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Thermodynamic uncertainty relations in mesoscopic devices

I. R. A. C. Lucena , R. A. Batista , and J. G. G. S. Ramos
Departamento de Física, Universidade Federal da Paraíba, 58051-970 Joaão Pessoa, Paraíba, Brazil

(Received 21 October 2022; accepted 15 May 2023; published 2 June 2023)

We investigate the thermodynamic uncertainty relations (TURs) in mesoscopic devices for all universal
symmetry classes of Wigner-Dyson and Dirac (chiral). The observables of interest include the TUR (MS), which
is defined in terms of the ratio between the mean noise and mean conductance, as well as a new TUR (R) proposed
in this article, which is based on the ensemble mean of the noise-to-conductance ratio. A detailed study is made
on the quantum interference corrections associated with the TURs. We also analyze the influence of orbital and
sublattice/chiral degrees of freedom for the validity of the observables in these chaotic mesoscopic billiards. Our
investigation is based on the concatenation between the Landauer-Büttiker theory, the Mahaux-Wendeinmüller
theory, and the TURs. We simulate the universal mesoscopic chaotic quantum dots using the random-matrix
theory and compare our numerical results with the pertinent experimental data. The results were obtained for a
different number of channels and tunneling rates that vary from the opaque to the ideal regime and, in all cases,
demonstrate a clear phenomenological distinction between the TURs. In particular, the opaque regime engenders
remarkable differences between the observables, even in the semiclassical regime, which characterizes a clear
violation of the central limit theorem. Furthermore, we show that the phenomenology of the quantum interference
corrections is strikingly robust, surprisingly exhibiting an order of magnitude greater than the supposedly leading
semiclassical term for the TUR (R).
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I. INTRODUCTION

Thermodynamic uncertainty relations (TURs) express a
tradeoff between the accuracy of measurement (noise) and
the associated entropy production rate (cost of measurement)
[1–4]. On the other hand, recent technological develop-
ments have led to the creation of artificial atoms (quantum
dots) whose phenomenology allows testing nonequilibrium
thermodynamics and quantum mechanics at their limits
[5–11]. Moreover, these nanostructured devices generate
quantum stochastic transport processes, from which we iden-
tify manifestations of quantum interference [12–15], universal
fluctuations [16], thermal noise, quantum noise [17–21], and
other significant contributions not expected in the correspond-
ing classical electronic current.

Over the last decade, many formalisms have been used to
provide general [22–24] and unified TURs, such as Ref. [25],
that derives and generalizes uncertainty relations from fluctua-
tion theorems (FTs) [26–28]. A natural question that emerges
is about the magnitude of these thermodynamic corrections
when compared to the quantum ones, resulting from the sig-
natures of universal fluctuations and quantum interference,
which, typically can produce localization.

The localization phenomena in the context of thermody-
namics surpass fundamental aspects and find possible current
technological applications. In this regard, Ref. [29] inves-
tigates localization related to isolated interacting quantum
systems and demonstrates the existence of many-body local-
ization resisting for long intervals. In particular, its analysis
confirms the existence of resonant level statistics in ther-
malizing systems obeying the universal Gaussian orthogonal
ensemble (GOE) [30], with essential applications in the

context of heat engines. Usually the transport properties of
mesoscopic systems are universal and dictated only by fun-
damental symmetries, i.e., these properties are independent of
the material of which the device is composed and its specific
geometry [31,32]. Initially addressed in nuclear physics and
improved on mesoscopic systems, the random-matrix theory
(RMT) is a powerful technique to connect underlying sym-
metries with the spectrum of a chaotic mesoscopic system.
Physical properties such as quantum interference corrections
of both conductance and shot-noise power depend, for in-
stance, on time-reversal and spin-rotation symmetries [33,34].

Recent experiments on nanostructured electronic conduc-
tors have been carried out to study gold atomic-scale junctions
[35]. Although current transport in junctions is experimentally
explored in the literature, these systems offer a scattering pro-
cess with one or few resonances, making the local spectrum
statistics dependent on microscopic details such as the number
of atoms in the junction or the position of these atoms. In
this work we are interested in mesoscopic devices, also called
ballistic chaotic quantum dots. On the one hand, these devices
are sufficiently small that electrons maintain their quantum-
mechanical phase coherence, so a classical description of the
transport properties is inadequate. On the other hand, they are
sufficiently large that a statistical description is meaningful.
Given that, to treat this type of system we invoke the universal-
ity hypothesis of RMT, for which the local spectral statistics
of a chaotic system depend only on the symmetry properties
of the Hamiltonian and not on microscopic details.

For universal mesoscopic systems, a fundamental question
remains in the literature about the role of quantum interference
mechanisms underlying electronic transport in the TURs cor-
rections: Are quantum symmetry mechanisms predominant
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in heat engines, or does some entropy production tradeoff
between process precision and dissipation have a more crucial
role in FTs? For quantum systems, proposals have emerged
intending to analyze nonlinear contributions on the conduc-
tance G and the shot-noise power P measurements [36]. In
particular, for chaotic ballistic quantum dots, conductance
and shot-noise power present quantum interference correc-
tions due to the high-order scattering processes inside the
cavity [37]. Therefore, as it is well known that RMT provides
a framework that determines the intrinsic properties of the
system, and the TURs can be defined in terms of the ratio
between the time averages of the shot-noise power and the
conductance, the TURs are ambiguous by this approach in the
ensemble (universal) average. In this way we propose a mea-
sure called the TUR ratio (TUR-R) as an intrinsic property of
the system. More clearly, the TUR-R, QTUR-R, is an ensemble
average [. . . ],

QTUR-R = V

kBT

[ 〈P〉
〈G〉

]
, (1)

where T is the reservoir’s temperature, V is the voltage, and
〈. . . 〉 is the time average taken over a single mesoscopic
sample. One expects in the semiclassical regime that

V

kBT

[ 〈P〉
〈G〉

]
≈ V

kBT

[〈P〉]
[〈G〉] , (2)

due to the law of large numbers and the central limit theo-
rem. We also introduce the TUR-MS (TUR measuring the
ratio between the noise and conductance ensemble averages
separately) as

QTUR−MS = V

kBT

[〈P〉]
[〈G〉] . (3)

The TUR ratio (TUR-R) factor QTUR−R proved to be revealing
and valuable; that is, QTUR−R provides additional information
beyond the separate measurements of the electronic current
and its corresponding temporal fluctuations amplitudes. When
comparing such measurements involving tunneling junctions
with ballistic chaotic quantum dots (CQDs), we show that
quantum interference corrections in chaotic cavities are more
dominant than in tunneling junctions due to the number of
resonant states in the chaotic cavity. The shot noise, an intrin-
sically quantum part of the fluctuations of a nonequilibrium
electronic current, is associated with the fact that different
parts of the electron wave can go to different places. Thus
the shot noise is enhanced in mesoscopic devices and, conse-
quently, the TUR. More questions emerge from this fact: do
the TUR-R and the TUR-MS undergo quantum corrections
that distinguish them even more in the universal regime?

