bimodal at long time.

which is normalized to unity, i.e.,
∫ +∞
−∞ dy P(y, t ) = 1, and

satisfies the initial condition P(y, 0) = δ(y). Here erfc(z) =
2/

√
π

∫ ∞
z e−u2

du. We now want to check that the general
formula in Eq. (12) for the joint distribution of N particles
also leads to the result in Eq. (14) for N = 2. Indeed, in
Appendix A we show this explicitly. The time evolution of
P(y, t ) from (14) is plotted in Fig. 2.

At long time it becomes a bimodal distribution centered
around y � ±2ct . For fixed y = O(1) one finds, as t → ∞,

P(y, t ) � (c|y| + 2)e−(|y|−2/ct )2/8t

4
√

2πc2t3/2
� (c|y| + 2)e|y|/2

4
√

2πc2t3/2
e−c2t/2,

(15)
where in the last equation we used that |y| = O(1). On the
other hand, if one scales y = zt with fixed z = O(1) one finds

P(y, t ) � |z|e−t (|z|−2c)2/8

2
√

2πt (|z| + 2c)
. (16)

On these scales it thus converges, as t → ∞, to a pair of
δ functions at z = ±2, each of weight 1

2 . For t large but
finite one can check that the total probability weight in the
asymptotic form (16) is slightly less than unity, but converges
to unity as t → +∞. Note that although the exponential factor
is the same in (15) and in (16), the prefactors in each formula
are distinct: Only the large |y| = O(1) limit of (15) matches
the small |z| = O(1) limit of (16).

One can also calculate the cumulants of the random vari-
able |y| − 2ct . While more detailed expressions are given in
Appendix A 3, here we simply indicate their leading behaviors

at long time. We obtain

〈|y|〉 − 2ct � 1

c
+ O(t−3/2e−c2t/2), (17)

〈(|y| − 2ct )2〉c � 4t − 3

c2
+ O(t−1/2e−c2t/2), (18)

〈(|y| − 2ct )3〉c � 14

c3
+ O(t1/2e−c2t/2), (19)

〈(|y| − 2ct )4〉c � −90

c4
+ O(t3/2e−c2t/2), (20)

where 〈· · · 〉c, with a subscript c, denotes cumulants (not to
be confused with the interaction parameter c). Interestingly,
while the variance of |y| grows linearly with t for large t , the
higher cumulants converge to a constant. The leading fluctu-
ations are thus Gaussian and diffusive O(

√
t ), but there are

some additional O(1) non-Gaussian fluctuations, as encoded
in the higher-order cumulants. As we will see below, these
features will extend to any N ; hence N = 2 is a useful testing
ground for general N . One can check (e.g., numerically) that
the leading orders [i.e., up to O(1)] of the cumulants (17)–(20)
are reproduced if one uses the asymptotic form (16), which
thus captures the O(1) non-Gaussian fluctuations at long time.
In addition, in Sec. III D we obtain an exact formula for the
O(1) leading orders of all the cumulants at long time, i.e.,
for any N (hence including N = 2), based on a saddle-point
method. To obtain them we show that for c2t � 1 one can
restrict the study to an ordered sector x1 < · · · < xN and ne-
glect the events when particles cross. These events are only
responsible for the exponential corrections to the cumulants
[e.g., e−c2t/2 for N = 2 in (17)–(20)]. Finally, we have checked
the predictions of (17)–(20) by a numerical solution of the
Langevin equation; the results are presented in Fig. 3.
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(a) (b)

(c) (d)

FIG. 3. Plot of first four cumulants 〈(|y| − 2ct )k〉c, with (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 4, as a function of dimensionless time
c2t (in the scale of the natural logarithm) from the numerical solution of the Langevin equation, compared to the analytical prediction at long
time from Eqs. (17)–(20) (black dashed line). We chose c = 0.1 and averaged over 2 × 108 realizations of the noise.

B. Saddle-point analysis at late times t for fixed N

Let us now consider the general case of N particles. We start from the general formula (12) for the joint PDF restricted to the
sector x1 � x2 � · · · � xN . Let us define the rescaled variables x j = z jt . In terms of these variables the joint PDF P(�x, t ) reads,
using E0 from Eq. (10) and with z1 � z2 � · · · � zN ,

P(�x, t ) =
∫

R

dk1

2π
· · ·

∫
R

dkN

2π
exp

⎡
⎣t

⎛
⎝ c

4

N∑
i, j=1

|zi − z j | −
N∑

j=1

k2
j + i

N∑
j=1

z jk j − c2

12
N (N2 − 1)

⎞
⎠
⎤
⎦ ∏

1�a<b�N

ika − ikb

ika − ikb + c
. (21)

Let us consider now the regime of long time, t → +∞ with fixed N and with z j = O(1), i.e., x j = O(t ). For long t , the expression
multiplying t in the exponent of the integrand in Eq. (21) gets minimized at the saddle point with the values

k∗
j = iz j

2
, (22)

which are on the imaginary k axis. Note that the original integrals in (21) are on the real k axis. Hence we need to deform the
contour in the complex k plane so that it passes through the saddle point and picks up the leading contribution for long t . This
can be done without crossing the poles in the prefactor in (21), by deforming the contours for each k j successively maintaining
the condition Im kN > · · · > Im k1. This gives

P(�x, t ) � 1

(4πt )N/2
exp

⎛
⎝ tc

4

N∑
i, j=1

|zi − z j | − t
∑

j

z2
j

4
e−(c2/12)N (N2−1)t

⎞
⎠ ∏

1�a<b�N

zb − za

zb − za + 2c
. (23)

Note that since zb > za for b > a there are no poles in the double product. For N = 2 one can check that one recovers the
expression in (16), which is a bimodal distribution at long time. As was discussed there, it is valid for c2t � 1, and so is (23) for
any finite N .

One can rewrite this formula to make more explicit the most probable position of each particle. Using the equality, for
z1 � z2 · · · � zN ,

c

4

N∑
i, j=1

|zi − z j | = − c

2

N∑
j=1

(N + 1 − 2 j)z j (24)

064105-6



OUT-OF-EQUILIBRIUM DYNAMICS OF REPULSIVE … PHYSICAL REVIEW E 107, 064105 (2023)

and completing the square, one finds

P(�x, t ) � 1

(4πt )N/2
exp

⎛
⎝− t

4

N∑
j=1

[z j − c(2 j − N − 1)]2

⎞
⎠ ∏

1�a<b�N

zb − za

zb − za + 2c
for z1 � z2 � · · · � zN .. (25)

The most probable values for the rescaled positions at long
time are thus

x j

t
= z j = c(2 j − N − 1). (26)

These positions form a perfect crystal with uniform spacing 2c
which extends from z1 = −c(N − 1) to zN = c(N − 1). One
can check that for t → +∞ the normalization of the formula
(25) inside the ordered sector is 1/N!, as expected. Indeed,
in that limit (i) the fluctuations of the z j’s around the most
probable values are vanishing as 1/

√
t and (ii) in the prefactor

one can simply replace the za by their most probable values
za = c(2 j − N − 1) and one finds that the double product
over a and b in (25) simply equals 1/N!.

We will now, and in the following sections, investigate the
deviations around the perfect crystal. Let us define them as

δx j = x j − c t (2 j − N − 1). (27)

The quadratic form in the exponential in (25) can be rewritten

simply as −∑
j

δx2
j

4t . This would suggest that the fluctuations
of are the δx j’s are independent and Gaussian for each par-
ticle with a width given by the diffusion length �T = √

2t ,
independently of N . This is not the case, however, for the two
following reasons: (i) There is an ordering condition between
the particles and (ii) there is the double product prefactor in
(25).

Nevertheless, it is true that if one scales δx j = √
2t δx̃ j

with δx̃ j = O(1) the joint PDF of the δx̃ j’s converges, as
c2t → +∞, to a product of independent standard Gaussian
variables. Indeed, with that scaling, the crossing events have
an exponentially small probability of order O(e−c2t/2) (as es-
timated by displacing two neighbors by δx j = ct and δx j+1 =
−ct). Hence the neglect of (i) is justified with that scaling. In
addition, neglecting the fluctuations δx̃ j/

√
t of the variables

z j = x j/t in the prefactor in (25) is also legitimate with that
scaling.

