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Subdiffusion equation with fractional Caputo time derivative with respect to another function
in modeling transition from ordinary subdiffusion to superdiffusion
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We use a subdiffusion equation with fractional Caputo time derivative with respect to another function g
(g-subdiffusion equation) to describe a smooth transition from ordinary subdiffusion to superdiffusion. Ordinary
subdiffusion is described by the equation with the “ordinary” fractional Caputo time derivative, superdiffusion
is described by the equation with a fractional Riesz-type spatial derivative. We find the function g for which the
solution (Green’s function, GF) to the g-subdiffusion equation takes the form of GF for ordinary subdiffusion in
the limit of small time and GF for superdiffusion in the limit of long time. To solve the g-subdiffusion equation we
use the g-Laplace transform method. It is shown that the scaling properties of the GF for g-subdiffusion and
the GF for superdiffusion are the same in the long time limit. We conclude that for a sufficiently long time
the g-subdiffusion equation describes superdiffusion well, despite a different stochastic interpretation of the
processes. Then, paradoxically, a subdiffusion equation with a fractional time derivative describes superdiffusion.
The superdiffusive effect is achieved here not by making anomalously long jumps by a diffusing particle, but
by greatly increasing the particle jump frequency which is derived by means of the g-continuous-time random
walk model. The g-subdiffusion equation is shown to be quite general, it can be used in modeling of processes
in which a kind of diffusion change continuously over time. In addition, some methods used in modeling of
ordinary subdiffusion processes, such as the derivation of local boundary conditions at a thin partially permeable
membrane, can be used to model g-subdiffusion processes, even if this process is interpreted as superdiffusion.
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I. INTRODUCTION

In the past few decades, various types of diffusion have
been studied experimentally and theoretically. Fractional dif-
ferential calculus has been widely used in the theoretical
description of anomalous diffusion. The list of citations re-
lated to these issues is very long, as we mention here [1–15].
Most often, diffusion processes are characterized by a time
evolution of the mean-square displacement (MSD) of a dif-
fusing particle σ 2. If σ 2(t ) ∼ tβ , then β ∈ (0, 1) corresponds
to ordinary subdiffusion, β = 1 to normal diffusion, and
β > 1 to superdiffusion. For ultraslow diffusion (slow subdif-
fusion), σ 2 is controlled by a slowly varying function which,
in practice, is a combination of logarithmic functions [16,17].
A more detailed description of diffusion models generating
different functions σ 2 is in Refs. [18,19].

Subdiffusion occurs in media in which the movement of
particles is very hindered due to a complex structure of a
medium. The examples are transport of some molecules in
viscoelastic chromatin network [20], porous media [21], liv-
ing cells [11], transport of sugars in agarose gel [22], transport
of water in aqueous sucrose glasses [23], and antibiotics in
bacterial biofilm [24,25]. Subdiffusion can also occur in a
medium with normal diffusion near the membrane, which re-
tains diffusing molecules for a very long time [26]. Within the
continuous time random walk (CTRW) model, the distribution
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ψ of waiting time for a particle to jump �t has a heavy tail,
ψ (�t ) ∼ 1/(�t )α+1 when �t → ∞, α ∈ (0, 1); the average
value of this time is infinite. The ordinary subdiffusion equa-
tion with the Riemann–Liouville time derivative of the order
1 − α or Caputo fractional time derivative of the order α is
frequently used to describe subdiffusion, then σ 2 ∼ tα . For
superdiffusion, long particle jumps can be performed with
relatively high probability, a jump length distribution λ has
a heavy tail, λ(�x) ∼ 1/|�x|1+γ when |�x| → ∞; in the
following we consider the case of γ ∈ (1, 2). The second
moment of the jump length is infinite, the process is described
by a differential equation with a fractional Riesz type deriva-
tive of the order γ with respect to a spatial variable. In this
case the CTRW model provides σ 2(t ) = ρt2/γ , however, ρ is
infinite [see Eqs. (48) and (49) presented later]. Therefore,
superdiffusion is often defined by the relation σ 2(t ) ∼ t2/γ

only and the prefactor is usually not considered. Examples
of superdiffusion are movement of endogeneous intracellular
particles in some pathogens [27], of soil amoebas on plastic or
glass surfaces in liquid media [28], mussels movement [29],
cell migration in some biological processes [30], and diffusion
in random velocity fields [31–34].

Differential equations mentioned above with constant pa-
rameters are used to describe diffusion in a homogeneous
medium which properties does not change with time. How-
ever, diffusion processes may occur in systems in which
diffusion parameters and even a type of diffusion evolves
over time. The type of diffusion depends on the interac-
tion of diffusing molecules with the environment and on a
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structure of the medium, both can change over time. Anoma-
lous diffusion with evolving anomalous diffusion exponent
has been observed in transport of colloidal particles between
two parallel plates [35], endogenous lipid granules in liv-
ing yeast cells [36], microspheres in a living eukaryotic cell
[37], and in bacterial motion on small beads in a freely
suspended soap film [38]. A change in the diffusion type
can occur in the diffusion of passive molecules in the ac-
tive bath where moving particles can affect the movement of
passive molecules. Active swimmers can enhance diffusion
of passive particles [39]. The change of diffusion of self-
propelled particles and passive particles in an environment
with motile microorgamisms is described in Ref. [40]. Active
molecules can take energy from the environment and use it to
make long jumps. Some diffusing molecules can use chem-
ical reactions to achieve autonomous propulsion [41]. This
mechanism leads to the process in which σ 2 evolves much
faster than the linear function of time. The nature of diffusion
may also change when the directed movement of a molecule
over short time intervals is disturbed by a random change in
the direction of the molecule’s movement due to rotational
diffusion.

In intracellular transport in most eukaryotic cells molecules
diffuse through the filament network. When particle transport
is carried out along filaments, the particles can move ballis-
tically (i.e., with β = 2). However, changing the orientation
and polarization of the filaments may change the nature of
diffusion [42]. Some microorganisms, such as bacteria, move
more quickly in more viscous media. This is because the
addition of a viscosity enhancer creates a quasi-rigid net-
work to facilitate the transport of molecules [43,44]. Thus,
an increase in viscosity may paradoxically facilitate diffu-
sion. Various bacterial defense mechanisms against the action
of an antibiotic may hinder but also facilitate the diffusion
of antibiotic molecules in the biofilm [45,46]. Bacterial de-
fense abilities evolve over time, which can change diffusion
parameters [24,25].

When the diffusion parameters are not constant, various
equations have been used to describe the diffusion processes.
The examples are subdiffusion equations with a fractional
time derivative of the order depending on time and/or on a
spatial variable [47–58], the superstatistics approach [59] in
which certain distribution of diffusion parameters is assumed,
subdiffusion equation with distributed fractional order deriva-
tive [60], and with a linear combination of fractional time
derivatives of different orders where the time evolution of
MSD is a linear combination of power functions with different
exponents [61]. Diffusion of passive molecules in suspension
of eukaryotic swimming microorganisms is describes by a
probability density function which is a linear combination of
Gaussian and exponential Laplace distributions; we mention
that validity of this function has been checked by means of the
scaling method [62]. Distributed order of fractional derivative
in subdiffusion equation can lead to delayed or accelerated
subdiffusion [59,63–66].