In this study we provided an answer to all these ques-
tions. To this end, we divided the paper into sections. In
Sec. II we do a pedagogical review of the Landauer-Büttiker
formalism, and we will build a connection with the RMT
and uncertainty relations, offering a framework for the study
of TUR-R and TUR-MS in the universal quantum transport
regime. In Sec. III we implement the Mahaux-Weidenmüller
Hamiltonian theory using the Monte Carlo method and ob-
tain universal results for the Wigner-Dyson classes, that
is, for nonrelativistic chaotic conductors described by the

FIG. 1. Schematic view of the chaotic quantum dot in the univer-
sal regime coupled to two electron reservoirs through ideal leads, a
paradigmatic mesoscopic system. Each lead contains Ni open chan-
nels, and the chaotic quantum dot (CQD) contains many resonances
in the universal regime. As represented, in the ballistic regime, before
exiting, the electron coherently collides many times with the edge of
the CQD.

Schrödinger equation. We will extend the results to encom-
pass relativistic systems [38] such as graphene and topological
insulators in the universal regime.

II. DERIVATION OF THE TUR FOR A QUANTUM DOT

Our starting point is establishing the connection between
the charge current and its corresponding temporal fluctuations
through thermodynamics uncertainty relations.

General formulation

We provide a complete analysis following Ref. [18] for
charge transfer through a double-barrier chaotic quantum dot
coupled to two leads, labeled as 1 and 2, with N1 and N2

open scattering channels, respectively. In addition, the sys-
tem, schematically represented in Fig. 1, contains reservoirs
with electrochemical potentials, μ1 and μ2, which are kept
at an equilibrium temperature T . The tunneling rates �i of
the channel i can be controlled through changes in the gate
voltage.

We now define creation (annihilation) operators for an inci-
dent electron in the chaotic cavity with total energy E in leads
1 and 2 as a†

i1(E ) (ai1(E )) and a†
i2(E ) (ai2(E )), respectively.

The index i represents the transverse channel in the left and
right lead. The creation (annihilation) operators obey the usual
fermionic algebra and are independent in different channels.
Similarly, we define the creation (annihilation) operators for
an outgoing electron and denote them with the letter b. The
operators a and b are related via the scattering matrix S:

⎛
⎜⎜⎜⎜⎜⎜⎝

b11

· · ·
b1N1

b21

· · ·
b2N2

⎞
⎟⎟⎟⎟⎟⎟⎠

= S

⎛
⎜⎜⎜⎜⎜⎜⎝

a11

· · ·
a1N1

a21

· · ·
a2N2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

The S matrix establishes a connection between the outgo-
ing and incoming states. It has dimensions (N1 + N2) × (N1 +
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N2) and a block structure that reads as

S =
(

rN1×N1 t ′
N1×N2

tN2×N1 r′
N2×N2

)
, (5)

where r, r′ (Ni × Ni) and t, t ′ (Ni × Nj , i �= j) are the quantum
dot’s reflection and transmission matrix blocks, respectively.
The connection between the modes must preserve the unitarity
of the matrix S, which is guaranteed by the charge conserva-
tion in the scattering process.

The scattering matrix offers a complete description of the
charge-transfer process. It allows the extraction of electronic
transport information so that we can directly infer the system’s
transport observable quantities once the S matrix is known.
For instance, the current operator ĵi(z, T ) of the electron
flow in the z longitudinal direction of a lead in a time T is
expressed in terms of the field operators as

ĵi(z, T ) = h̄e

2im

∫
dx⊥

[
�̂

†
i (�x, T )

(
∂

∂z
�̂i(�x, T )

)

−
(

∂

∂z
�̂

†
i (�x, T )

)
�̂i(�x, T )

]
, (6)

where the field operators are defined as

�̂i(�x, T ) =
∫

dEe−iET /h̄
Ni (E )∑
n=1

ψin(�x⊥)

(2π h̄vin(E ))1/2

× (aineikinz/h̄ + bine−ikinz/h̄), (7)

with ψin(�x⊥) the ordinary first-quantization transversal wave
functions of the corresponding lead, while �x⊥ is the transver-
sal coordinate over the lead, kin = (2m(E − Ein))1/2 is the
wave vector, and vin(E ) is the velocity of the corresponding
electronic transversal mode. Assuming only the transport of
electrons close to the Fermi energy, after some algebra we
obtain

ĵi(z, t ) = e

2π h̄

∑
α,β

∑
m,n

∫
dEdE ′ei(E−E ′ )t/h̄

× a†
αm(E )J mn

αβ (i; E , E ′)aβn(E ′), (8)

in which the Greek indexes α and β label the dot’s incom-
ing or outgoing waves, and the Latin ones denote the open
channels in the respective leads. We have also defined the ma-
trix J mn

αβ (i; E , E ′) = δmnδαiδβi − ∑
k S†

iα;mk (E )Siβ;kn(E ′). For
a system at thermal equilibrium, the expected value of
the product of creation and annihilation operators satisfies
〈â†

αm(E )âβn(E ′)〉 = δαβδmnδ(E − E ′) fα (E ), where fα (E ) is
the Fermi function. Therefore the time-average value of the
current in the quantum dot is given by

〈 j〉 = e

2π h̄

∫
dETr(t†(E )t (E ))( f1(E ) − f2(E )). (9)

In the low-temperature limit, the above equation gives the
remarkable Landauer-Büttiker formula for the conductance,
G = (e2/2π h̄)Tr(t†(EF )t (EF )).

The temporal, T , current fluctuations are directly related
to the fluctuation operator defined by 
 ĵα (T ) = ĵα (T ) −
〈 ĵα (T )〉. Trivially, 〈
 ĵα (T )〉 = 0, i.e., the first relevant statis-
tic for the fluctuation operator is in the symmetrized temporal

correlation function:

Pαβ (T − T ′) ≡ 1
2

〈

 ĵα (T )
 ĵβ (T ′) + 
 ĵβ (T ′)
 ĵα (T )

〉
.