Returning to the unscaled displacements δx j , we have al-
ready seen for N = 2 that their cumulants have nontrivial
additional O(1) contributions plus exponential corrections of
O(e−c2t/2) [see Eqs. (17)–(20)]. Thus there are interesting
deviations due to (i) and (ii) to the independent Gaussian pic-
ture. We will discuss them in the following two sections, first
neglecting (ii), which leads to an analogy with an equilibrium
problem, and second performing a more accurate analysis of
(ii).

The above considerations are exact at long time c2t � 1
for any N . For large N this corresponds to regime III as defined
in the Introduction.

C. Analogy with the equilibrium one-dimensional
one-component plasma (jellium)

In this section we make a comparison between the time-
dependent problem of ranked diffusion, characterized by
P(�x, t ) in Eq. (25), and the equilibrium problem of the jellium
model in one dimension (variantly called the one-dimensional
one-component plasma). The jellium model in one dimension
consists of N particles confined in a harmonic potential and re-
pelling each other via a pairwise Coulomb interaction (which
is linear in one dimension). The energy function can be written
as [11,12]

E [�y ] = N2

2

∑
i

y2
i − αN

∑
i �= j

|yi − y j |, (28)

where yi’s are assumed to be of O(1). The first term describes
the potential energy, while the second term describes the in-
teraction energy. Here α is the strength of the interaction and
is a dimensionless parameter. The system is supposed to be at
equilibrium at temperature Teq and the stationary probability
distribution of the positions of the particles is given by the
Gibbs-Boltzmann form

PJ [�y ] = 1

ZN
e−E [�y ]/kBTeq , (29)

where kB is the Boltzmann constant and ZN is the normalizing
partition function. In Eq. (29), the subscript J refers to the
jellium model. We henceforth set kBTeq = 1 for convenience.
It turns out to be convenient to rewrite the energy in Eq. (28) in
terms of the ordered coordinates y1 < y2 < · · · < yN . In terms
of these ordered coordinates, using the identity in Eq. (24), we
get

E [�y] = N2

2

N∑
i=1

(
yi − 2α

N
(2i − N − 1)

)2

− CN (α), (30)

where the constant CN (α) is given by

CN (α) = 2α2
N∑

i=1

(2i − N − 1)2 = 2α2

3
N3 − 2

3
α2 N. (31)

This implies that, in the ordered sector, the probability distri-
bution of the yi’s can be written as

PJ [�y] = 1

Z̃N
exp

[
−N2

2

N∑
i=1

(
yi − 2α

N
(2i − N − 1)

)2
]

for y1 < y2 < · · · < yN , (32)

where Z̃N is a normalization constant. The distribution has a
maximum when yi’s occupy the equidistant crystal positions,
i.e.,

y∗
i = 2α

N
(2i − N − 1). (33)
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The separation between successive particles is thus 4α/N .
Defining the equilibrium density (normalized to unity) as

ρJ (y) = 1

N

N∑
i=1

〈δ(y − yi )〉, (34)

where 〈· · · 〉 denotes an average over the equilibrium measure
in Eq. (32). Using Eq. (33), we see that in the one-dimensional
jellium model at equilibrium, the density in the large-N limit
converges to a flat distribution supported over [−2α,+2α],
i.e.,

ρJ (y) ≈ 1

4α
I[−2α,+2α](y), (35)

where the indicator function I[−2α,+2α](y) is 1 for y ∈
[−2α,+2α] and is 0 outside. From Eq. (32) one can also
infer the statistics of the positions of the particles in the gas
in the two opposite limits: (i) noninteracting limit α → 0 and
(ii) the strongly interacting limit α → ∞. In case (i), the
particles are essentially independent, each having Gaussian
fluctuations around the origin, with width 1/N . In case (ii)
the particles are localized at the crystal positions in Eq. (33),
namely, y∗

i = 2α
N (2i − N − 1), and around each position, the

fluctuations are again Gaussian and independent with width
1/N . The crossover between the two cases occurs for α =
O(1), where the correlations are nontrivial.

In order to compare this equilibrium problem with the
dynamics of ranked diffusion discussed earlier, we consider
the asymptotic form of the probability distribution P(�x, t )
obtained in Eq. (25). As discussed at the end of the preced-
ing section, a meaningful first approximation is to neglect
the double product prefactor in Eq. (25) while retaining the
ordering condition (hence accounting for particle crossing).
The additional effect of this prefactor will be discussed in the
following section. If we do so we obtain

P(�x, t ) ∝ exp

⎛
⎝− t

4

N∑
j=1

[z j − c(2 j − N − 1)]2

⎞
⎠

for z1 < z2 < · · · < zN . (36)

We are now ready to compare Eqs. (32) and (36). We see
that the two probability distributions are formally equivalent
provided we identify

zi =
√

2

t
Nyi, α = c

√
t

2
√

2
, (37)

which also gives xi = zit = √
2tNyi. Since our original long-

time formula (25) was obtained for c2t � 1 we see that the
predictions from the equilibrium problem can be translated to
the dynamics problem a priori only for α � 1. However, it is
interesting to present and use below some of the known results
for the equilibrium problem at arbitrary α [with the idea that
they may capture some of the effects of particle crossing for
c2t = O(1)].

The above considerations, as well as the correspondence
(37), hold for any N . Let us now consider the case where N �
1. In that case, from the average density in the equilibrium
problem in Eq. (35) and using (37), we can make a prediction
for the density of the zi variables [defined similarly to (34)] in

the dynamics problem, namely,

ρ(z) ≈ 1

2c N
I[−c N,+c N](z). (38)

The prediction for the density in the original coordinates of
the particles, xi = t zi, thus takes the form

ρ(x, t ) ≈ 1

2c N t
I[−c N t,+c N t](x). (39)

This describes the dynamics of a gas whose two edges move
ballistically with constant speed c N , describing two light
cones that bound the trajectories of the gas particles [see
Fig. 1(c′)]. The prediction (39) is in agreement with the den-
sity computed numerically and represented in Fig. 1(c′′). It
corresponds to regime III discussed there.

Let us now recall for completeness some exact results for
various observables that were derived recently for the jellium
model for any α and later consider the large-α limit where
it leads to predictions for the ranked diffusion at long time.
Consider now the gap between two consecutive particles both
in the bulk and at the edges. Consider the jellium model in
Eq. (32) and let gi = yi+1 − yi define the spacing between
the ith and (i + 1)th particles of the jellium gas at equilib-
rium. First, we consider the midgap, i.e., setting i = N/2 (this
corresponds to the typical gap in the bulk). In this case, the
distribution of the midgap, in the large-N but fixed-α limit,
takes the scaling form [13]

Pmid gap(g, N ) ∼ NHα (gN ),

Hα (z) = θ (z)[A(α)]2
∫ ∞

−∞
dy e−[(y+z−4α)2+y2]/2

× Fα (y + 4α)Fα (−y − z + 8α), (40)

where the function Fα (x) satisfies the nonlocal differential
equation

dFα (x)

dx
= A(α)Fα (x + 4α)e−x2/2, (41)

with the boundary conditions Fα (x → +∞) = 1 and Fα (x →
−∞) = 0. This equation can be thought of as an eigenvalue
equation, with A(α) the unique eigenvalue for which there
exists a solution that satisfies both boundary conditions. In
particular, for α large, it behaves as A(α → ∞) ∼ 1/

√
2π

[6,10]. This function Fα (x) often appears in the context of
one-dimensional one-component plasma [10,11,13] (see also
[6]) and it has the following asymptotic behaviors [10,11]:

Fα (x) ∼ 1 − e−x2/2+o(x2 ) for x → ∞, (42)

Fα (x) ∼ e−|x|3/24α+o(x3 ) for x → −∞. (43)

Let us now focus on the distribution in Eq. (40) in the large-α
limit. In this limit we can approximate the integral over y
in Eq. (40) by a saddle-point method. The minimum of the
argument in the exponential function occurs at y∗ = (4α −
z)/2. At this value of y, the Fα functions in the integrand in
Eq. (40) read [Fα (6α − z/2)]2. Since α is large, this factor
essentially contributes unity, using Eq. (42), as long as z <