To extend the possibilities of modeling anomalous dif-
fusion processes diffusion equations with various fractional
derivatives have been used. We mention here Cattaneo–
Hristov diffusion equation with Caputo–Fabrizio frac-
tional derivarive [67–69], Erdelyi–Kober fractional diffusion

equation [70,71], equations with Antagana–Baleanu–Caputo
and Antagana–Baleanu–Riemann–Liouville fractional deriva-
tives [72,73], ψ-Hilfer derivatives [74], equations involving
fractional derivatives with kernels depending on the Mittag–
Leffler function, the examples are a Wiman type [75] and
a Prabhakar type fractional diffusion equations [76–78], see
also Refs. [79–83]. Another generalization of the anoma-
lous diffusion equation is involving of fractional derivative
with respect to another function g (g-fractional derivative)
in the equation [84–87]. Examples are anomalous diffusion
equations with the g-Caputo fractional derivative with re-
spect to time [88,89] and to a spatial variable [90]. The
subdiffusion equation with fractional g-Caputo time deriva-
tive has recently been used to describe the transition from
ordinary subdiffusion to slow subdiffusion [91], the transition
between the ordinary subdiffusion processes with different
subdiffusion parameters (exponents) [92], and subdiffusion
of particles vanishing over time [93]. The g-subdiffusion
equation has been also used to describe diffusion of col-
istin molecules in a system consisting of densely packed
gel beads immersed in water [94]. It has been shown that
this process cannot be described by the ordinary subdiffu-
sion equation nor normal diffusion one, but the application
of the g-subdiffusion equation gives good agreement of the
experimental and theoretical results. A more difficult task
is to develop a model that describes the transition between
subdiffusion and superdiffusion, as these processes have a
different interpretations and are described by equations with
fractional time derivative and fractional spatial derivative,
respectively.

Changing of a timescale in a diffusion model can lead to
changes in diffusion parameters and/or in the type of diffusion
[13,91]. A timescale changing can be made by means of sub-
ordinated method [4,95–99]. It is also generated by diffusing
diffusivities where the diffusion coefficient evolves over time
[97], passages through the layered media [100], and anoma-
lous diffusion in an expanding medium [101]. The timescale
changing can provide retarding and accelerating anomalous
diffusions [102,103]. In the g-subdiffusion process, the g
function changes the timescale with respect to ordinary sub-
diffusion (assuming that the subdiffusion parameters of both
processes are the same). Contrary to the subordinated method,
for g-subdiffusion a time variable is rescaled by a determinis-
tic function g.

The normal diffusion, ordinary subdiffusion, and fractional
superdiffusion equations have been derived from the stan-
dard CTRW model [1,4,7,10,12,104]. To derive more general
anomalous diffusion equations from the CTRW model (if
possible), further modifications of CTRW model should be
made. The CTRW model with time distribution ψ controlled
by a three-parameters Mittag–Leffler function provides the
subdiffusion equation with the fractional Prabhakar derivative
[105]; the equation describes transition subdiffusion process
between different subdiffusion exponents. The g-subdiffusion
equation can be derived from the modified CTRW model
[106] in which the special definition of convolution of func-
tions has been applied.

A frequently used method of analytical solving of diffusion
equations with fractional derivatives, apart from the method
of variable separation, is the integral transform method. For
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the ordinary subdiffusion equation with Caputo or Riemann–
Liouville time derivatives, the ordinary Laplace transform
method is effective. For diffusion equations with other
fractional derivatives, other methods are more effective. For
example, fractional Hilfer–Prabhakar and Cattaneo–Hristov
diffusion equations can be solved by means of the Elzaki
transform method [76]. An effective method for solving the
g-subdiffusion equation is the g-Laplace transform method
[91,106].

Our considerations focus on the transition from subdiffu-
sion to superdiffusion. Such a transition has been observed
in dust diffusion in a flowing plasma in the presence of a
moderate magnetic field [107]. Diffusion of molecules, whose
movement is limited, when the strength of the noise changes
shows the subdiffusion–superdiffusion transition [108]. The
transition can be facilitated in a system where both pro-
cesses coexist. Small changes in the parameters affecting
diffusion, such as temperature or viscosity, can cause the
transition. Simulations show the possibility of coexistence
of subdiffusion and superdiffusion in heterogeneous media,
especially near the points where diffusion parameters are
discontinuous [109]. Diffusion of particles interacting via
Yukava potential in a two dimensional system also shows both
subdiffusive and superdiffusive behavior with time varying
anomalous diffusion exponent [110]. We mention that the
scaling method is helpful for identifying superdiffusion, see
Refs. [32,33,111–113].

We propose a model of a smooth transition from sub-
diffusion described by the equation with the “ordinary”
fractional Caputo time derivative (hereinafter referred to as
ordinary subdiffusion) to superdiffusion described by the
equation with the fractional Riesz type spatial derivative (ref-
ereed to as fractional superdiffusion). The model is based on
the g-subdiffusion equation with the fractional time Caputo
derivative with respect to another function g. We consider
the process in a one-dimensional homogeneous and isotropic
system.

The paper is organized as follows. In Sec. II there are
presented definitions and methods of computing functions de-
scribing diffusion, used in further considerations, in particular
the Green function and the function F which is interpreted
as the first passage time distribution for subdiffusion and
quasi-first passage time distribution for superdiffusion. The
ordinary subdiffusion equation, g-subdiffusion equation, and
fractional superdiffusion equation are described in Secs. III,
IV, and V, respectively. In Sec. VI we present a model of a
smooth transition from ordinary subdiffusion, described by
the equation with a fractional time derivative, to superdif-
fusion described by the equation with a fractional spatial
derivative. The process is described by the fractional g-
subdiffusion equation with an appropriately chosen function
g. A smooth transition between the processes means that the
Green’s function describing this transition is smooth, i.e., its
derivative exists and is continuous in the entire domain. The
scaling properties of Green’s function describing the tran-
sition process are considered in Sec. VII. We assume that
if the scaling properties of this function are consistent with
the scaling properties of the Green’s function for fractional
superdiffusion, g-subdiffusion can be treated as superdiffu-
sion. The stochastic interpretation of the transition process

within the modified CTRW model is discussed in Sec. VIII.
Using this model, the time evolutions of the average jumps
number and the jumps frequency of a diffusing particle are
derived. These functions are used to interpret the considered g-
subdiffusion process. Final remarks are presented in Sec. IX.
Some details of the calculations and properties of the H-Fox
function are shown in the Appendix.

II. FUNCTIONS THAT DESCRIBE DIFFUSION

We define the Green’s function P and the function F which
is the probability distribution of the time that a particle pass
a selected point for first time for ordinary subdiffusion and
g-subdiffusion. Despite interpretation difficulties, which will
be explained later, in further considerations the function F is
also used for fractional superdiffusion.