(10)

For time-homogeneous correlation functions, the Fourier
transform of the fluctuations of the current is


 ĵα,β (T ) = 1

2π

∫ ∞

−∞
dω
 jα,β (ω)eiωt , (11)

which yields

2πδ(ω + ω′)Pαβ (ω) = 〈
 jα (ω)
 jβ (ω′)+
 jβ (ω′)
 jα (ω)〉.
(12)

The term Pαβ (ω) is referred to as noise power. After some
algebra involving second-quantization operators, we obtain
the noise power at zero frequency,

Pαβ = e2

2π h̄

∑
γ δ

∑
mn

∫
dEJ mn

γ δ (α; E , E )J nm
δγ (β; E , E )

× {
fγ (E )[1 − fδ (E )] + fδ (E )

(
1 − fγ (E )

)}
, (13)

where Pαβ ≡ Pαβ (0). Due to current conservation, we obtain
P ≡ P11 = P22 = −P12 = −P21. On the scale of potential
and temperature differences, the transmission coefficients
vary very weakly as a function of the Fermi energy. Therefore
we can replace the values in the integrand with the Fermi
energy, and we obtain

P (T, eV ) = e2

π h̄

[
2kBT Tr(tt†)

+ eV coth

(
eV

2kBT

)
Tr(tt†rr†)

]
. (14)

In the zero-temperature limit, the above equation becomes

P (0, eV ) = e2

π h̄
Tr(tt†rr†)e|V |, (15)

which is known as the shot-noise power and has a purely
quantum or corpuscular nature that is the central feature re-
sponsible for the quantum fluctuation of the electronic current.
In the finite-temperature limit, thermal and quantum fluctua-
tions compete.

The shot-noise power can also be interpreted as the
variance associated with the temporal fluctuations of the cur-
rent (charge transferred per unit time) j(t ) = GV , in which
G represents the conductance. Thus, 〈〈 j2〉〉 ≡ 〈 j2〉 − 〈 j〉2 =
P (T, eV ). From now on, let us concentrate on the case of
a universal quantum dot, Fig. 1. The TURs impose restric-
tions on the domain of possible values of thermodynamic
currents (e.g., heat, particles, etc.). We start by considering
J as being any current exchanged during a nonequilibrium
process over a time interval. The TURs establish a relation
between the steady-state current 〈J 〉, its time fluctuations
〈〈J 2〉〉 = 〈J 2〉 − 〈J 〉2, and the average entropy production
rate 〈σ 〉:

〈〈J 2〉〉
〈J 〉2

〈σ 〉
kB

� 2, (16)
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where kB is the Boltzmann constant. Away from equilibrium,
Eq. (16) points to a tradeoff between precision and dissipation,
which means that a precise process with little noise is realized
with a high entropic cost.

We now turn to the transport of stationary charge, denoted
by j, which occurs in response to voltage V applied. And the
dissipation is given by Joule’s law,

〈σ 〉 = 〈 j〉V

T
, (17)

with T being the temperature of the electronic reservoirs.
Combining Eqs. (17) and (16), we obtain the following ex-
pression:

V

kBT

〈〈 j2〉〉
〈 j〉 � 2. (18)

It proves convenient to define the combination Q ≡ V
kBT

〈〈 j2〉〉
〈 j〉 ,

which is a function of both voltage and temperature. The
Q factor is the observable interest of the TUR. We refer to
systems that obey this inequality as “satisfying the TUR”:

Q � 2. (19)

TUR violations correspond to situations in which the left-hand
side of Eq. (18) is smaller than 2.

While the entropy production σ is a non-negative determin-
istic quantity for macroscopic systems, it becomes random at
the microscopic scale owing to the presence of non-negligible
thermal and quantum fluctuations, present thermal and shot-
noise, respectively. To gain some insight into the noise’s
physical meaning, we shall derive the TUR [35] in the limit
of quantum coherence, defining the transmission eigenvalues
τk (barriers) of the channel k. The electronic current and the
shot noise, under the potential difference 
μ = eV , are given
by

〈 j〉 = G0V
∑

i

τi, (20)

〈〈 j2〉〉 = 2kBT G0

∑
i

τ 2
i

+ G0

∑
i

τi(1 − τi )
μ coth

(

μ

2kBT

)
. (21)

After some algebra we obtain

Q =
∑

i τi(1 − τi )∑
i τi

(

μ

kBT
coth


μ

2kBT
− 2

)
, (22)

where F = ∑
i τi(1 − τi )/

∑
i τi is the Fano factor, and G0 =

2e2/h is the quantum of conductance. We have also defined
the quantities 
μ

kBT ≡ θ and θ coth(θ/2) − 2 ≡ f (θ ). Then,
Eq. (22) can be written as

Q = F f (θ ) � 2. (23)

In the universal regime, chaotic fluctuations arise, and
averages of any transport observable depend solely on fun-
damental symmetries. Despite this, the theoretical description
of the conductance, the shot-noise power, and the Fano factor
are far from trivial. Notably, in the case of a few channels
(extreme quantum regime), analytical results constitute a sub-
stantial technical challenge, and we remark that in the case

of barriers’ presence, the results are generally unknown. In
the present study, therefore, we provide an analysis based
on numerical simulation in the universal regime. In the next
section we pedagogically develop the study and indicate the
comparison with known analytical results.

III. SIMULATIONS OF THE UNIVERSAL RESONANT
SCATTERING PROCESSES

We develop a numerical simulation through the Mahaux-
Weidenmüller formulation [39]. The scattering matrix, written
as a function of the Fermi energy ε and the Hamiltonian
H, describes the resonance states inside the ballistic chaotic
quantum dot. The S matrix can be written as

S = 1 − 2iπW†(ε − H − iπWW†)−1W, (24)

where W is a deterministic matrix describing the interaction
between the CQD’s resonant states and the leads’ propagating
channels.

The numerical simulation performed in this work generates
an ensemble of random Hamiltonians using the framework of
RMT. As a statistical theory of spectra, the RMT concatenate
the CQD fundamental symmetries with their energy eigen-
value distribution. Initially observed by Wigner and Dyson,
the Hamiltonian of the chaotic cavity is classified by the pres-
ence or/and absence of time-reversal (TRS) and spin-rotation
symmetries (SRS).