12α. We will see in the following that indeed this is true in
the range of z where the gap distribution has a peak. There-
fore, the saddle-point analysis gives, up to a multiplicative
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prefactor,

lim
α→∞ Hα (z) ∼ e−(1/4)(z−4α)2

. (44)

Hence, the distribution of the midgap, in the limit of large α,
approaches a Gaussian distribution

Pmid gap(g) ∼ e−(N2/4)(g−4α/N )2
, (45)

with mean at g = 4α/N and variance 2/N2. Thus, in this limit
of large α (and large N), one can express the random variable
gmid gap (i.e., the midgap) as

gmid gap ≈ 4α

N
+

√
2

N
N (0, 1), (46)

where N (0, 1) is a standard normal variable with zero mean
and unit variance. We can now use this result and the cor-
respondence in Eq. (37) to predict the distribution of the
midgap gRD

mid gap in the dynamics problem of ranked diffusion
(the superscript RD refers to ranked diffusion). We get

gRD
mid gap = zN/2+1 − zN/2 ≈

√
2

t
N

(
4α

N
+

√
2

N
N (0, 1)

)

= 2c + 2√
t
N (0, 1). (47)

Returning to the original xi = t zi coordinates, we finally get
the midgap distribution as

GRD
mid gap = xN/2+1(t ) − xN/2(t )

= tgRD
mid gap ≈ 2ct + 2

√
tN (0, 1). (48)

The same result holds for all the gaps inside the bulk of
the jellium model [13] and hence equivalently for the ranked
diffusion model. However, the behavior of the gap distribution
changes as one approaches the edges of the jellium model,
i.e., gedge gap = yN − yN−1, which has the distribution in the
large-N limit [11]

Pedge gap(g) ∼ Nhα (gN ), (49)

hα (z) = θ (z)[A(α)]2
∫ ∞

−∞
dy e−[(y+z−4α)2+y2]/2Fα (y + 4α),

(50)

where Fα (x) is the same function as defined in Eq. (41).
Once again, to make a correspondence to the ranked diffusion
problem, we need to consider the limit of α large. In that
limit, one can again approximate this integral (50) by the
saddle-point method. Following exactly the same argument as
in the midgap case, one gets

lim
α→∞ hα (z) ∼ 1√

4π
e−(1/4)(z−4α)2

. (51)

Hence, using (49), we again get a Gaussian distribution for the
edge gap in the jellium model in the large-α limit

Pedge gap(g) ∼ e−(N2/4)(g−4α/N )2
. (52)

Thus, in the large-α limit, the edge and bulk gaps in the jellium
model behave in the same way, namely,

gedge gap ≈ 4α

N
+

√
2

N
N (0, 1). (53)

FIG. 4. Plot of the distribution of the centered and scaled gap
G̃ = GRD−2ct

2
√

t
for times t = 500 and 3000, from the numerical simula-

tion of the Langevin equation (4) for both the midgap GRD ≡ GRD
mid gap

and the edge gap GRD ≡ GRD
edge gap. Here N = 500 and c = 0.1 (note

that c2t is the dimensionless time). Shown for comparison is the
normal Gaussian distribution e−x2/2/

√
2π as predicted in (48) and

(54) (black solid line). The inset shows lnP as a function of G̃2 using
the same numerical data. The black solid line is the normal Gaussian
distribution.

Correspondingly, the edge gap and in the midgap behave in a
same way, namely,

GRD
edge gap = xN (t ) − xN−1(t ) ≈ 2ct + 2

√
tN (0, 1). (54)

Although this result, together with (48), was obtained here
at large N , we note that, by comparing it to Eq. (18), it
already holds for N = 2 for the first two cumulants, which
thus appears to be independent of N .

In summary, the predictions (48) and (54) from the analogy
with the equilibrium are in agreement with the discussion at
the end of the preceding section, i.e., that on the scale δxi ∼√

t the fluctuations are independently Gaussian, as indeed re-
covered in the large-α limit of the jellium. In Fig. 4 we verify
by Monte Carlo simulations the two analytical predictions for
the gaps in the ranked diffusion model in Eqs. (48) and (54),
respectively. We see that the agreement is indeed excellent if
the gaps are scaled by

√
t .

However, this is not the end of the story for the dynamics
problem, and in the next section we will compute the higher
cumulants of the particle positions xi at long time, which
exhibit deviations from this leading Gaussian behavior.

D. More accurate treatment of the long-time limit:
Higher cumulants

In this section we return to the complete asymptotic form
for the joint PDF at long time (23) and (25) and we obtain all
the cumulants of the particle positions xi to O(1) accuracy.

1. Case N = 2

Let us start with N = 2 for simplicity. Consider the long-
time asymptotic formula (16). Let us recall that the original
variable is y = x2 − x1 = zt . We can consider the sector y >

0: Indeed, we will use a saddle-point method, and there will
be one saddle point inside each sector and the result will not
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depend on the sector (discussed below). We want to evaluate
the cumulant generating function

〈eλy〉 = 〈etλz〉 �
∫ +∞

0
dz exp

[
− t

4
(z − 2c)2

+ ln

(
z

z + 2c

)
+ f (t ) + tλz

]
, (55)

where we have inserted (16) and the normalization factor
f (t ) = − ln(2

√
2πt ) is immaterial for the following. At long t

there is a unique saddle point at z = z∗ = 2c + 2λ. We require
that 2c + 2λ > 0 (in fact for the cumulants we only need λ in
the neighborhood of λ = 0). From the saddle-point method
we thus obtain

〈eλy〉 � exp

[
2tλ + 2λ2t + ln

(
2c + 2λ

2c + λ

)]
, (56)

where we have fixed the normalization so that the right-
hand side is equal to unity at λ = 0. Using that ln〈eλy〉 =∑

k�1
λk

k! 〈yk〉c and expanding in λ, we obtain all the cumu-
lants. This reproduces the results in Eqs. (17)–(20) up to and
including O(1) terms at long time and gives the more general
formula for k � 2,

〈yk〉c = 1

ck
(−1)k−1(k − 1)!(2k − 1) + o(1). (57)

Several remarks are in order. First, since (16) depends only
on |z|, instead of choosing the sector y > 0 we could have

done the exact same calculation replacing y by |y| and z by
|z|. The saddle point is then at |z| = 2c + 2λ, so there are in
fact two identical saddle points for each sign of y. Hence,
to the same accuracy, 〈(|y| − 2ct )k〉c = 〈yk〉c given by (57).
Next we see that (56) holds for any λ > −c, but fails when
λ � −c, since for λ = −c the saddle point reaches z = 0.
The average 〈eλy〉 is then dominated by the vicinity of z = 0,
i.e., by events which involve particle crossings, and the two
sectors cannot be neatly separated. Finally, we know from
the exact results (17)–(20) that the o(1) corrections in (57)
should be exponentially small O(e−c2t/2) at long time. How-
ever, the above saddle-point method, if pushed to next order,
will lead to a power law in time corrections O(1/t k ). This
apparent paradox is resolved in Appendix B, where it is shown
that (56) has indeed only exponentially small corrections in
time. The reason for that is that (16) itself comes from a
first saddle-point method, and both saddle points should be
considered simultaneously. In Appendix B we identify these
exponentially small corrections to (56) to come precisely from
particle crossing, which are exponentially rare for c2t � 1.