The Green’s function is defined here as a solution to a
diffusion equation for the boundary conditions

P(±∞, t |x0) = 0, (1)

and the initial condition

P(x, 0|x0) = δ(x − x0), (2)

where δ denotes the δ-Dirac function. The Green’s function
is interpreted as a probability density of finding a diffusing
particle at point x at time t , x0 is the initial particle position. If
the molecules diffuse independently of each other, then their
concentration C(x, t ) at a point x at time t can be calculated
using the integral formula

C(x, t ) =
∫ ∞

−∞
C(x0, 0)P(x, t |x0)dx0, (3)

where C(x0, 0) is the initial substance concentration. In un-
bounded homogeneous system without a bias, the Green’s
function is symmetrical with respect to x − x0 and is invariant
with translation. Then, the Green’s function depends on the
distance between the points x0 and x only and can be written
as

P(x, t |x0) ≡ P(|x − x0|, t |0). (4)

Due to Eq. (4), the mean value of a particle position is 〈x〉 =∫ ∞
−∞ xP(x, t |x0)dx = x0 and the MSD is

σ 2(t ) = 2
∫ ∞

0
x2P(x, t |0)dx. (5)

Determination of the first passage time probability density
for ordinary subdiffusion and normal diffusion is as follows.
Let F (t ; x0, xM ) be a probability density that the particle lo-
cated at x0 at the initial moment t = 0 will pass the point xM

first time at time t ; we assume x0 < xM . The probability that
the particle leaves the region I = (−∞, xM ) first time in the
time interval (t, t + �t ), where �t is assumed to be small, is
[114]

F (t ; x0, xM )�t = R(t ; x0, xM ) − R(t + �t ; x0, xM ), (6)

where R(t ; x0, xM ) denotes the probability that the particle
would not have passed the point xM by the time t . The function
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R can be calculated by means of the formula

R(t ; x0, xM ) =
∫ xM

−∞
Pabs(x, t |x0)dx, (7)

where Pabs(x, t |x0) is a probability of finding the particle in the
region I in a system in which a fully absorbing wall is located
at xM [114]. The commonly used boundary condition at the
absorbing wall is

Pabs(xM, t |x0) = 0. (8)

The Green’s function for a system with a fully absorbing wall
can be found by means of the method of images [96,115],
which for x, x0 < xM gives

Pabs(x, t |x0) = P(x, t |x0) − P(x, t |2xM − x0). (9)

We mention that the method of images has been used to find
the Green’s function in a system with fully absorbing wall for
ordinary subdiffusion [116] and for g-subdiffusion [93]. From
Eqs. (4), (7), and (9) we get

R(t ; x0, xM ) = 2
∫ xM−x0

0
P(x, t |0)dx. (10)

Taking the limit of �t → 0 we obtain for t > 0

F (t ; x0, xM ) = −dR(t ; x0, xM )

dt
. (11)

From Eqs. (10) and (11) we get

F (t ; x0, xM ) = −2
d

dt

∫ xM−x0

0
P(x, t |0)dx. (12)

For t < 0 we put F (t ; x0, xM ) ≡ 0.
The function F is the first passage time probability density

for ordinary subdiffusion and normal diffusion. However, for
fractional superdiffusion this function does not satisfy the
Sparre-Andersen theorem that for a symmetric discrete-time
random walk there is F ∼ 1/n3/2 when n → ∞, where n is a
number of particle jumps [4,117,118]. If the average waiting
time for a particle to jump is finite, which is the case for
fractional superdiffusion and normal diffusion, then t ∼ n and
F ∼ 1/t3/2 when t → ∞. However, for fractional superdiffu-
sion Eq. (12) provides F ∼ 1/t1+1/γ , γ ∈ (1, 2), in the long
time limit, see Refs. [117–119] and Eq. (51) presented later
in this paper. This result is interpreted that the method of
images is not applicable to fractional superdiffusion. Since
the method provides Eq. (8), the boundary condition at the
absorbing wall Eq. (8) is not valid for fractional superdiffusion
[117]. Despite the difficulties of interpretation, the function
F defined by Eq. (12) shows interesting asymptotic proper-
ties of the fractional superdiffusion model and will be used
in our considerations. We call it the distribution of quasi-
first-passage time for superdiffusion and denote it with the
symbol Fγ .

III. ORDINARY SUBDIFFUSION EQUATION

Functions describing ordinary subdiffusion are denoted by
the index α. The ordinary subdiffusion equation of the order
α ∈ (0, 1) with Caputo fractional time derivative is

C∂αPα (x, t |x0)

∂tα
= Dα

∂2Pα (x, t |x0)

∂x2
, (13)

where the ordinary Caputo fractional derivative is defined for
α ∈ (0, 1) as

Cdα f (t )

dtα
= 1

�(1 − α)

∫ t

0
(t − u)−α f ′(u)du, (14)

where f ′(u) = df /du, � is the Gamma function, and the
subdiffusion coefficient Dα is given in the units of m2/sα .
The solution to Eq. (13) can be find by means of the ordinary
Laplace transform method. The ordinary Laplace transform

L[ f (t )](s) =
∫ ∞

0
e−st f (t )dt (15)

has the property

L
[Cdα f (t )

dtα

]
(s) = sαL[ f (t )](s) − sα−1 f (0), (16)

when α ∈ (0, 1). Due to Eq. (16), the ordinary subdiffusion
equation in terms of the ordinary Laplace transform reads

sαL[Pα (x, t |x0)](s) − sα−1Pα (x, 0|x0)

= Dα

∂2L[Pα (x, t |x0)](s)

∂x2
. (17)

The solution to Eq. (17) for the boundary conditions
L[Pα (±∞, t |x0)](s) = 0 [see Eq. (1)] and the initial condition
Eq. (2) is

L[Pα (x, t |x0)](s) = 1

2
√

Dαs1−α/2
e−|x−x0|

√
sα
Dα . (18)

Using the relation [120]

L−1[sνe−asβ

](t ) ≡ f̃ν,β (t ; a)

= 1

t1+ν

∞∑
j=0

1

j!�(−ν − β j)

(
− a

tβ

) j
, (19)

where a, β > 0, f̃ν,β is a special case of the H-Fox function
(the Wright function), from Eq. (18) we get (see Ref. [121])

Pα (x, t |x0) = 1

2
√

Dα

f̃−1+α/2,α/2

(
t ;

|x − x0|√
Dα

)

= 1

2
√

Dαtα

∞∑
j=0

1

j!�(1 − α( j + 1)/2)

×
(

−|x − x0|√
Dαtα

) j

. (20)

The above function is also called the Mainardi function [71].
We mention that the relation (19) has been considered for
negative values of ν in a series of papers by Mainardi et al.;
see, for example, Refs. [121–123].

Eq. (18) and the ordinary Laplace transform of
Eq. (5) provide L[σ 2(t )](s) = 2Dα/s1−α . From the
relation L−1[1/s1+μ](t ) = tμ/�(1 + μ), µ> −1, we obtain
well-known result

σ 2
α (t ) = 2Dα

�(1 + α)
tα. (21)
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From Eqs. (12) and (20) we get the first passage time distribu-
tion, derived previously in Ref. [124]:

Fα (t ; x0, xM ) = f̃0,α/2

(
t ;

xM − x0√
Dα

)

= α|xM − x0|
2
√

Dαt1+α/2

∞∑
j=0

1

j!�(1 − α( j + 1)/2)

×
(

− (xM − x0)√
Dαtα

) j

. (22)

Equation (22) can be derived by integrating and differentiating
Eq. (20) term by term according to the formula Eq. (12).
Another method is to insert Eq. (18) into the ordinary Laplace
transform of Eq. (12) and then invert the obtained transform
using Eq. (19). In the long time limit Eq. (22) reads

Fα (t ; x0, xM ) = α|xM − x0|
2
√

Dα�(1 − α/2)t1+α/2
. (23)

Comparing Eqs. (20) and (22) we find

Fα (t ; x0, xM ) = α|xM − x0|
t

Pα (|xM − x0|, t |0). (24)

IV. G-SUBDIFFUSION EQUATION WITH FRACTIONAL
CAPUTO TIME DERIVATIVE WITH RESPECT

TO ANOTHER FUNCTION

The composite subdiffusion equation contains the frac-
tional Caputo time derivative with respect to another function
g, the order of the equation is α ∈ (0, 1). In this section, we
first show Caputo derivatives with respect to another function
g, and then describe the g-subdiffusion equation.