The coupling of the resonance states with the propagat-
ing modes in the leads is carried out using the deterministic
matrix W = (W1,W2). The matrix W can be decomposed
into two sub-blocks (W1)M×N1 and (W2)M×N2 , which describe
the interaction of the QD’s M resonances with Ni channels.
The transmission via the resonant QD occurs without direct
processes, i.e., the electron cannot change channels without
going through some resonance. Therefore the deterministic
matrix satisfies the orthogonality condition

W†
αWβ = γα

N


π2
δαβ,

which 
 is the average spacing between consecutive resonant
levels. The diagonal γα matrix is associated with the transmis-
sion probabilities �α,a ∈ [0, 1], and it can be written as γα =
diag(γα,1, . . . , γαN ). The barriers (tunneling probabilities) are
related to γαa through the relation �αa = sech2[− ln(γαa)/2].
In this study, for the sake of simplicity, we consider identical
couplings in each lead, i.e., when �α = �αi,∀i. The barriers
are generically known as ideal if � = 1 (total electronic tun-
neling), and it is opaque if � → 0 (electronic tunneling with
probability tending to zero). Barriers can be physically real-
ized through contacts, CQD input constrictions, or a voltage
gate [40–44].

In the framework of random-matrix theory, the
Schrödinger billiard has Hamiltonian belonging to the
Wigner-Dyson ensemble whose elements are independent
random numbers and have a probability distribution F of the
form [45]

F (H) ∝ exp

(
−βM

4λ2
Tr(H†H)

)
, (25)

064104-4



THERMODYNAMIC UNCERTAINTY RELATIONS IN … PHYSICAL REVIEW E 107, 064104 (2023)

in which λ = M
/π is the variance related to the electronic
single-particle mean level spacing 
, and M is the resonances
of the chaotic cavity. The β = 1, 2, 4 is Dyson’s symmetry in-
dex, and they designate, respectively, the Gaussian orthogonal
ensemble (GOE), the Gaussian unitary ensemble (GUE), and
the Gaussian symplectic ensemble (GSE). The β = 1 index
symmetry describes systems that preserve the TRS and SRS.
Mathematically, the GOE is represented by an ensemble of
real and symmetric random Hamiltonian matrices. The uni-
tary ensemble (GUE), with index β = 2, describes systems
that violate the TRS, and complex matrix elements give its
Hamiltonian representation. Finally, the GSE, β = 4, is for
systems that violate the SRS but preserve the TRS. Hamilto-
nians with symplectic structure represent the GSE ensemble
H = a1 + i(bσx + cσy + dσz ), with σi denoting the Pauli ma-
trices.

In addition to Schrödinger’s billiard, the Dirac billiard is a
CQD performed using graphene or topological insulators [46]
and thereby supports the chiral/sublattice symmetry such that
its ensembles members satisfy [47]

H = −�zH�z; �z ≡ σz ⊗ 1M =
(

1M 0M

0M −1M

)
,

from which we deduce that their Hamiltonians can be repre-
sented as antidiagonal arrays with the double order

H =
(

0 C
C† 0

)
.

Thus, the Hamiltonian blocks admit Gaussian distributions
given by

F (C) ∝ exp

(
−βM

4λ2
Tr(C2)

)
,

where the index β = 1, 2, 4 describes, respectively, the GOE
chiral ensemble (chGOE), the GUE chiral ensemble (chGUE),
and the GSE chiral ensemble (chGSE). To ensure the chaotic
regime and universality, the number of resonances inside the
quantum dot is large, M = 400.

For pedagogical reasons, our starting point is the numer-
ical simulation of the average conductance in the ensemble,
[G]/G0. The conductance in mesoscopic systems at zero
temperature is G/G0 ≡ Tr(t†t ), and we obtain its ensemble
average over the Hamiltonian realizations. In the universal
regime, the averages are isospectral, i.e., we can execute them
by setting the energy as zero for simplicity, ε = 0. In addition,
we perform a numerical simulation of the average shot-noise
power in the ensemble, [P]/P0, where the shot-noise power
can be obtained by P/P0 = Tr(t†t (1 − t†t )), also taking ε =
0. At the same time, we will consider P as the noise amplitude
temporal average for each realization. We depict the behavior
of the two observable for the three Wigner-Dyson (WD) sym-
metries and the three chiral (Dirac) symmetries, respectively,
in Figs. 2(a), 2(c), 3(a), and 3(c) for the extreme quantum
regime (N = 1), recovering the results of Ref. [48]. Even
though conductance is monotonically increasing as a function
of the barrier for all WD universal symmetries, surprisingly, it
presents a highly non-Ohmic and completely distinct behavior
in all cases. According to the known analytical results for
the WD universality classes, the average conductance in the

FIG. 2. The ensemble average of the conductance and the shot-
noise power for Wigner-Dyson symmetry classes.

mesoscopic regime is given by [49]

[G]

G0
= G1G2

G1 + G2

(
1 +

(
1 − 2

β

)
G2�1 + G1�2

(G1 + G2)2

)
, (26)

where Gi = �iNi for i = 1, 2. The first term is the domi-
nant semiclassical contribution, agreeing with Ohm’s law. The
second term is the weak-localization (WL) correction, i.e.,
electronic transport’s main quantum interference correction
(QIC) in disordered many-body systems.

In the case of N = 1, Eq. (26) yields [G]/G0 = �/2(1 +
1/2(1 − 2/β )), i.e., the analytical result provides a linear
behavior in � (Ohmic); nevertheless, the analytical result is
valid only in the semiclassical regime, N � 1. Therefore the
extreme quantum regime is highly non-Ohmic due to high-
order quantum interference corrections. In addition, graphene
quantum dots (chiral systems) present a transition both in
the conductance and in the shot-noise power, for which the
values of the two pure ensembles, orthogonal and symplectic,

FIG. 3. The ensemble average of the conductance and the shot-
noise power for chiral (Dirac) symmetry classes.

064104-5



LUCENA, BATISTA, AND RAMOS PHYSICAL REVIEW E 107, 064104 (2023)

FIG. 4. The localization term of conductance and shot-noise
power for Wigner-Dyson classes.

intersect as a function of the barriers, as demonstrated in
Figs. 3(a) and 3(b).

In the semiclassical regime, N = 10, the results for the
three Wigner-Dyson and chiral universality classes are de-
picted in Figs. 2(b), 2(d), 3(b), and 3(d), respectively. Notice,
as expected, the Ohmic behavior in all conductance curves.
In the chiral systems there is a transition in the signal of the
quantum interference correction as a function of the barrier;
specifically on the noise signal, notice that the QIC differ-
entiates the three chiral ensembles and therefore carries the
signature of the chirality, Fig. 5.