2. Case of arbitrary N

Let us now turn to arbitrary N and consider the sector
x1 < x2 < · · · < xN , recalling that we define x j = tz j . Let us
compute the generating function at long time, inserting the
asymptotic form (25),

〈
exp

(∑
j

λ jx j

)〉
=

〈
exp

(
t
∑

j

λ jz j

)〉

�
∫

z1<z2<···<zN

dz1 · · · dzN exp

(
− t

4

N∑
j=1

[z j − c(2 j − N − 1)]2 + t
N∑

j=1

λ jz j

+
∑

1�a<b�N

ln
zb − za

zb − za + 2c
+ f (t )

)
, (58)

where again f (t ) is an unimportant normalization. In this sector there is a unique saddle point at long t given by

z j = z∗
j = c(2 j − N − 1) + 2λ j, j = 1, . . . , N. (59)

We will assume that the z∗
j are in the sector considered, i.e., that all c(2 j − N − 1) + 2λ j > 0 for j = 1, . . . , N , which is certainly

the case when the λ j are all in a neighborhood of zero. Then the saddle-point method gives〈
exp

(∑
j

λ jx j

)〉
� N! exp

[
N∑

j=1

c(2 j − N − 1)tλ j + t
N∑

j=1

λ2
j +

∑
1�a<b�N

ln

(
c(b − a) + λb − λa

c + (b − a)c + λb − λa

)]
, (60)

where we used
∑

1�a<b�N
b−a

1+b−a = 1/N! to normalize the formula.
Upon expanding the logarithm of (60) in the parameters λ j , we can now compute all the joint cumulants of the deviations

from the perfect crystal, defined as δx j = x j − c(2 j − N − 1)t . First, we note that the double sum in (60) involves only pairs of
distinct variables λ j . Hence the cumulants involving more than two particles are zero, e.g.,

〈δxiδx jδxk〉c = 0 for i < j < k. (61)

To compute the only nonzero cumulants (i.e., involving only one or two particles) we first define the function

fk (x) = ln

(
ck + x

c + ck + x

)
, (62)
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which has derivatives

ck f (n)
k (0) = (−1)n−1(n − 1)!

(
1

kn
− 1

(k + 1)n

)
. (63)

From the logarithm of (60) we obtain the single-particle cumulants as

〈(δxi )
n〉c =

∑
i< j�N

∂n
λi

f j−i(λ j − λi )|λi=λ j=0 +
∑

1� j<i

∂n
λi

fi− j (λi − λ j )|λi=λ j=0 + 2tδn,2 (64)

=
∑

i< j�N

(−1)n f (n)
j−i(0) +

∑
1� j<i

f (n)
i− j (0) + 2tδn,2. (65)

This leads to, for 1 � i � N and n � 2,

〈(δxi )
n〉c = 1

cn
(n − 1)!

[
1

(N − i + 1)n
− 1 + (−1)n−1

(
1 − 1

in

)]
+ 2tδn,2. (66)

We see that at large N , for i = O(1), i.e., at the left edge of the gas, one has

lim
N→+∞,i=O(1)

〈(δxi )
n〉c = 1

cn
(n − 1)!

(
−2δn,even + (−1)n

in

)
+ 2tδn,2. (67)

We see that in the bulk of the gas, i.e., for i → +∞, the odd cumulants decay to zero, while the even cumulants n � 4 decay
from − 3

cn (n − 1)! for i = 1, to a finite limit − 2
cn (n − 1)!, which is uniform over the bulk of the gas. Hence the fluctuations are

slightly larger near the edge but remain finite in the bulk. On the right edge the result is similar, with the term (−1)n

in replaced by
1

(N−i+1)n .
Next we compute the cumulants involving two particles (for j > i, m, n � 1, and N � 2). We find〈

δxn
i δxm

j

〉
c = ∂n

λi
∂m
λ j

f j−i(λ j − λi )|λi=λ j=0 = (−1)n f (n+m)
j−i (0)

= 1

cn
(−1)m−1(n + m − 1)!

(
1

( j − i)n+m
− 1

( j − i + 1)n+m

)
. (68)

We note that these correlations are independent of N and decay quickly to zero as a function of the distance between the two
particles.

These formulas are exact for all N . For concreteness, let us display some of the predictions for N = 2, 3. For simplicity, we
set here c = 1. For N = 2 this gives

〈(δx1)2〉c = 〈(δx2)2〉c = 2t − 3
4 , 〈δx1δx2〉c = 3

4 , (69)

〈(δx1)3〉c = −〈(δx2)3〉c = − 7
4 , 〈δx1(δx2)2〉c = −〈(δx1)2δx2〉c = − 7

4 . (70)

For N = 3 we obtain

〈δx1〉 = − 2
3 , 〈δx2〉 = 0, 〈δx3〉c = 2

3 , (71)〈
δx2

1

〉
c = 〈

δx2
3

〉
c = 2t − 8

9 ,
〈
δx2

2

〉
c = 2t − 3

2 , 〈δx1δx2〉c = 〈δx2δx3〉c = 3
4 , 〈δx1δx3〉c = 5

36 , (72)〈
δx3

1

〉
c = −〈

δx3
3

〉
c = − 52

27 ,
〈
δx3

2

〉
c = 0,

〈
δx1δx2

2

〉
c = −〈

δx2
1δx2

〉
c = − 7

4 , (73)〈
δx2

1δx3
〉
c = −〈

δx1δx2
3

〉
c = 19

108 ,
〈
δx2δx2

3

〉
c = −〈

δx2
2δx3

〉
c = − 7

4 , 〈δx1δx2δx3〉c = 0. (74)

Next one can use these formula to compute the cumulants of the relative distance between any two particles. Since the
cumulants of x j and of δx j are by definition identical, we will simply use the particle positions x j here. For 1 � i < j � N one
finds

〈(x j − xi )
n〉c = (n − 1)!

cn
{i−n + (−1)n(2n − 2)[(−i + j + 1)−n − ( j − i)−n] (75)

+(−1)n(−i + N + 1)−n + (−1)n j−n + (− j + N + 1)−n − 2(−1)n − 2} + 4tδn,2 + 2tc( j − i)δn,1, (76)

which for j = i + 1 gives the cumulants of the gaps, for which one finds, for 1 � i � N − 1,

〈(xi+1 − xi )
n〉c = (n − 1)!

cn
[i−n + (N − i)−n + (−1)n(−i + N + 1)−n + (−1)n(i + 1)−n

+(−1)n(−21−n − 2n + 1) − 2] + 4tδn,2 + 2ctδn,1. (77)

Again, in the large-N limit one finds some distinct behavior at the two edges and that the cumulants of the gap reach a finite limit
inside the bulk given by the second line of (77).
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Similarly, one finds that the cumulants of the total size of the gas (i.e., its span) are given by

〈(xN − x1)n〉c = (−1)n (n − 1)!

cn
[2nN−n−(2n − 2)(N − 1)−n+2] + 4tδn,2 + 2c(N − 1)tδn,1. (78)

For large N the nth cumulant (n > 1) of the total size of the gas converge quickly to some finite limit

〈(xN − x1)n〉c � 2(−1)n−1 (n − 1)!

cn

(
1 − 1

Nn
+ · · ·

)
+ 4tδn,2 + 2c(N − 1) tδn,1, (79)

which, at large N , is equivalent to the sum of independent
fluctuations, 〈(δxN )n〉c + (−1)n〈(δx1)n〉c, since the mutual
fluctuations decay at large distance, as pointed out above. It is
interesting that there are non-Gaussian persistent correlations
at long time, on the scale of the gas, even at large N .

To summarize, we have obtained a complete quantitative
picture of the O(1) fluctuations at long time in the expanding
crystal which goes beyond the independent Gaussian O(

√
t )

fluctuations discussed in the previous sections. These result
are valid for c2t � 1 and any N . From the considerations for
N = 2 (see Appendix A), we can surmise that the corrections
to these cumulants, as well as to (60), are exponentially small
at long time and related to particle crossing (hence also in part
to the finite-α physics of the equilibrium jellium).

IV. APPROACH VIA THE BURGERS EQUATION

Until now we have focused on taking the long-time limit
first, with a fixed number of particles N . In this section we
first recall the exact hydrodynamic equation which describes
the evolution of the density. Using this equation, we then
study the limit of large N first, at arbitrary fixed time t . This
provides a description of the dense regimes I and II discussed
in the Introduction. Finally, we compare the predictions with
numerical simulations.