A. Fractional Caputo derivative with respect
to another function

We show the basis of fractional calculus where the frac-
tional Caputo derivative with respect to another function g
is involved; hereinafter the derivative is called g-Caputo frac-
tional derivative. We assume that the function g, which values
are given in a time unit, satisfies the conditions g(0) = 0,
g(∞) = ∞, and g′(t ) > 0 for t > 0. The following consid-
erations are made for the case of α ∈ (0, 1).

The g-Caputo fractional derivative of the order α ∈ (0, 1)
is defined as [85,125,126]

Cdα
g f (t )

dtα
= 1

�(1 − α)

∫ t

0
[g(t ) − g(u)]−α f ′(u)du. (25)

When g(t ) ≡ t , the g-Caputo fractional derivative takes the
form of the ordinary Caputo derivative. The first order Caputo
derivative with respect to the function g is

Cdg f (t )

dt
= limα→1−

Cdα
g f (t )

dtα
= f ′(t )

g′(t )
. (26)

An effective method of solving linear equations with the
g-Caputo time derivative is the g-Laplace transform method.

The g-Laplace transform is defined as [125,126]

Lg[ f (t )](s) =
∫ ∞

0
e−sg(t ) f (t )g′(t )dt . (27)

This transform has the property for α ∈ (0, 1) [125,126]

Lg

[
Cdα

g f (t )

dtα

]
(s) = sαLg[ f (t )](s) − sα−1 f (0). (28)

The g-Laplace transform is related to the ordinary Laplace
transform as follows:

Lg[ f (t )](s) = L[ f (g−1(t ))](s). (29)

Equation (29) provides the rule

Lg[ f (t )](s) = L[h(t )](s) ⇔ f (t ) = h(g(t )). (30)

The above formula is helpful in calculating the inverse g-
Laplace transform if the inverse ordinary Laplace transform
is known. For example,

L−1
g

[
1

sμ+1

]
(t ) = gμ(t )

�(1 + μ)
, (31)

µ > −1, and

L−1
g [sνe−asβ

](t ) ≡ f̃ν,β (g(t ); a)

= 1

g1+ν (t )

∞∑
j=0

1

j!�(−ν − β j)

(
− a

gβ (t )

) j

,

(32)

where a, β > 0.

B. G-subdiffusion equation

In the following, functions related to g-subdiffusion are
denoted by the index g. The g-subdiffusion equation is defined
as [91]

C∂α
g Pg(x, t |x0)

∂tα
= Dα

∂2Pg(x, t |x0)

∂x2
, (33)

where α ∈ (0, 1). As in the ordinary subdiffusion equation,
the subdiffusion coefficient Dα is given in the units of m2/sα .
When g(t ) ≡ t , Eq. (33) takes the form of the ordinary subd-
iffusion equation.

The g-subdiffusion equation can be solved by means of the
g-Laplace transform method. Due to Eq. (28), in terms of the
g-Laplace transform Eq. (33) reads

sαLg[Pg(x, t |x0)](s) − sα−1Pg(x, 0|x0)

= Dα

∂2Lg[Pg(x, t |x0)](s)

∂x2
. (34)

The calculations for solving Eq. (33) are similar to those
for solving the ordinary subdiffusion equation using the or-
dinary Laplace transform method. The solution to Eq. (34)
for the boundary conditions Lg[Pg(±∞, t |x0)](s) = 0 and the
initial condition Pg(x, 0|x0) = δ(x − x0) is

Lg[Pg(x, t |x0)](s) = 1

2
√

Dαs−1+α/2
e− |x−x0 |√

Dα
sα/2

. (35)
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From Eqs. (32) and (35) we get

Pg(x, t |x0) = 1

2
√

Dα

f̃−1+α/2,α/2

(
g(t );

|x − x0|√
Dα

)

= 1

2
√

Dαgα (t )

∞∑
j=0

1

j!�(1 − α( j + 1)/2)

×
(

− |x − x0|√
Dαgα (t )

) j

. (36)

Using the g-Laplace transform of Eq. (5) and Eqs. (31), (35)
we get [91]

σ 2
g (t ) = 2Dα

�(1 + α)
gα (t ). (37)

Putting Eq. (36) to Eq. (12) we obtain

Fg(t ; x0, xM ) = α|xM − x0|g′(t )

2
√

Dαg1+α/2(t )

∞∑
j=0

1

j!�(1 − α( j + 1)/2)

×
(

− |xM − x0|√
Dαgα (t )

) j

. (38)

In the limit of long time we have

Fg(t ; x0, xM ) = α|xM − x0|
2
√

Dα�(1 − α/2)

g′(t )

g1+α/2(t )
. (39)

Comparing Eqs. (36) and (38) we get

Fg(t ; x0, xM ) = α|xM − x0|g′(t )

g(t )
Pg(xM, t |x0). (40)

Normal diffusion and ordinary subdiffusion are qualita-
tively different. However, the normal diffusion equation can
be treated as a special case of the ordinary subdiffusion equa-
tion obtained in the limit of α → 1−. Thus, normal diffusion
as an initial process is not excluded from the model. Equa-
tions (26) and (33) provide

∂P(x, t |x0)

∂t
= g′(t )D1

∂2P(x, t |x0)

∂x2
, (41)

The Green’s function for the above equation can be obtained
by taking the limit α → 1− in Eq. (36). We get P(x, t |x0) =
e− (x−x0 )2

D1g(t ) /[2
√

πD1g(t )]. This case is also not excluded from
the model as a special case of g-subdiffusion. However, we do
not call the process “g–normal diffusion” because it does not
have the normal diffusion features for g(t ) �= t , for example
σ 2

g (t ) �= 2D1t .

V. FRACTIONAL SUPERDIFFUSION

Superdiffusion is usually described by a superdiffusion
equation with the fractional derivative with respect to a spatial
variable

∂Pγ (x, t |x0)

∂t
= Dγ

∂γ Pγ (x, t |x0)

∂xγ
, (42)

where γ ∈ (1, 2), and functions and parameters related to the
fractional superdiffusion are denoted by the index γ . The
fractional derivative in Eq. (42) is often defined by its Fourier

transform F[ f (x)](k) = ∫ ∞
−∞ eikx f (x)dx, namely

F
[

dγ f (x)

dxγ

]
(k) = −|k|γF[ f (x)](k). (43)

Various representations of this derivative have been dis-
cussed, as Riesz, Riesz–Weyl, and Riesz–Feller derivatives,
see Refs. [1,12,127–130]; for the sake of simplicity, we call
the derivative defined by Eq. (43) the fractional derivative of
Riesz type. We add that the explicit form of the fractional
spatial derivative is not necessary here since the relation (43)
is sufficient for the determination of Green’s function for
Eq. (42), see Appendix. The Green’s function is

Pγ (x, t |x0) = 1√
π |x − x0|

× H11
12

(
|x − x0|γ

2γ Dγ t

∣∣∣∣∣ (1, 1)

(1/2, γ /2) (1, γ /2)