We have developed a method to extract the QIC of trans-
port observable. The unitary class describes systems with
broken time-reversal symmetry, i.e., it eliminates quantum
interference correction. On the one hand, the unitary class
supports only the semiclassical term of any observable. On
the other hand, orthogonal and symplectic classes hold both
the semiclassical and QIC terms, which means that to obtain
interference corrections, we need to subtract the average of the

FIG. 5. The localization term of conductance and shot-noise
power for chiral classes.

observable O in the orthogonal (β = 1) or symplectic (β = 4)
classes from the average of the same observable in the unitary
class (β = 2):

OQIC = Oβ=i − Oβ=2, i = 1 or 4. (27)

In Fig. 4 we can observe that the quantum interference sec-
tor for both the conductance and the shot-noise power is
always positive and negative for the symplectic and orthogo-
nal Wigner-Dyson classes, respectively. These phenomena are
called weak antilocalization (positive) and weak localization
(negative) [33]. It expresses how the symmetries alter the elec-
tronic path and its quantum properties, such as conductance
and shot-noise power.

Unlike what happens with the WD universality classes,
there are signal changes in the quantum interference cor-
rections of the chiral classes, as depicted in Fig. 5. These
transitions support the previous results for conductance and
shot-noise power and reveal the crucial role of quantum in-
terference in transport observables in the chiral classes, both
from the point of view of the signal changes and magnitude
when compared to the semiclassical term. Therefore the quan-
tum interference correction can carry a relevant experimental
signal for chirality signatures in graphene or topological insu-
lators. This endeavor is a quest that begins in nuclear physics
and elementary particle physics, and it is still a substantial
challenge.

As mentioned before, these results would make it neces-
sary to calculate the signal-to-noise ratio QTUR−MS, defined as

QTUR−MS = V

kBT

[〈P〉]
[〈G〉] . (28)

To calculate QTUR−MS, the shot-noise power P/P0 =
Tr[t†t (1 − t†t )] and the conductance G/G0 ≡ Tr(t†t ) are
averaged separately over a Hamiltonian ensemble. Thus we
obtain the ratio [〈P〉]/[〈G〉]. However, the QTUR−R is obtained
by dividing the shot-noise power and the conductance before
averaging it:

QTUR−R = V

kBT

[ 〈P〉
〈G〉

]
. (29)

From this perspective our motivation for defining the QTUR−R

is to treat the signal-to-noise ratio coefficient 〈P〉/〈G〉 as an
intrinsic physical property of the system, such as conductance
or shot-noise power P , so that we could obtain, for instance,
their respective statistical cumulants. In the simulation, each
Hamiltonian of the ensemble provides a conductance 〈G〉/G0,
shot-noise power 〈P〉/P0, and signal-to-noise ratio coefficient
〈P〉/〈G〉. Therefore, by averaging over the ensemble, for in-
stance, in Fig. 6, we depict the signal-to-noise ratio, [〈P〉/〈G〉]
(TUR-R) and [〈P〉]/[〈G〉] (TUR-MS), as a function of �

for the relevant chiral chaotic billiard. Figure 6 displays two
relevant regimes. The first shows the behavior of the TURs in
the extreme quantum regime (few open channels), Fig. 6(a).
The second one shows the result in the semiclassical regime
(many open channels), Fig. 6(b). The shot-noise power is en-
hanced by tunneling (� → 0), and consequently, both QTUR−R

and QTUR−MS increase as � goes to zero. In this regime the
eigenvalues τi of the transmission matrix tt† go to zero in such
a way that the signal-to-noise ratio

∑N
i=1 τi(1 − τi )/

∑N
j=1 τ j
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FIG. 6. The ensemble average of kBT Q/V for both the main term
of the TUR-R, Eq. (2), and the TUR-MS, Eq. (3), as a function of �

for the chiral billiard, (a) for the N = 1 extreme quantum regime and
(b) N = 10 semiclassical regime.

remains finite for both QTUR−R and QTUR−MS. The values are
different in the extreme quantum regime, which is indeed
expected. However, surprisingly, the results are also different
in the semiclassical regime in large intervals of barrier values,
which characterizes a violation of the law of large numbers
and the central limit theorem [as we can see in Fig. 6(b)].

IV. GENERALIZED TUR

As previously mentioned, the thermodynamic uncertainty
relations (TURs) provide a tradeoff between fluctuations and
entropy cost. The generalized version of the TUR was carried
out in Ref. [25] and obtained by evaluating the minimum and
saturable matrix derived from the fluctuation theorems (FTs).
The generalized TUR is valid for systems in the extreme
quantum and semiclassical regime subjected to processes that
occur in a finite and nonstationary time. The generalized TUR,
for any current J , can be written as

〈〈J 2〉〉
〈J 〉2

� f

( 〈σ 〉
kB

)
, (30)

where f (x) = csch2[g(x/2)], g(x) is the function inverse of
xtanh(x), and x = 〈σ 〉/kB. Considering a charge current j and
the shot noise under the potential difference δμ, after some
algebra we obtain

〈〈 j2〉〉
〈 j〉2

� f
(

V
kBT 〈 j〉

)
→ V

kBT
〈〈 j2〉〉
〈 j〉 � V

kBT f
(

V
kBT 〈 j〉

)
.

Therefore

Q � V

kBT
〈 j〉 f

(
V

kBT
〈 j〉

)
. (31)

A quantum dot is the simplest mesoscopic device, and it is par-
ticularly relevant for investigating the behavior of TUR, i.e.,
how the interference phenomenon competes with the thermal
fluctuations. However, when we try to establish such an anal-
ysis for the generalized TUR, we notice that the representative

FIG. 7. TUR as a function of voltage in the extreme quantum
regime. We compare a tunneling junction system’s experimental data
[35] with our QD simulation. Physically, a large number of resonant
states in the chaotic cavity amplifies the signal-to-noise ratio when
compared with junctions. The investigation shows that CQDs do
not violate the TUR for all values of N and � according to the
equation Q � 2 [Eq. (19)].

numbers of the constants make the correction contribu-
tion incipient: θ = eV/kBT , where e = 1.6 × 10−19 C, V ≈
10−3 V, kB = 1.38 × 10−23 m2 kg s−2 K−1, T = 10 K, and
G0 ≈ 7.74 × 10−5 S. These values make x very large; conse-
quently, f (x) = cosech2(x) assumes very small values, on the
order of 10−12. Therefore the QIC contribution will always be
much more significant than the thermal correction.