A. Burgers equation and large-N limit

Let us first recall the general approach developed in [18].
Let us consider again the Langevin equation (4) for N parti-
cles. One defines the density field ρ(x, t ) and the rank field
r(x, t ) as

ρ(x, t ) = 1

N

∑
i

δ(x − xi(t )) = ∂xr(x, t ),

r(x, t ) =
∫ x

−∞
dx′ρ(x′, t ) − 1

2
, (80)

respectively. It is convenient to choose the rank field r(x, t )
increasing monotonically from − 1

2 at x = −∞ to + 1
2 at x =

+∞. Then it is shown in [18], using the Dean-Kawasaki
method [23–25], that the rank field satisfies the stochastic
equation

∂t r(x, t ) = T ∂2
x r(x, t ) − 2Ncr(x, t )∂xr(x, t )

+ 1√
N

√
2T ∂xr(x, t )η(x, t ). (81)

The first term on the right-hand side of (81) originates from
diffusion, the second is a convection term where the local
velocity is proportional to the local rank, and the third term
is the noise, originating from local Brownian dynamics. In

[18] the case of an additional external potential V (x) was also
considered, but here we set it to zero. Hence Eq. (81) is the
Burgers equation with a multiplicative noise. Note that the
function r(x, t ) is constrained to be increasing in x, so the
density remains positive. This equation is formally exact for
arbitrary N [with the possible mathematical caveat that r(x, t )
is a discontinuous stochastic function]. Here we recall that we
consider c > 0.

Let us now discuss the large-N limit. As discussed in [18],
there are a priori two natural scalings of c in that limit. In both
cases, the noise term is formally subdominant.

B. Detailed solution for c = γ/N and comparison with numerics

(i) The first choice is to keep c fixed. In that case, one
defines a rescaled time τ = Nt . The noise term and the dif-
fusion term both become O(1/N ) and (81) simply becomes
the inviscid Burgers equation ∂τ r = −2cr∂xr. The solution is
obtained implicitly by solving for r ≡ r(x, t ) equation [18]

r = r0(x − 2crτ ), (82)

where r(x, 0) = r0(x) is the initial condition. Since c > 0
there is a unique solution with no shocks. An example is the
square density initial condition (� > 0)

ρ(x, t ) = 1

2(� + cτ )
θ (� + cτ − |x|), τ = Nt, (83)

which shows that the repulsive gas expands linearly in time
with sharp edges at ±cτ = ±cNt . This result (restoring τ =
Nt) matches with the prediction (39) which was obtained in
the long-time limit followed by the large-N limit. Note that
here the convergence to the form (83) occurs quite fast, on
a timescale τ = O(1), that is, t ∼ 1/N . Comparing with the
discussion in the Introduction, we see that this time regime
corresponds to regime II, where the square density forms and
expands, and in the inviscid Burgers equation the edges are
sharp on the scale x = O(1).

(ii) Here we will consider the second and richer choice
of scaling, i.e., c = γ /N where γ > 0 is fixed. In that case,
only the noise term is subdominant O(1/

√
N ) in (81), and

one obtains the viscous Burgers equation in the original time
variable t , namely,

∂t r(x, t ) = T ∂2
x r(x, t ) − 2γ r(x, t )∂xr(x, t ). (84)

As we will see below, the solution of this equation with a
square density initial condition (with � > 0) is similar in the
bulk to (83), since the first term on the right-hand side of (84)
is essentially zero for a flat density profile. This also leads to
an expansion of the gas which is linear in time with the same
speed. The main difference occurs near the edges, the sharp
edges of (81) at ±γ t = ±cNt being replaced by a smooth
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(a) (b) (c)

FIG. 5. Plot of the density ρ(x, t ) evaluated numerically from the Langevin equation, at three different times (a) t = 10, (b) t = 100, and
(c) t = 200 for γ = 1 and T = 1. The initial condition is that all particles are at the origin at time zero. For each time we simulated the density
profile for three different combinations of N and c with fixed γ = Nc = 1. The averaging is done over 104 realizations of the noise. The
numerical data are compared with the analytical prediction with a δ-function initial condition from Eq. (87) (black solid lines).

profile with a boundary layer form. For attractive interactions
studied in [18] there is a stationary state and the boundary
layer has a width ξ = T

cN = T
γ

determined by comparing the
two terms on the right-hand side of (84). It turns out that in
the case studied here, i.e., repulsive interactions and a δ initial
condition for the density, the gas is always far from stationar-
ity and we show below that the scale which determines the size
of the boundary layer is the diffusion length scale �T = √

2T t
[within the boundary layers the three terms in (84) are of the
same order].

Note that the characteristic length scale and timescale as-
sociated with the Burgers equation (84) are x ∼ T/γ = T/Nc
and t ∼ T/γ 2 = T/N2c2 = t∗

1 , respectively [which would al-
low us to eliminate the γ dependence in (84)]. Hence this
equation naturally describes the crossover between regimes I
and II.

In order to compare with the numerics we give here the
explicit form of the density and rank field obtained by solving
analytically Eq. (84) for two cases.

(i) For the initial condition corresponding to all particles
initially at x = 0, as in (9), which corresponds to r0(x) =
1
2 sgn(x), one finds [e.g., using Eq. (25) in [18]]

r(x, t ) = −T

γ
∂x ln[ f (x, t ) + f (−x, t )], (85)

f (x, t ) =
∫ +∞

0

dw√
4πT t

exp

(
− (w − x)2

4T t
− γ

T

w

2

)

= 1

2
exp

(
1

4T
γ (γ t − 2x)

)
erfc

(
γ t − x

2
√

T t

)
. (86)

This leads to the time-dependent density

ρ(x, t ) = ∂xr(x, t ) =
e−(x−γ t )2/4tT

[ eγ x/T erfc( γ t+x
2
√

t
√

T
)

√
t
√

T
+ erfc

(
γ t−x

2
√

t
√

T

)(
1√

t
√

T
−

√
πγ e(γ t+x)2/4tT erfc( γ t+x

2
√

t
√

T
)

T

)]
√

π
[
erfc

(
γ t−x

2
√

t
√

T

) + eγ x/T erfc
(

γ t+x
2
√

t
√

T

)]2 . (87)

(ii) For a box shape initial density of width 2�,
i.e., ρ(x, 0) = 1

2�
θ (� − |x|), the solution is given by [see

Eqs. (171) and (172) in [18]], where one sets T = 1,

ρ(x, t ) = ∂xr(x, t ),

r(x, t ) = − 1

γ
∂x ln[ f (x, t ) + f (−x, t )], (88)

f (x, t ) = e−γ x2/4(�+γ t )√
1 + γ t

�

erf

⎛
⎜⎝ � + γ t + x

2
√

t
√

1 + γ t
�

⎞
⎟⎠

+ eγ (�+γ t+2x)/4erfc

(
� + γ t + x

2
√

t

)
. (89)

For � → 0 this formula returns the result (88) for the δ initial
condition.

The analytical formula (87) for the density, with a δ initial
condition, is plotted in Fig. 5 for several values of t (solid
line). We see that in the limit of long time t � 1

γ 2 the den-
sity predicted by the Burgers equation evolves towards a flat
profile for x ∈ [−γ t, γ t]. In addition, as can be seen in the
figure, there is a boundary layer at each edge. From (87)
one can derive the precise form of this boundary layer (see
Appendix C) and one finds that the density near the right edge
at x = γ t takes the form

ρ(x, t ) = 1

γ t
ρ̂

(
x − γ t√

T t

)
,

ρ̂(y) = e−y2/2
[
2 + √

πey2/4y erfc
( − y

2

)]
2π erfc

( − y
2

)2 . (90)
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FIG. 6. Comparison of numerical simulation of the boundary
layer at the right edge with the result from Eq. (90). In the simulation
γ = cN = 7 with N = 1000, c = 0.007, and T = 1. We chose four
different times t ∈ {20, 50, 100, 500}, which are inside regime II.
The averaging is done over 10 000 realizations of the noise and at
t = 0 all particles are at x = 0.

The characteristic width is thus the diffusion length �T =√
T t [see (1)]. As mentioned above, here t = O(T/γ 2) =

O(T/(cN )2); hence this width is itself of order T/cN . The
scaling function has the asymptotic behavior ρ̂(y) � 1

2 − 1
y2

for y → −∞, which thus matches the density of the plateau
ρ(x, t ) � 1

2γ t = 1
2cNt . On the other side it has a fast decay,

ρ̂(y) = y
2
√

π
e−y2/4 for y → +∞.