)
,

(44)

where H denotes the H-Fox function; the method of solving
Eq. (42) and the series representation of the H-Fox function
are presented in Appendix. Properties of the H-Fox functions
and their applications in modeling anomalous diffusion pro-
cesses can be found, among others, in Ref. [14,15,131]. Due
to Eq. (A1) in the Appendix the series representation of the
Green’s function Eq. (44) reads

Pγ (x, t |x0) = 1

γ
√

π (Dγ t )1/γ

∞∑
j=0

�(1/γ + 2 j/γ )

j!�(1/2 + j)

×
(

− (x − x0)2

4(Dγ t )2/γ

) j

. (45)

The domain in which the above series is convergent de-
pends on the parameters γ and Dγ . Analysis of plots of the
function Eq. (45) making for different values of the param-
eters shows that the series is convergent for γ ∈ (1, 2) when
(x − x0)2/[4(Dγ t )2/γ ] < μ with (approximately) µ = 12(γ −
0.9)2. For γ = 2 Eqs. (45) takes the form of Green’s func-

tion for normal diffusion Pγ=2(x, t |x0) = e− (x−x0 )2

4Dγ t /(2
√

πDγ t ),
x ∈ (−∞,∞).

The Green’s function for Eq. (42) can be expressed in a
form other than Eq. (45). For x0 = 0, in Ref. [1] (see also
Refs. [132,133]), this function, where Pγ (x, t ) ≡ Pγ (x, t |0), is

Pγ (x, t ) = 1

γ |x|H11
22

(
|x|

(Dγ t )1/γ

∣∣∣∣∣(1, 1/γ ) (1.1/2)

(1, 1) (1, 1/2)

)
, (46)

and in Refs. [130,131], in which the case of Dγ = 1 has been
considered, this function takes the following form:

Pγ (x, t ) = 1

γ t1/γ
H11

22

(
|x|

t1/γ

∣∣∣∣∣(1 − 1/γ , 1/γ ) (1/2, 1/2)

(0, 1) (1/2, 1/2)

)
.

(47)

The Green’s functions Eqs. (46) and (47) can be expressed as
a series Eq. (45) (Dγ = 1 in the latter function), the proof is in
the Appendix. Thus, despite the different forms, the Green’s
functions (44), (46), and (47) are equivalent to each other.
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From Eqs. (5) and (45) we get

σ 2
γ (t ) = 8D2/γ κ

γ
√

π
t2/γ , (48)

where

κ =
∫ ∞

0
u−1+2/γ H11

12

(
u

∣∣∣∣∣ (1, 1)

50(1/2, γ /2) (1, γ /2)

)
du.

(49)

Since H11
12 (u| (1, 1)

(1/2, γ /2) (1, γ /2)) ∼ O(1) when u → ∞ [see

Eq. (A3) in the Appendix], κ = ∞, and consequently σ 2
γ (t ) =

∞ for t > 0. The problem of the divergence of MSD gen-
erated by the Green function being a solution to Eq. (42)
has been discussed in Refs. [1,132]. In the next section, we
consider a model that describes superdiffusion in the long time
limit and leads to a finite MSD.

Instead of σ 2
γ , we use the function Fγ to characterize frac-

tional superdiffusion. From Eqs. (12) and (45) we obtain

Fγ (t ; x0, xM ) = 2|xM − x0|
γ 2

√
π (Dγ )1/γ t1+1/γ

×
∞∑
j=0

�(1/γ + 2 j/γ )

j!�(1/2 + j)

(
− (xM − x0)2

4(Dγ t )2/γ

) j

.

(50)

In the limit of long time there is

Fγ (t ; x0, xM ) = 2|xM − x0|�(1/γ )

πγ 2D1/γ
γ

1

t1+1/γ
. (51)

Comparing Eqs. (45) and (50) we find

Fγ (t ; x0, xM ) = 2|xM − x0|
γ t

Pγ (xM, t |x0). (52)

VI. FROM ORDINARY SUBDIFFUSION
TO SUPERDIFFUSION

We propose a model for a smooth transition from ordinary
subdiffusion with parameters α ∈ (0, 1) and Dα to fractional
superdiffusion with parameters γ ∈ (1, 2) and Dγ . We use
the g-subdiffusion equation to describe the transition process.
Since the g-subdiffusion and fractional superdiffusion equa-
tions unequivocally determine the Green’s functions Pg and Pγ

respectively, the following considerations are based on these
functions.

In some initial time interval, the process is described by
the ordinary subdiffusion equation Eq. (13). In the limit of
long time the process is described by the fractional superdif-
fusion equation Eq. (42). This assumption is equivalent to
that for very short time the Green’s function Pg is given by
Eq. (20) and for long time is expressed by Eq. (45). The
smooth transition means that the first derivative of the Green’s
function describing this process exists and is continuous for
x ∈ (−∞,∞) and t > 0.

We propose the function g that makes the Green’s func-
tion Eq. (36) have the properties mentioned above. First, we
determine g when t → 0 and t → ∞. Then, we propose the
function g over the entire time domain.

In the limit of short time Pg Eq. (36) takes the form of the
Green’s function for ordinary subdiffusion Pα Eq. (20) with
parameters α and Dα . This condition is met when

g(t ) = t, t → 0. (53)

We note that Eqs. (40) and (52) provide the condition that
Fg(t ; x0, x) ≡ Fγ (t ; x0, x) and Pg(x, x, t |x0) ≡ Pγ (x, t |x0) are
satisfied simultaneously when g′(t )/g(t ) = 2/(γα). The so-
lution to the above equation is

g(t ) = Et
2

γ α , (54)

where E is a positive coefficient. Thus, if the function g is
given by Eq. (54), then

Fg(t ; x0, x) ≡ Fγ (t ; x0, x) ⇔ Pg(x, t |x0) ≡ Pγ (x, t |x0). (55)

The Green’s functions for g-subdiffusion Eq. (36) and for
fractional superdiffusion Eq. (45) are qualitatively different.
They can be equivalent in the long time limit only. According
to the statement, the condition Pg(x, t |x0) ≡ Pγ (x, t |x0) when
t → ∞ is met if the functions Eqs. (39) and (51) are the same.
Equality of these functions provides

E =
(

πγ D1/γ
γ

2
√

Dα�(1/γ )�(1 − α/2)

)2/α

. (56)

Thus, we assume that in the long time limit the function g is
given by Eq. (54) with the coefficient E Eq. (56).

Guided by Eqs. (53) and (54), the latter for t → ∞, we
define the function g as

g(t ) = a(t )t + [1 − a(t )]Et
2

γ α , (57)

where the nonnegative function a fulfils the conditions
a(0) = 1, a(∞) = 0, and ensures that g′(t ) > 0, t > 0.

In the following, we consider the function

a(t ) = 1

1 + Atν
, (58)

where A and ν are positive parameters. Then,

g(t ) = t + AEt
2

γ α
+ν

1 + Atν
. (59)

In Figs. 1 and 2 the Green’s functions for ordinary subdif-
fusion Pα , fractional superdiffusion Pγ , and g-subdiffusion Pg

are presented for different times, the values of all parameters
are given in arbitrarily chosen units. The function Pg is close
to Pα for small times and approaches Pγ with time. With the
assumed values of parameters, for t > 10 the plots of Pg and
Pγ are very close to each other. In Fig. 3 plots of Pg are made
for different values of ν. For larger values of this parameter Pg

moves away from Pα faster.