V. TUR’s GIANT QUANTUM INTERFERENCE
CORRECTION

Surprisingly, the previous results suggest that the domi-
nant correction of thermodynamic observables comes from
quantum interference, even in the semiclassical regime. In the
extreme quantum regime, quantum interference has dramatic
manifestations in the transport properties, which is much more
relevant than in the semiclassical regime. This fact motivates
extensive analysis of the current section.

Firstly, if N1 = N2 = 1, in Fig. 7 we depict three curves
using our extreme quantum limit simulation data for an en-
semble of CQD and three curves from experiment data using
an Au atomic-scale junction [35]. The curves from simulation
for � = 0.3, � = 0.5, and � = 0.7 correspond to ensemble-
averaged Fano factors with values of 0.9147, 0.8517, and
0.7785, respectively. On the other hand, the curves from
the experiment involving an Au atomic-scale junction corre-
spond to constant Fano factors of 0.089 (junction 1), 0.032
(junction 6), and 0.0091 (junction 9). Figure 7 is a graph
obtained for T = 6.0 K. There is an order-of-magnitude dif-
ference when comparing the results of a CQD with those of
an experimentally measured tunneling (constriction) junction.
Consequently, our result reflects the signal amplification in
the CQD that, unlike a constriction, supports quantum inter-
ference mechanisms. Physically, the signal-to-noise ratio is
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FIG. 8. TUR-R and TUR-MS calculated for the Fano factor
values of the unitary class. We performed μ = 0.05 V and β ≡
1/kBT ∼ 2000 eV−1. According to the equation Q � 2 [Eq. (19)],
both TUR-R and TUR-MS satisfy the TUR condition.

substantially more significant in a ballistic CQD than in a
junction because of increased shot noise. As a charge current
fluctuation quantifier, the shot noise increases as the amount of
electron paths increases in a mesoscopic system. These paths
are directly related to the accessible states inside the scattering
cavity, which are the resonant eigenvalues of the Hamiltonian.

Until now, we have discussed the physical meaning of
the TUR and its difference in quantum systems, such as the
quantum dot with one or few resonances, and our meso-
scopic device, the CQD or billiard, with a large number of
resonances. From now on, we present the influence of the
tunneling barrier on the signal-to-noise factor in both rep-
resentations, QTUR−R and QTUR−MS. In Fig. 8 is depicted
the TUR factor for the unitary class, which demonstrates
the crucial role of tunneling barriers (symmetric). In the ex-
treme quantum regime (N = 1), notice that the value of the
TUR-R QTUR−R = [〈P〉/〈G〉], represented by balls in Fig. 8,
differs significantly from the well-known, by literature, TUR-
MS QTUR−MS = [〈P〉]/[〈G〉], represented by stars in Fig. 8,
for both WD [Fig. 8(a)] and chiral [Fig. 8(c)] universality
classes. In the extreme quantum regime, there is a significant
divergence between TUR-R and TUR-MS, regardless of fun-
damental symmetry. Another striking feature is, although one
can observe a convergence of the TUR-R and TUR-MS in the
semiclassical regime, as expected, there is a divergence for
low values of the � in the WD unitary class when the central
limit theorem (CLT) would be valid.

A. Chaotic quantum dots of Schrödinger

Going forward, we analyze the WD universality classes
(orthogonal and symplectic) considering δμ = 0.05, and we
obtain the TUR interference term separately, QQIC. We aim to
analyze how TUR factors QTUR−R and QTUR−MS behave when
fundamental symmetries are preserved. In particular, we are
interested in how TUR factors can distinguish the presence
and/or absence of fundamental symmetries by analyzing the

FIG. 9. The quantum interference correction (QIC) of the TUR-
R and TUR-MS calculated for the Fano factor values of the
orthogonal and symplectic Wigner-Dyson symmetry classes. We per-
form μ = 0.05 V and (kBT )−1 ∼ 2000 eV−1.

QIC. In Fig. 9 we depict the behavior of that term, i.e., when
only the QIC in the Fano factor is taken into account. There
is a comparison in Fig. 9 between the QIC of the TUR in
the extreme quantum limit with the Fano factor, written as
[〈P〉]/[〈G〉] and [〈P〉/〈G〉].

One can note a discrepancy between the two results under
the same conditions at the extreme quantum limit. At the same
time, there is a coincidence in the semiclassical regime for
sufficiently high values of the barriers. In the quantum regime
the result shows that only the TUR-R presents a significant
QIC, indicating that the TUR-R is more sensitive to funda-
mental symmetries than the TUR-MS. In the semiclassical
regime, the QIC becomes more imperceptible, making QQIC

go to zero for both factors, QTUR−R and QTUR−MS. Moreover,
the fact that QIC for both factors tends to be equal in a
semiclassical regime demonstrates the unfolding of the CLT
for some transparency barrier � values.

There are known situations in the literature where aver-
ages of ratios of stochastic variables are ill-defined, i.e., they
diverge due to division by numbers arbitrarily close to zero
with nonzero probability. One such situation is the efficiency,
defined as 〈(output work)/(input heat)〉, as can be seen in
Ref. [50]. Indeed, variables of the form [X/Y ] can be poten-
tially problematic. However, we have carefully examined the
situation and determined that, in our specific case, these issues
can be safely disregarded.

We can observe that the total Q factors consist of the sum of
the semiclassical (SC) and QIC terms, i.e., Q = QSC + QQIC.
Comparing the results depicted in Fig. 9 with those in Fig. 10,
it is found that, surprisingly, the QIC term of quantum correc-
tions is the dominant one, which leads one to conclude that
the QIC is the main contribution to the validity of TUR-R
for some regimes. Table I shows some values of Q for vari-
ous regimes for ideal contacts, � = 1. For the Wigner-Dyson
(WD) classes, observe that QQIC/Q reaches 90% of the total
contribution to the TUR-R in the orthogonal universal class.
In comparison, the value in this same regime yields 18.5%
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TABLE I. (Ideal barriers, � = 1.0) In the first two lines we show the quantitative differences between the two types of observable associated
with TUR in CQDs. In the third line we discriminate the experimental data obtained through Au tunneling junctions and show the differences in
their values compared to CQDs in any universal symmetry. The quantum interference contribution, QQIC, the total value, Q, and the percentage
interference contribution, QQIC/Q, are indicated in the last three columns, respectively. Notice the violation of the central limit theorem (CLT),
the chirality fingerprint, and the role of the number of open channels in the TUR.