We have plotted the prediction (90) in Fig. 6 (solid line),
where it is also compared with numerical simulations for var-
ious times inside regime II (discussed below). We see that the
agreement of the data with the scaling function is excellent. In
the opposite limit t � 1

γ 2 one can check that the formula (87)
converges to the Gaussian profile for independent diffusing
particles ρ(x, t ) � 1√

4πT t
e−x2/4T t .

We now compare these predictions with a direct numerical
calculation of the trajectories x j (t ) from the Langevin equa-
tions (4), where we set T = 1 and c = γ /N . In Fig. 5 we study
the case where all the particles start from the origin at t = 0.
We plot the numerically evaluated density ρ(x, t ) as a function
of x for different times t (and several values of N), averaged
over 104 realizations of the noise. This is compared with the
prediction in Eq. (87) with an initial δ-function density. We
see that the agreement is quite good; hence in this time regime
the density is very well described by the deterministic Burgers
equation even for moderate values of N .

The matching between the solution derived from the Burg-
ers equation and the numerical simulations can be further
investigated by looking at the rank fields. In Fig. 7 we present
the numerical evaluation of the rank fields for N = 1000 for
both the square and the δ initial conditions for t = 50 and
γ = 2. In the inset we have plotted the difference between the
observed and predicted values of the rank field as a function of
x, as given in (88) and (87). One can see that these differences
are quite small.

FIG. 7. Rank field r(x, t ) computed numerically (dots and
crosses) and from the analytical expression (solid lines) for two
different initial conditions. Green crosses represent the square ini-
tial condition ρ(x, 0) = 1

2l θ (l − |x|) for l = 10. The numerical data
are compared with the analytical expression (88) (green solid line
connecting the crosses). The purple dots show the numerical data
for the initial condition where all the particles start from the origin.
The analytical expression (85) is represented by the purple solid line
connecting the circles. The inset shows the pointwise difference be-
tween numerical data rnum(x, t ) and the analytical expression r(x, t )
for both δ and square initial conditions. The deviations are of order
10−3. For both plots the rank field is measured at t = 10 with γ = 2,
T = 1, and N = 1000. Here the data are averaged over 103 different
realizations, which shows a small systematic deviation, due to the
finite-N effects (see Fig. 8).

Next we study how these differences between the observed
and the predicted values of the rank field behave as a func-
tion of N and the time t , for both initial conditions. For this
purpose, we define the error � as

�(N, t ) =
√√√√1

n

n∑
α=1

[r(yα, t ) − rnum(yα, t )]2, (91)

where n is the number of points on a grid {yα} at which we
numerically computed the rank field (typically 500 � n �
2000), r(yα, t ) is the predicted rank field at those points,
and rnum(yα ) is the numerical rank field at yα . In Fig. 8 we
have plotted �(N, t ), on a ln-ln scale, as a function of N for
different initial profiles at different times. For the square initial
condition with � = 10, we see that �(N, t ) decays with N as
a power law N−a, where we measure 1

2 < a < 1.

V. CONCLUSION

In this paper we have studied the out-of-equilibrium
Langevin dynamics of N particles in one dimension, which in-
teract only via the linear one-dimensional repulsive Coulomb
potential and which are thus allowed to cross. We have fo-
cused on an initial condition where all the particles are at
the origin at time t = 0. As time increases the gas expands.
We have shown that there are three distinct regimes in time,
separated by two characteristic times. In regime I, i.e., t <

t∗
1 = T/(cN )2, the particles perform essentially independent

Brownian diffusion. At t = t∗
1 , the particles start experiencing
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FIG. 8. Fluctuations of the rank field as measured by �(N, t )
defined in (91). We plotted the numerical data for � as a function
of N in ln-ln scale for n = 500 and two different times t = 100 and
300. We have checked that the number of points n on the grid [see
Eq. (91)] does not affect significantly the data. Here we fixed γ = 1
and T = 1 and we averaged over 104 realizations of the noise. At
time zero we start from the square initial condition with l = 10. The
dashed lines are guides to the eyes and have slopes of − 1

2 and −1,
respectively.

the long-range interaction and for t > t∗
1 the size of the gas

increases linearly approximately to 2cNt ; this is the beginning
of regime II. A plateau forms in the particle density, with
boundary layers of size

√
2T t whose shape we have explic-

itly computed using a relation with the Burgers equation. In
this regime II the gas is still dense and the particles still
experience many mutual crossings. Finally, as t � t∗

2 = T/c2

one enters regime III, where the system is a dilute expanding
crystal where the particles are well separated. We have studied
regime III at long time due to an exact formula obtained
from the Bethe ansatz which we analyzed using a saddle-
point method. The time-dependent particle distribution shows
a remarkable analogy with the one that describes the equilib-
rium jellium model in the presence of a quadratic well with
a time-dependent curvature. This allowed us to quantify the
fluctuations of the displacements in the expanding crystal,
which are Gaussian and of O(

√
t ) to leading order. Inter-

estingly, there are additional O(1) subleading non-Gaussian
fluctuations which we obtained exactly. These additional cor-
relations are purely dynamical in origin and do not have any
counterpart in the equilibrium jellium model.

There are many interesting questions which remain to be
studied. One is the role of the initial conditions. Presumably,
in regime III, the analogy with the equilibrium jellium model
and the leading Gaussian fluctuations are robust features.
However, it is likely that the subleading O(1) non-Gaussian
fluctuations for t � T/c2 depend on some details of the initial
condition. Indeed, we have shown that it is the case for N = 2
(see Appendix A 4, where the few lowest cumulants are ob-
tained explicitly for any even initial condition). This shows
that the system keeps some memory of the initial condition
even at infinite time. It remains to be investigated how this
feature extends to any N and whether it persists at large
N . Another interesting open matter is the description of the

crossover from regime II to regime III, i.e., times of order
t∗
2 = T/c2 or smaller. Indeed, as we have shown, the crossover

from regime I to regime II for times of order T/(cN )2 can be
described using a hydrodynamic approach based on the Burg-
ers equation. This approach however fails as time increases
around t = t∗

2 when one can no longer neglect the discreteness
of the particles. In particular, we expect that the boundary
layer at the edges of the plateau in the density becomes quite
different from the one computed here. Describing the system
in that regime remains an open challenge.

The stochastic dynamics of long-range interacting systems
with a nonequilibrium stationary state, such as the Hamilto-
nian mean-field model, has been studied in the past [26,27].
In contrast, our work concerns the dynamics in a long-range
interacting system where there is no stationary state. In the
present study we have obtained results in the broader context
of interacting Brownian particles with long-range interactions
by a combination of analytical methods. A general model
much studied recently, in mathematics and physics, mostly at
equilibrium [9,28,29], or its quantum generalization [30] is
the so-called Riesz gas in one dimension where the repulsive
interaction potential behaves as a power law of the distance
of approximately |xi − x j |−s. The case s = −1 corresponds
to the Coulomb interaction studied here and the case s = 0
is the logarithmic gas. The out-of-equilibrium dynamics for
general s has not been addressed much (apart of course from
s = 0 and Dyson’s Brownian motion [31]) with the exception
of a very recent work [32], where the case s > 0 was studied
using hydrodynamics methods. The present work opens the
way for further investigations of nonequilibrium dynamics for
Brownian particle systems with long-range interactions.
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APPENDIX A: MORE DETAILS FOR TWO
PARTICLES N = 2

1. Solution from the Laplace transform

For two particles one can solve directly the problem using
the Laplace transform (as in the Supplemental Material of [18]
but for c > 0). Noting that x(t ) = 1

2 [x1(t ) + x2(t )] and y(t ) =
x2(t ) − x1(t ), the center of mass performs an independent unit
Brownian motion ẋ(t ) = ξ (t ), while the relative coordinate
evolves as

ẏ = 2c sgn(y) + 2η(t ), (A1)

where η(t ) is an independent unit of white noise. Its probabil-
ity density P(y, t ) then evolves according to

∂t P = 2∂2
y P − 2c∂y[sgn(y)P], (A2)

starting with the initial condition P(y, 0) = δ(y). Introducing
the Laplace transform P̃(y, s) = ∫ +∞