VII. SCALING PROPERTIES

In the scaling method, the following variable transform
(x, t ) → (x′, t ′) in an equation, its solution, and boundary and
initial conditions is done,

x′ = bμx, t ′ = bνt, (60)
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FIG. 1. Plots of Green’s functions for fractional superdiffusion
Eq. (45) (solid lines with filled symbols) with γ = 1.5 and Dγ =
4, for ordinary subdiffusion (solid lines with half-filled symbols)
Eq. (20) with α = 0.7 and Dα = 10, and for g-subdiffusion Eq. (36)
(dashed lines with open symbols) with g Eq. (59) and E Eq. (56),
A = 1, ν = 1.2, and α, Dα given above. The plots are made for times
given in the legend. The plot of Green’s function for fractional su-
perdiffusion for t = 0.1 (solid lines with filled squares) is presented
in the interval x ∈ (−1.6, 1.6) only due to limited domain in which
the series occurring in Eq. (45) is convergent.

where b is a positive parameter. If a solution to the equation is
transformed according to the formula

P(x′, t ′|x′
0) = bλP(x, t |x0), (61)
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FIG. 2. Plots of Green’s functions for fractional superdiffusion
equation (45) (solid lines with filled symbols), and for g-subdiffusion
equation (36) (dashed lines with open symbols) for times given in the
legend, the values of the parameters are the same as in the caption of
Fig. 1.
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FIG. 3. Plots of Green’s functions for fractional superdiffusion
Eq. (45) (solid lines with filled symbols), for g-subdiffusion Eq. (36)
(dashed lines with open symbols) for ν given in the legend, and for
ordinary subdiffusion (solid lines with half–filled symbols) Eq. (20),
t = 1.5, the values of the other parameters are the same as in the
caption of Fig. 1.

then the general form of the solution is

P(x, t |x0) = tλ/ν�(η), (62)

where η ∼ x/tμ/ν is a variable invariant with respect to
the transform Eq. (60). Let v = t ′/t , then x′ = vμ/νx
and P(x′, t ′|x′

0) = vλ/νP(x, t |x0). The function P(x, t |x0)
has a scaling property when the plots composed of
points (x′, P(x′, t ′|x′

0)) ≡ (vμ/νx, vλ/νP(x, t |x0)) are identical
to those of (x, P(x, t |x0)) for t > 0 and all x from the domain
of the function.

For fractional superdiffusion we have, see Eq. (45),

Pγ (x, t |x0) = t−1/γ �γ (ηγ ), (63)

where

ηγ = |x − x0|
2(Dγ t )1/γ

, (64)

and

�γ (ηγ ) = 1

γ
√

πD1/γ
γ

∞∑
j=0

�(1/γ + 2 j/γ )

�( j + 1/2)

(−η2
γ

) j
. (65)

Thus, for fractional superdiffusion we get µ/ν = 1/γ and
λ/ν = −1/γ . Scaling of Green’s functions for fractional su-
perdiffusion is discussed, among others, in Ref. [130].

In the limit of long time, when a(t ) ≈ 0, we have g(t ) ≈
Et2/αγ . Then, from Eq. (36) we get

Pg(x, t |x0) ≈ t−1/γ �g(ηg), (66)

where

ηg = |x − x0|√
DαEαt1/γ

, (67)
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FIG. 4. Scaling property of Green’s functions for g-subdiffusion
Eq. (36), v = (t ′/t )1/γ , t ′ = 1000, values of t are given in the legend,
the other parameters are the same as in the caption of Fig. 1, more
detailed description is in the text.

and

�g(ηg) = 1√
2DαEα

∞∑
j=0

1

�(1 − ( j + 1)α/2)
(−ηg) j . (68)

There is Pg(x, t |x0) ≈ Pγ (x, t |x0) when t → ∞. To check
whether the function Pg can be considered as describing su-
perdiffusion for a finite time we use the scaling method. We
assume that the function Pg describes superdiffusion when
its scaling properties are like for Pγ . In practice, Pg has a
scaling property like Pγ when the plots composed of points
(x, Pg(x, g(t )|x0)) and (v1/γ x, v−1/γ Pg(x, t |x0)) coincide. An
example of scaling the function Pg is presented in Fig. 4; Pg

has the scaling property characteristic of fractional superdif-
fusion for t > 10.

VIII. INTERPRETATION

As mentioned in Sec. I, the ordinary subdiffusion equa-
tion can be derived from the CTRW model, see for example
Refs. [1,4,7,12]. Within this model, the Green’s function
for ordinary subdiffusion can be considered as Pα (x, t |x0) =∑∞

n=0 Qα,n(t )Pn(x|x0) [104,135], where Pn(x|x0) is the proba-
bility density that diffusing particle achieves the point x after
n steps, x0 is the initial particle location, Qn(t ) is the proba-
bility that the particle takes n steps in the time interval (0, t ).
There is Qα,n(t ) = (ψα ∗ ψα ∗ . . . ∗ ψα︸ ︷︷ ︸

n times

∗Uα )(t ), where ψα is

the probability density that the particle jumps at time t since
its last stop, ∗ denotes the ordinary convolution of functions,
( f ∗ h)(t ) = ∫ t

0 f (u)h(t − u)du, Uα (t ) = 1 − ∫ t
0 ψα (t ′)dt ′ is

the probability that the particle does not make a jump by time
t . The function ψα is assumed to be decreasing. Due to the
following property L[( f ∗ h)(t )](s) = L[ f (t )](s)L[h(t )](s)
there is L[Qα,n(t )](s) = Ln[ψα (t )](s)L[Uα (t )](s), where
L[Uα (t )](s) = (1 − L[ψα (t )](s))/s. Assuming that the mean
length of a single particle jump ε is finite, the function Pα is

the Green’s function for Eq. (13) if

L[ψα (t )](s) = 1

1 + τ sα
, (69)

where τ = ε2/(2Dα ), then we have

L[Uα (t )](s) = τ sα−1

1 + τ sα
, (70)

see Ref. [106], and

L[Qα,n(t )](s) = τ sα−1

(1 + τ sα )n+1
. (71)

In terms of the ordinary Laplace transform the mean num-
ber of jumps 〈nα (t )〉 = ∑∞

n=1 nQα,n(t ) is L[〈nα (t )〉](s) =
L[ψα (t )](s)/[s(1 − L[ψα (t )](s))], see Ref. [4]. From the
above equations we obtain

L[〈nα (t )〉](s) = 1

τ s1+α
, (72)

which gives

〈nα (t )〉 = tα

τ�(1 + α)
, (73)

and the time evolution of jumps frequency fα (t ) =
d〈nα (t )〉/dt is

fα (t ) = 1

τ�(α)t1−α
. (74)

The g-subdiffusion equation Eq. (33) as well as the Green’s
function Eq. (36) can be derived from a modified CTRW
model (the g-CTRW model) [106]. This model is similar to
the ordinary CTRW model briefly described above. The most
important differences between the models are that the modi-
fied model uses the g-Laplace transform and the g-convolution
of functions instead of the ordinary Laplace transform and
ordinary convolution, respectively. The g-convolution f ∗g h
is defined as

( f ∗g h)(t ) = [( f ◦ g−1) ∗ (h ◦ g−1)](g(t ))

=
∫ g(t )

0
f [g−1(u)]h[g−1(g(t ) − u)]du. (75)

The introduction of g-convolution into the considerations is
motivated by the following property which makes the method
of Green’s function derivation similar to that of ordinary sub-
diffusion [126]