Junction QQIC Q QQIC

Q %
Class Ensemble (Fano factor) N = 1; N = 10 N = 1; N = 10 N = 1; N = 10

QTUR-R (CQD) Wigner-Dyson Orthogonal − 58.90; 1.28 65.38; 25.91 90.0; 4.94%
Symplectic − 26.80; −0.71 32.66; 23.91 82.0; 2.96%

Chiral Orthogonal − 34.20; 0.04 38.74; 24.59 88.2; 0.1%
Symplectic − 27.8; −0.013 33.10; 24.53 83.9; 0.05%

QTUR-MS (CQD) Wigner-Dyson Orthogonal − 7.3; 1.20 39.26; 25.78 18.5; 4.65%
Symplectic − −7.9; −0.66 24.81; 23.89 31.84; 2.76%

Chiral Orthogonal − −0.58; 0.01 27.45; 24.53 2.11; 0.04%
Symplectic − 1.34; 0.002 29.33; 24.52 4.56; 0.08%

QTUR-MS (Junction) − − Junction 1 (0.089) − 3.16 −
− − Junction 6 (0.032) − 8.57 −
− − Junction 9 (0.010) − 1.00 −

for the TUR-MS; that is, the TUR factor developed in this
investigation is much more sensitive from a quantum point of
view. Similar results are observed in the symplectic class of
WD. In Table II we observe effects of the same magnitude for
the WD symmetry classes in the opaque regime, indicating
the TUR-R’s robustness. It is pertinent to emphasize that the
present investigation reveals that, for all values of N and �,
the quantity Q exhibits values greater than 2 for both TURs,
as depicted in all the figures involving the Q factors. Therefore
it can be inferred, based on Eq. (19), that none of the studied
(Wigner-Dyson or chiral) CQDs violate the TUR.

As mentioned, in the quantum regime the TUR-MS does
not present a significant QQIC term in the WD ensembles, as
one can see in Fig. 9 and Tables I and II for N = 1. Hence the
QTUR−MS in Fig. 10 is constituted, in most cases, of more than

FIG. 10. TUR-R and TUR-MS calculated for the Fano factor
values of the orthogonal and symplectic Wigner-Dyson symmetry
classes. We perform μ = 0.05 V and the (kBT )−1 ∼ 2000 eV−1. Ac-
cording to the equation Q � 2 [Eq. (19)]), both TUR-R and TUR-MS
satisfy the TUR condition.

90% semiclassical origin. Therefore, if we used the results of
TUR-MS, we would infer that fundamental symmetries do not
have a crucial role in the QIC for the TUR-MS, unlike the
TUR-R. Consequently, in the extreme quantum regime, the
discrepancy observed between the ballistic CQD simulation
and the experimental data for a tunneling junction, depicted
in Fig. 7, could be explained by the quantum interference
contribution that amplifies the Q factor signal by 10 orders
of magnitude. Accordingly, quantum interference is the echo
of the ballistic chaotic quantum dot associated with accessible
states inside the cavity when compared to a constriction. Thus,
the QIC has proved to be a substantial source of information
on the underlying dynamics in finite-size systems. Finally,
as QTUR−R ≈ QTUR−MS in the semi-classical regime (a large
number of open channels), we remark on the validity of the
CLT, as shown in Fig. 10.

B. Chaotic quantum dots of Dirac

We now turn to the chiral universality classes (chOrthog-
onal and chSymplectic), where all analyses were performed
through average in ensembles containing 104 realizations.
To put it in context, theoretical studies of graphene billiards
allowed engendering effective Dirac models, i.e., relativis-
tic quantum mechanics. Early studies have already revealed
that graphene CQD billiards have a behavior dictated by two
copies of mutually coupled “neutrino” billiards. Although
relevant from a theoretical point of view, the experimental
signal of chirality from neutrino physics remains a signif-
icant challenge, both in elementary particle physics and in
condensed-matter physics labs. Here we propose the TUR-R
signal as a strong fingerprint of chirality. As in the WD ensem-
bles, we find an unexpected divergence between [P]/[G] and
[P/G] for both the QQIC and Q factor in the extreme quantum
regime. In Fig. 11 we show the behavior of the QQIC factor for
chiral universality classes. For sufficiently high values of �,
the quantum interference effect is remarkable in the extreme
quantum limit, whereas it is low in the semiclassical regime.
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TABLE II. (The opaque regime, � = 0.1) In the lines we show the quantitative differences between the two types of observable associated
with TUR in CQDs in any universal symmetry. The quantum interference contribution, QQIC, the total value, Q, and the percentage interference
contribution, QQIC/Q, are indicated in the last three columns, respectively. Notice the violation of the central limit theorem (CLT), the chirality
fingerprint, and the role of the number of open channels in the TUR.

QQIC Q QQIC

Q %
Ensembles Class N = 1; N = 10 N = 1; N = 10 N = 1; N = 10

QTUR-R (CQD) Wigner-Dyson Orthogonal 83.0; 2.39 95.31; 67.33 87.08; 3.54%
Simpletic 81.7; −2.06 93.76; 63.0 87.13; 3.27%

Chiral Orthogonal 22.0; −9.30 87.1; 47.9 25.2; 19.41%
Simplectic 30.9; 7.21 95.6; 64.37 32.33; 11.2%

QTUR-MS (CQD) Wigner-Dyson Orthogonal 2.90; 1.52 61.43; 50.28 4.72; 3.02%
Simpletic −3.3; −0.92 55.35; 47.77 5.96; 1.92%

Chiral Orthogonal −26.0; −9.30 48.2; 41.61 53.94; 22.35%
Simplectic 18.7; 9.21 92.8; 60.2 20.15; 15.3%

Similarly to the Wigner-Dyson symmetry classes, the
quantum interference correction is more expressive in the
TUR-R than in the TUR-MS for most barrier transparency
� values. In particular, for the ideal case of the transparent
barrier � = 1, the TUR-MS does not present any contribution
to the quantum interference, unlike the TUR-R. Thus the
TUR-MS would not be efficient in distinguishing fundamental
symmetries by QIC, the same as the TUR-R. For the semiclas-
sical regime, like WD quantum dots, chirality depletes TUR
interference contributions as the system goes to the trans-
parent barrier case � = 1. Analogous to the Wigner-Dyson
quantum dot, quantum interference corrections become im-
perceptible in a semiclassical regime for chiral symmetries. In
Table I, some Q values are explored for a myriad of regimes
for ideal contacts, � = 1. For the chiral classes, observe that
QQIC/Q reaches 88.2% of the total contribution to the TUR-R
in the orthogonal universal class. In comparison, the value in
this same regime yields 2.11% for the TUR-MS; the TUR
factor developed in this investigation is much more sensitive
from a quantum point of view. Similar results are observed in

FIG. 11. The quantum interference correction (QIC) of the TUR-
R and TUR-MS was calculated for the Fano factor values of the
ChOrthogonal and ChSymplectic chiral symmetry classes. We per-
form μ = 0.05 V and β ≡ 1/kBT ∼ 2000 eV−1.

the symplectic class of Dirac. In Table II we observe effects
of the same magnitude for the Dirac symmetry classes in the
opaque regime, indicating the TUR-R’s robustness.