0 dt e−st P(y, t ), one ob-
tains

sP̃ − P(y, 0) = 2∂2
y P̃ − 2c∂y[sgn(y)P̃], (A3)

064105-15



FLACK, LE DOUSSAL, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 107, 064105 (2023)

where P(y, 0) is the initial condition. It is then easy to solve
separately for y > 0 and y < 0. There are two integration
constants on both sides. One on each side is set to zero by
requiring that P̃(y, s) → 0 at y → ±∞ for s > 0. Continuity
of P at y = 0 gives another condition and finally, from inte-
grating (A2) on a small interval around y = 0, one obtains the
matching condition

P′(0+, t ) − P′(0−, t ) − 2cP(0, t ) = − 1
2 (A4)

and the same relation holds for the Laplace transforms. This
leads to the unique solution

P̃(y, s) = e(c/2)|y|

2(c + √
c2 + 2s)

e−√
c2+2s|y|/2. (A5)

Hence

P(y, t ) = e−(c2/2)t e(c/2)|y|L−1
s→t

1

2(c + √
2s)

e−√
2s|y|/2. (A6)

Note that the prefactor e−(c2/2)t e(c/2)|y| is exactly the one which
appears in the Lieb-Liniger method setting N = 2. Inverting
explicitly the Laplace transform L, one finds the formula (14)
given in the text.

2. Comparison with the general N formula

Let us rewrite the general formula (12) for N = 2, defin-
ing y = x2 − x1 and x = x1+x2

2 , i.e., x2 = x + y/2 and x1 =
x − y/2 as above (with dx1dx2 = dxdy). It reads, for x1 � x2,
that is, for y � 0,

P(x1, x2, t ) = e(c/2)|y|e−(c2/2)t
∫

R

dk1

2π

∫
R

dk2

2π

ik1 − ik2

ik1 − ik2 + c

× e−t (k2
1+k2

2 )+ix(k1+k2 )+(i/2)y(k2−k1 ). (A7)

Let us define k1 + k2 = k and q = (k2 − k1)/2. The above
expression factorizes and one obtains

P(x1, x2, t ) = e(c/2)|y|e−(c2/2)t

(∫
R

dk

2π
e−t (k2/2)+ixk

)

×
(∫

R

dq

2π

−i2q

−i2q + c
e−2tq2+iyq

)
. (A8)

Hence the center-of-mass motion decouples and one has

P(x1, x2, t )dx1dx2 = 1√
2πt

e−x2/2t P(y, t )dxdy, (A9)

with, for y � 0,

P(y, t ) = e(c/2)|y|e−(c2/2)t
∫

R

dq

2π

−i2q

−i2q + c
e−2tq2+iyq. (A10)

The Laplace transform of this expression with respect to time
t reads

P̃(y, s) = e(c/2)|y|
∫

R

dq

2π

−i2q

−i2q + c

1

s + 2q2 + c2

2

eiyq. (A11)

One has s + 2q2 + c2

2 = 2(q − q+)(q − q−), with q± =
± i

2

√
2s + c2. Since here y > 0 we must close the contour in

the upper half plane. The pole at q = −ic/2 thus does not

contribute and the pole at q = q+ contributes. We obtain from
its residue

P̃(y, s) = ie(c/2)|y| 1

2(c + √
2s + c2)

−2iq+
(q+ − q−)

e−(y/2)
√

2s+c2

= e(c/2)|y| 1

2(c + √
2s + c2)

e−(y/2)
√

2s+c2
, (A12)

which, using that the final result must be even in |y|, recovers
the previous result [see (13) and (A5)].

3. Cumulants of |y| − 2ct

To obtain the cumulants of |y| − 2ct , one can compute the
Laplace transform of the generating function∫ +∞

0
dt

∫
dy P(y, t )eλ(|y|−2ct )−st =

∫
dy P̃(y, s + 2cλ)eλ|y|.

(A13)

Using the expression (13), expanding in λ, and performing
the Laplace inversion, we find the moments, and taking the
logarithm we obtain the cumulants. From now on we set c = 1
for simplicity and will restore it in the text. One obtains

〈|y|〉 − 2t = (t + 1)erf

( √
t√
2

)
− t +

√
2

π
e−t/2

√
t

= 1 + O(t−3/2e−t/2), (A14)

〈(|y| − 2t )2〉 = 2(t2 + 1)erfc

( √
t√
2

)
− 2

√
2

π
e−t/2

√
t (t − 1)

+ 4t − 2 = 4t − 2 + O(t−1/2e−t/2), (A15)

〈(|y| − 2t )3〉 = 12t + 6 + O(t1/2e−t/2), (A16)

〈(|y| − 2t )4〉 = 48t2 − 48t − 24 + O(t3/2e−t/2), (A17)

〈(|y| − 2t )5〉 = 240 t2 + 240 t + 120 + o(1), (A18)

〈(|y| − 2t )6〉 = 960 t3 − 1440t2 − 1440t − 720 + o(1).

(A19)

The first four cumulants are given in the text, and we further
obtain by this method the next two cumulants

〈(|y| − 2ct )5〉c � 744 + o(1),

〈(|y| − 2ct )6〉c � −7560 + o(1). (A20)

Here and above the terms o(1) are exponentially small correc-
tions in t . We see that although the moments are polynomial
in t , the cumulants are simply O(1). Furthermore, there are
no power-law corrections of the type 1/t p, p � 1, to either
moments or cumulants. Finally, one can check that the cumu-
lants obtained exactly here up to order 6 agree with the general
prediction obtained in Sec. III D for k � 3 (restoring c),

〈(|y| − 2ct )k〉c = 1

ck
(−1)k−1(k − 1)!(2k − 1) + o(1).

(A21)
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4. More general initial conditions

In the Supplemental Material of [18] the solution for P(y, t )
for N = 2 was obtained for a more general class of initial
conditions. The calculation was performed for c < 0 (i.e.,
setting c = −1); here we adapt it for c > 0, following the
same steps.

One considers an initial condition P(y, 0) which is smooth
around y = 0 (for convenience) and an even function of y.
Then P(y, t ) is also smooth around y = 0 and an even function
of y. One again defines the Laplace transform with respect to
time, P̃(y, s) = ∫ +∞

0 dt e−st P(y, t ), and one also defines the
half-sided Laplace transform with respect to space, P̂(μ, s) =∫ +∞

0 dy e−μyP̃(y, s) (thus using λ = −μ as compared to the
notation used in the preceding section). One also defines
P0(μ) = ∫ +∞

0 dy e−μyP(y, 0), the half-sided Laplace trans-
form of the initial condition. The normalization condition on
the half space implies that P0(0) = 1

2 and P̂(0, s) = 1
2s . Taking

the double Laplace transform of Eq. (A3) with respect to x and
t then leads to

sP̂(μ, s) − P0(μ) = 2μ(μ − c)P̂(μ, s) − 2P̃′(0, s)

− 2(μ − c)P(0, s). (A22)

Integrating (A22) around y = 0 leads to the jump condition
P′(0+, s) − cP(0+, s) = 0 and its solution reads

P̂(μ, s) = P0(μ) − 2μP̃(0, s)

s − 2μ(μ − c)
. (A23)

We will use the same condition as was used for c = −1 in [18]
to determine the unknown function P̃(0, s), namely, that the
residue of the pole at s = 2μ(μ − c) should vanish. Indeed,
for μ > c, 2μ(μ − c) > 0 and a pole at s > 0 would lead to
a growing exponential in time, which is excluded. Hence one
has

P̃(0, s = 2μ(μ − c)) = P0(μ)

2μ
. (A24)

Equivalently, setting μ = μs = 1
2 (c + √

c2 + 2s) (the positive
root), one must have

P̃(0, s) = P0
(
μs = 1

2 (c + √
c2 + 2s)

)
c + √

c2 + 2s
. (A25)

The solution is thus

P̂(μ, s) = 1

s − 2μ(μ − c)

×
(

P0(μ) − 2μ
P0

(
1
2 (c + √

c2 + 2s)
)

1 + √
c2 + 2s

)
. (A26)

Let us now compute the cumulants of |y| − 2ct . We again
use the Laplace transform in time of the cumulant generating
function ∫ +∞