Lg[( f ∗g h)(t )](s) = Lg[ f (t )](s)Lg[h(t )](s). (76)

We introduce the functions ψg and Ug, and we assume that
Pg(x, t |x0) = ∑∞

n=0 Qg,n(t )Pn(x|x0), where

Qg,n(t ) = (ψg ∗ ψg ∗ . . . ∗ ψg︸ ︷︷ ︸
n times

∗Ug)(t ), (77)

the parameters α, Dα , and τ are assumed to be the same as for
ordinary subdiffusion. The aim is to determine relations of ψg

and Ug with ψα and Uα , respectively. From Eqs. (76) and (77)
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we get

Lg[Qg,n(t )](s) = Ln
g[ψg(t )](s)Lg[Ug(t )](s). (78)

As it is shown in Ref. [106], the above equations provide the
Green’s function for g-subdiffusion equation only when

Lg[ψg(t )](s) = 1

1 + τ sα
, (79)

and

Lg[Ug(t )](s) = τ sα−1

1 + τ sα
. (80)

From Eqs. (76)–(80) we obtain

Lg[Qg,n(t )](s) = τ sα−1

(1 + τ sα )n+1
. (81)

Comparing Eqs. (69), (70), and (71) with Eqs. (79), (80),
and (81), respectively, we get Lg[ψg(t )](s) = L[ψα (t )](s),
Lg[Ug(t )](s)=L[Uα (t )](s), and Lg[Qg,n(t )](s)=L[Qα,n(t )](s).
From the above equations and Eq. (30) we have Ug(t ) =
Uα (g(t )), and

ψg(t ) = ψα (g(t )), (82)

Qg,n(t ) = Qα,n(g(t )). (83)

In the process considered in this paper we have g(t ) > t , and
consequently g−1(t ) < t for t > 0. Eq. (82) shows that the
probability density that a particle takes its jump at time t
for g-subdiffusion is the same as at time g(t ) for ordinary
subdiffusion. This means that the waiting times for a jump
in the g-subdiffusion process is typically shorter than for ordi-
nary subdiffusion, the jumps frequency is higher for the first
process. The sequence of waiting times for a jump in both
processes can be represented as follows:

(t1, t2 − t1, . . . , tn − tn−1)︸ ︷︷ ︸
ordinary subdif.

⇔ (g−1(t1), g−1(t2 − t1), . . . , g−1(tn − tn−1))︸ ︷︷ ︸
g−subdif.

, (84)

with ti − ti−1 > g−1(ti − ti−1), i = 1, 2, . . . , n.
The g-Laplace transform of mean jumps number for

g-subdiffusion 〈ng(t )〉 = ∑∞
n=1 nQg,n(t ) is Lg[〈ng(t )〉](s) =

Lg[ψg(t )](s)/(s[1 − Lg[ψg(t )](s))] and the mean jumps fre-
quency is fg(t ) = d〈ng(t )〉/dt . After calculation we get

Lg[〈ng(t )〉](s) = 1

τ s1+α
, (85)

then

〈ng(t )〉 = gα (t )

τ�(1 + α)
, (86)

and

fg(t ) = g′(t )

τ�(α)g1−α (t )
. (87)

Figures 5–8 present exemplary plots of the time evolution
of the average number of particle jumps and their frequency.
Figure 5 shows the average number of particle jumps for
g-subdiffusion for the various parameters γ , and they are

0 2000 4000 6000 8000 10000
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1x104

2x104

3x104

4x104

5x104

<n
(t)

>

t

 γ=1.1
 γ=1.5
 γ=1.9
 subdif

FIG. 5. Time evolution of the mean number of particle steps
for ordinary subdiffusion (denoted as “subdif” in the legend) and
g-subdiffusion for different values of γ given in the legend, τ = 1
and ν = 1.2.

compared with the plot obtained for ordinary subdiffusion.
The plots are made on a linear scale. However, due to large
differences in the function values these plots are also pre-
sented on a logarithmic scale in Fig. 6. The time evolutions
of the jump frequency for the cases presented in Fig. 5 are
shown in Fig. 7. The frequencies increase much faster for
lower values of the parameter γ . Figure 8 shows the influence
of the parameter ν on the time evolution of mean number of
jumps. For higher values of ν, the function a(t ) faster goes to
zero, thus g-subdiffusion faster goes to superdiffusion. This
explains the greater values of 〈n(t )〉 for the greater values
of ν.

Summarizing, the superdiffusion effect for g-subdiffusion
is created by significantly increasing the jump frequency of
the particle while the mean length of a single jump is finite.

10 100 1000 10000
100

101
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103

104

105

106

107

<n
(t)

>

t

 γ=1.1
 γ=1.5
 γ=1.9
 subdif

FIG. 6. Time evolution of the mean number of particle steps done
on a logarithmic scale, the description is similar to that in Fig. 5.
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FIG. 7. Time evolution of the jump frequency f (t ) = d〈n(t )〉/dt
for the cases presented in Fig. 5. For ordinary subdiffusion f is an
decreasing function of time, the superdiffusion effect is achieved
when f is a function increasing with time.

IX. FINAL REMARKS

We show that the g-subdiffusion equation with fractional
time derivative with respect to another function g can be used
to describe a smooth transition from ordinary subdiffusion
to superdiffusion. In some initial time interval the process is
ordinary subdiffusion with parameters α and Dα described
by the equation with the fractional Caputo time derivative.
In the long time limit the process is superdiffusion with pa-
rameters γ and Dγ described by equation with the fractional
spatial derivative. The transition from ordinary subdiffusion
to superdiffusion is controlled by the function a(t ). We as-
sume that fractional superdiffusion is well described by the

0 2 4 6 8 10
0

5

10

15

20

25

<n
(t)

>

t

 ν=0.6
 ν=1.2
 ν=6.0
 ν=12.0
 subdif

FIG. 8. Time evolution of the mean number of steps for ordinary
subdiffusion and g-subdiffusion for different values of ν given in the
legend, the values of other parameters are the same as in Figs. 1
and 5.

g-subdiffusion equation when scaling properties of the
Green’s function for g-subdiffusion Pg has scaling proper-
ties (at least approximately) such as the Green’s function for
fractional subdiffusion Pγ . The g-Laplace transform method
can be used to solve the g-subdiffusion equation. The com-
putational technique is then similar to that used to solve
the ordinary subdiffusion equation by means of the ordinary
Laplace transform method.

The interpretation of the g-subdiffusion process which goes
to superdiffusion is based on a particle jumps frequency which
increases as a power function of time. Although the average
jump length of the molecule is finite, in the long time limit this
effect appears to be the same as the fractional superdiffusion
effect generated by anomalously long molecule jumps with
a constant jumps frequency. If the process were described
by the ordinary subdiffusion equation Eq. (13) with α > 1,
then the frequency of the particle jumps would increase with
time [134]. However, in this case, the process does not have a
clear stochastic interpretation, as within the CTRW model the
average waiting time for a molecule to jump is equal to zero
when α > 1, see the discussion in Ref. [134].

The Green’s functions of g-subdiffusion equation Pg and
of fractional superdiffusion equation Pγ are qualitatively dif-
ferent. However, despite the difference, the functions are
equivalent in the long time limit. Paradoxically, a subdiffusion
model describes superdiffusion. This result is also interesting
from a mathematical point of view, as it exemplifies that
solution to equation with a time fractional derivative may be
asymptotically equivalent to solution to equation with a spatial
fractional derivative; moreover, the fractional derivatives have
different orders.