In the search for “chiral neutrinos,” theoretical studies in-
dicate that chirality is a subtle signal that disappears in several
ways. Specifically in CQD, it is known that this signal is
not detectable for more than N = 2 open channels. Notice in
Table I that the signal of chirality disappears as the number
of open channels increases. However, when comparing the
results shown in Table I with those in Table II, a remarkable
finding appears: the chirality signal is amplified from 0.04%
to 22.35% if there are many open channels (N = 10), as long
as the regime is opaque, that is, the chirality signal does not
disappear for the TUR parameters even in the semiclassi-
cal regime. The same does not occur for the Wigner-Dyson
classes. Therefore here we describe a way to detect the chiral-
ity signal with a very high amplification margin in graphene
CQD billiards.

In addition, one notes that there is a quantum correc-
tion amplification-depletion transition in the extreme quantum
regime as the barrier values tend towards the opaque limit.
This fact is associated with the unusual behavior of the QIC
for chiral quantum dots. Unlike the CQD governed by Wigner-
Dyson ensemble classes, in Fig. 5 we can observe that the
system presents localization and antilocalization corrections
depending on the barrier transparency value �. Thus, this
change in the sign of weak localization (Fig. 5) can best be
seen in the way in which the TUR-R changes the sign of its
derivative as � increases [see Fig. 11(a)], unlike the TUR-MS.
Therefore these changes in the sign of derivative would not be
seen by independent observations of the shot-noise power and
conductance averages. We note that the effect is not present
in the semiclassical regime in which both symplectic and or-
thogonal symmetry yields monotonous dependence on barrier
transparency � value.

In Fig. 12 we show the behavior of the total Q factor as
a function of the barrier. In the extreme quantum regime,
compared with Fig. 11, the values of QQIC and Q for the
TUR-R are similar in the case without barrier, � = 1, i.e., the
main contribution is due to quantum interference correction.
However, for most transparency barrier values �, the quantum
interference correction for the TUR is negligible compared
with its respective total value, indicating that the quantum
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FIG. 12. TUR-R and TUR-MS calculated for the Fano factor val-
ues of the ChOrthogonal and ChSymplectic chiral symmetry classes.
We perform μ = 0.05 V and β ≡ 1/kBT ∼ 2000 eV−1. Notice for
all values of N and �, the quantity Q exhibits values greater than 2
for both TURs. Therefore it can be inferred, based on Eq. (19), that
none of the studied chiral CQDs violate the TUR.

interference contribution in chiral quantum dots becomes non-
preponderant. The TUR-R strongly diverges from the ratio
between the shot-noise and conductance averages for both
QQIC and Q factor. In the semiclassical regime, we observe
that QTUR−R ≈ QTUR−MS for the most transparent barrier val-
ues �. Finally, since QTUR−R ≈ QTUR−MS in the semiclassical
regime, we remark on the validity of the central limit theorem
for specific intervals of �, which can be observed in Fig. 12.

VI. CONCLUSION

We have investigated the thermodynamic uncertainty
relations in mesoscopic systems for all Wigner-Dyson
(Schrödinger) and chiral (Dirac) universal symmetry classes:
orthogonal, unitary, and symplectic. Based on the random-
matrix theory, our analysis starts from the crucial observation
that the measure QTUR-R = V

kBT [ 〈P〉
〈G〉 ] is an intrinsic property

of chaotic quantum dots. In this sense it is a novel observ-
able as conductance and the shot-noise power. Furthermore,
we demonstrated that the QTUR-R quantity provides a natural
way to quantitatively assess the quantum interference effect
associated with quantum precision.

Our results clarified the essential role of quantum in-
terference corrections in both categories of Q observable

associated with TUR, which we denominate here as TUR-MS,
[〈P〉]/[〈G〉], and the TUR-R, [〈P〉/〈G〉]. The results were
obtained for different numbers of open channels and tunneling
rates that ranged from the opaque regime (tunneling rate going
to zero) to the ideal regime (transparent barrier). Even though
the two Q factors tend to be equal in a semiclassical regime
due to the central limit theorem (CLT) and the law of large
numbers, they are generally different. Thus we analyzed the
quantum interference corrections of TUR-R and TUR-MS to
establish a connection with the known results of quantum in-
terference corrections for conductance and shot-noise power.
Surprisingly, the opaque regime engenders remarkable differ-
ences between the Q factors, even in the semiclassical regime,
which characterizes a clear violation of the CLT. In particular,
the violation of the CLT in the opaque regime suggests that the
eigenvalues of Q are not identically distributed for the same
spectral regime, characterizing a peculiar nonlinearity of the
Q factor in the universal regime.

We also show that the phenomenology associated with
quantum interference corrections is strikingly robust for the Q
factors, surprisingly being an order of magnitude greater than
the supposedly leading semiclassical term. The results of the
mesoscopic regime were compared with recent experimental
data from electron scattering produced by tunneling junctions.
Atomic-scale Au junctions typically generate scattering in the
semiclassical regime. Fortuitously, we show that QIC correc-
tions are responsible for an order of magnitude greater results
for universal classes when compared to tunneling junctions.

As a consequence, we notice that the TUR-R appears as a
novel quantity, which would reveal the discrepancy between
the WD quantum-dots simulation and tunneling junction ex-
periment, both in the metallic regime, due to the emergence
of the quantum interference phenomenon. Graphene quantum
dots and topological insulators have a phenomenology utterly
different from the usual metallic regime. Here we describe a
way to detect the chirality signal with a very high amplifica-
tion margin in graphene CQD billiards. Our results open the
way for further investigations of heat engines operating in the
universal regime with much higher intensity and for studies
involving graphene, superconductivity, and other eminently
quantum phenomena.
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