0
dt

∫ +∞

−∞
dy P(y, t )e−μ(|y|−2ct )−st

=
∫ +∞

−∞
dy P̃(y, s − 2cμ)e−μ|y|

= 2P̂(μ, s − 2cμ). (A27)

Let us set from now on c = 1 (which means lengths are in
units of 1/c and time in units of 1/c2). Let us define the
moments mk (t ) = 〈(|y| − 2ct )k〉 and denote by m̃k (s) their
Laplace transform in time and by κk (t ) the cumulants. We then
have

m̃k (s) = 2(−1)k∂k
μ

∣∣
μ=0P̂(μ, s − 2μ). (A28)

To extract the long-time behavior, we perform the small-s
expansion for each moment. For instance, we find

m̃1(s) = 2

s
[P̂0(1) − P̂′

0(0)] + P̂′
0(1) − P̂0(1) + O(s), (A29)

which implies that

m1(t ) = 2[P̂0(1) − P̂′
0(0)] + f1(t ),∫ +∞

0
dt f1(t ) = P̂′

0(1) − P̂0(1), (A30)

where f1(t ) decays to zero at infinity. Hence the O(1) constant
in the first cumulant reads

κ1(t = +∞) = 2[P̂0(1) − P̂′
0(0)] = 〈y + e−y〉0, (A31)

where 〈· · · 〉0 means the average with respect to the initial
condition P(y, 0). We recover κ1(t = +∞) = 1 in the limit
where P(y, 0) = δ(y). We see that κ1(t = +∞) depends on
the initial condition. Next we obtain

m̃2(s) = 4

s2
+ 2

s
[2P̂′

0(1) + P̂′′
0 (0) − 2P̂0(1)] + O(s0), (A32)

which leads to

m2(t ) = 4t + 〈y2 − 2(1 + y)e−y〉0 + o(t ). (A33)

Thus we find that the O(1) constant in the second cumulant
κ2(t ) = 4t + κ̃2(t ) reads

κ̃2(t = +∞) = 〈y2 − 2(1 + y)e−y〉0 − 〈y + e−y〉2
0 (A34)

and we recover κ̃2(t = +∞) = −3 in the limit where
P(y, 0) = δ(y). The third and fourth moments are

m3(t ) = 12t〈y + e−y〉0 + 〈y3 + 3e−y(y2 + 2y + 2)〉0

+ o(t ), (A35)

m4(t ) = 48t2 + 24t〈y2 − 2e−y(y + 1)〉
+ 〈y4 − 4e−y(y3 + 3y2 + 6y + 6)〉 + o(t ),

(A36)

from which we obtain the third and fourth cumulants, which
have heavy expressions not displayed here. We check that all
positive orders in t cancel in the kth cumulant, k � 3, which
thus goes to a O(1) constant κk (t = +∞) at long time. These
O(1) constants carry information, up to infinite time, about
some details of the initial condition.

APPENDIX B: MORE ON THE CUMULANTS FROM
THE SADDLE POINT

The saddle-point method used in Sec. III D would predict
a power law in time corrections to the cumulants, but already
for N = 2 we know that these do not exist. Let us focus on
N = 2. To understand this apparent paradox, let us go one step
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back and start again from the formula (A10) (setting c = 1 for
simplicity here),

〈eλy〉 = 2
∫ +∞

0
dy e(λ+1/2)ye−t/2

∫
R

dq

2π

−i2q

−i2q + 1
e−2tq2+iyq.

(B1)

Instead of performing the saddle point on q and then perform-
ing the saddle point on the resulting expression (as we did in
Sec. III D), let us simply rewrite (A10) using the shifted vari-
ables y = 2t (1 + 2λ) + ŷ and q = i

2 (1 + 2λ) + q̂. We obtain

〈eλy〉 = 2
∫ +∞

−2t (1+2λ)
dŷ

∫
R

dq̂

2π

1 + 2λ − 2iq̂

2 + 2λ − 2iq̂
e2λt+2λ2t−2t q̂2+iŷq̂.

(B2)

Note that the integration contour of q̂ was R − i
2 (1 + 2λ)

but we brought it back to R since the pole at q = −i/2 is
not crossed along the way (provided 1 + 2λ > 0). Note that
this formula is exact; no saddle point has been made. Now
we split the integral over ŷ in two pieces, i.e., we write∫ +∞
−2t (1+2λ) dŷ = ∫ +∞

−∞ dŷ − ∫ −2t (1+2λ)
−∞ dŷ. In the first piece we

use
∫ +∞
−∞ dŷ eiŷq̂ = 2πδ(q) and we obtain [formally the second

piece corresponds to y < 0 in (B1)]

〈eλy〉 = e2λt+2λ2t

(
1 + 2λ

1 + λ
− 2

∫ −2t (1+2λ)

−∞
dŷ

×
∫

R

dq̂

2π

1 + 2λ − 2iq̂

2 + 2λ − 2iq̂
e−2t q̂2+iŷq̂

)
. (B3)

The idea is that the second piece is exponentially small at long
time. For instance, for −2t (2 + 2λ) < ŷ < −2t (1 + 2λ) one
can evaluate the integral over q̂ by a saddle-point method, with
a saddle point at q̂ = i ŷ

4t . This leads to

∫
R

dq̂

2π

1 + 2λ − 2iq̂

2 + 2λ − 2iq̂
e−2t q̂2+iŷq̂ � 1√

8πt
e−ŷ2/8t 1 + 2λ + ŷ

2t

2 + 2λ + ŷ
2t

.

(B4)

A similar estimate can be obtained for ŷ < −2t (2 + 2λ).
Hence the final integral over ŷ is dominated by its upper bound
and is thus of order e−(t/2)(1+2λ)2

with algebraic prefactors.
This gives an exponentially small correction to the cumulants,
of order e−c2t/2 (restoring c), which is indeed what is obtained
by an exact calculation. Note that the exponentially small
correction term in (B3) comes from trajectories which cross
each other, which become subdominant for c2t � 1. Finally,

these calculations can be generalized to any N , although we
will not display it here.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE
SOLUTION OF THE BURGER’S EQUATION

To study the boundary layer of the density ρ(x, t ) in (87)
near its right edge, let us recall some useful formulas for the δ

initial condition, namely,

r(x, t ) = −T

γ
∂x ln[ f (x, t ) + f (−x, t )],

f (x, t ) = e−γ x/2T erfc

(
γ t − x

2
√

T t

)
, (C1)

which we have slightly simplified. Let us focus near the right
edge at x = γ t and set x = γ t + y

√
T t . Then we find

f (x, t ) = e−γ 2t/2T −γ y
√

t/2
√

T erfc
(
− y

2

)
, (C2)

f (−x, t ) = e−γ 2t/2T −γ y
√

t/2
√

T e−y2/4

√
T

γ
√

πt

×
[

1 − y
√

T

2γ
√

t
+ O

(
1

t

)]
. (C3)

Hence, for t � T/γ 2 = T/(cN )2 and y = O(1) we see that
the first term dominates. Hence, in that limit we have

r(x, t ) = 1

2
−

√
T

γ
√

t
∂y ln

[
erfc

(
− y

2

)]
= 1

2
−

√
T

γ
√

t
r̂(y),

r̂(y) = e−y2/4

√
πerfc

(− y
2

) , (C4)

which describes the boundary layer at the right edge. It be-
haves as r̂(y) � y

2 + 1
y for y → −∞ and hence matches the

linear behavior of the plateau. The density at the edge thus
takes the boundary layer form

ρ(x, t ) = 1

γ t
ρ̂

(
x − γ t√

T t

)
,

ρ̂(y) = e−y2/2
[
2 + √

πey2/4y erfc
( − y

2

)]
2π erfc

( − y
2

)2 , (C5)

where the scaling function has the asymptotic behaviors

ρ̂(y) = 1

2
− 1

y2
+ O

(
1

y4

)
, y → −∞ (C6)

ρ̂(y) = y

2
√

π
e−y2/4, y → +∞. (C7)

The boundary layer form of the density thus matches the
density of the plateau ρ(x, t ) � 1

2γ t = 1
2cNt .
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