Ordinary CTRW has been used to derive normal diffu-
sion equation [104,135], ordinary subdiffusion and fractional
superdiffusion equations [1,4,7,10,12], ultraslow diffusion
(slow subdiffusion) equation [17], ordinary subdiffusion
with reactions equation [136], Cattaneo hyperbolic reaction–
ordinary subdiffusion equation [137], fractional hyperbolic
type Jeffreys equation [138], and more. The g-subdiffusion
equation can be derived by means of the g–CTRW model
[106], which is a modified version of CTRW model. In the g-
CTRW model the g–convolution and the g-Laplace transform
are used, which makes the derivation of the Green’s function
similar to the derivation of the Green’s function within the
ordinary CTRW model. Since the g-CTRW model is based
on a random walk model, the g-CTRW can also be used to
derive similar equations to those mentioned above for the
g-subdiffusion process.

For sufficiently long times, g-subdiffusion is very close to
fractional superdiffusion. The convergence of g-subdiffusion
to fractional superdiffusion is determined by the function a(t )
in Eq. (57). The question arises whether superdiffusion can
be described by the g-subdiffusion equation in the entire time
domain. This problem requires additional considerations such
as an interpretation of the order α of g-subdiffusion equation.
In our model, this order is defined for the initial stage of the
process which is assumed to be ordinary subdiffusion. We
add that normal diffusion is not excluded from the model.
However, by selecting a function a(t ) that quickly goes to
zero, the superdiffusion effect can be achieved for relatively
short times. In such a case, the various equations derived from
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the g-CTRW model can be treated as equations describing
superdiffusion.

As mentioned, for a sufficiently long time the Green’s
function for g-subdiffusion describes fractional superdiffu-
sion. Even then, the g-subdiffusion model has some properties
as ordinary subdiffusion model. This remark indicates ad-
ditional possibilities in modeling superdiffusion processes.
An example is the modeling of superdiffusion in a system
with a thin partially permeable membrane. The determination
of boundary conditions at the membrane plays a key role.
Since the fractional superdiffusion equation is nonlocal in
space, “local” boundary conditions are not considered for this
equation. An example is the problem of boundary condition
at a fully absorbing wall briefly discussed in Sec. II. The
conclusion is that the method of images and consequently the
boundary condition at the absorbing wall Pγ (xM, t |x0) = 0,
where xM is a membrane location, should not be used for
fractional superdiffusion. Instead, “nonlocal” boundary con-
ditions for the absorbing wall, such as Pγ (x, t |x0) = 0 for
x � xM (when x0 < xM), can be considered. Another example
is a boundary condition at a fully impermeable wall. In the
stochastic model a “wrapped around the boundary” condi-
tion and a potential to hold a particle on the wall have been
used [139]. However, even if such boundary conditions are
formulated for the superdiffusion equation, they appear to be
ineffective because of the difficulty of solving the equation.
Even greater is a problem to determine “nonlocal” boundary
conditions at a reactive membrane and at a partially perme-
able wall where the particle which has passed through the
membrane can pass back through it with some probability.
For g-subdiffusion it is possible to derive boundary conditions
at the membrane by means of the method used already for
normal diffusion and ordinary subdiffusion, see for exam-
ple Refs. [134,135,140–145]. The methods mentioned above
can even be applicable when g-subdiffusion is interpreted as
superdiffusion.

The kind of diffusion is usually defined by time evolu-
tion of σ 2. However, this function does not always define
the kind of process, see Refs. [146–148]. In our consid-
erations the diffusion process is characterized not only by
σ 2 but also by the function F Eq. (12). Superdiffusion is
often defined in a simplified way as a process for which
σ 2

γ (t ) ∼ t2/γ with γ ∈ (1, 2). Checking whether a process
is superdiffusion is typically based on an experimental de-
termination of the parameter γ only. However, as argued
in Sec. V, for fractional superdiffusion there is σ 2

γ (t ) = ∞
for t > 0. G–subdiffusion equation describes superdiffusion
when g(t ) ≈ Et2/(αγ ) for long times. In this case σ 2

g is finite
and reads

σ 2
g (t ) = 2DαEα

�(1 + α)
t2/γ . (88)

The model presented in this paper may also be used for a
model of transition from ordinary subdiffusion to superdiffu-
sion in which σ 2(t ) ∼ tβ with β ∈ (2, 3) [112]; however, then
the condition that matches Pg and Pγ in the long time limit
should be reconsidered.

APPENDIX

The H-Fox is usually denoted as Hm n
p q (z|[ap, Ap]

[bq, Bq]), where
0 � m � q, 0 � n � p, [ap, Ap] = (a1, A1), . . . , (ap, Ap),
[bq, Bq] = (b1, B1), . . . , (bq, Bq ), Ai, B j > 0 for i =
1, 2, . . . , p, j = 1, 2, . . . , q. Let � = ∑

j=1
qB j − ∑

j=1
pA j

and μ= ∑
j=1

nA j−
∑

j=n+1
pA j+

∑
j=1

mB j−
∑

j=m+1
qB j .

The series representations of the H-Fox function are [149]

Hm n
p q

(
z

∣∣∣∣[ap, Ap]

[bq, Bq]

)

=
m∑

i=1

∞∑
l=0

(−1)l z(bi+l )/Bi

l!Bi

×
∏m

j=1, j �=i �(b j − (bi + l )Bj/Bi )∏p
j=n+1 �(a j − (bi + l )Aj/Bi )

×
∏n

j=1 �(1 − a j + (bi + l )Aj/Bi )∏q
j=m+1 �(1 − b j + (bi + l )Bj/Bi )

, (A1)

when � � 0 and Bl (b j + r) �= Bj (bl + c), j �= l , j, l =
1, 2, . . . , m; r, c = 0, 1, 2, . . ., and

Hm n
p q

(
z

∣∣∣∣[ap, Ap]

[bq, Bq]

)

=
n∑

i=1

∞∑
l=0

(−1)l z−(1−ai+l )/Ai

l!Ai

×
∏n

j=1, j �=i �(1 − a j − (1 − ai + l )Aj/Ai )∏p
j=n+1 �(a j + (1 − ai + l )Aj/Ai )

×
∏m

j=1 �(b j + (1 − ai + l )Bj/Ai )∏q
j=m+1 �(1 − b j − (1 − ai + l )Bj/Ai )

, (A2)

when � < 0 and Al (1 − a j + r) �= Aj (1 − al + c), j �= l ,
j, l = 1, 2, . . . , n; r, c = 0, 1, 2, . . .. It is assumed that the
“empty” product is equal to one. Equation (A1) has been
involved in the considerations in Ref. [1].

If � � 0 or � > 0 and µ> 0, then [150]

Hm n
p q

(
z

∣∣∣∣[ap, Ap]

[bq, Bq]

)
= O(zd ), |z| → ∞, (A3)

where d = min1� j�n[(a j − 1)/Aj].
For simplicity, we denote F[ f (x)](k) = f̃ (k) and

L[ f (t )](s) = f̂ (s), and assume x0 = 0 [here Pγ (x, t ) ≡
Pγ (x, t |x0)]. Due to the Fourier transform of the Riesz
fractional derivative,

F
[

dγ

dxγ
f (x)

]
(k) = −|k|γ f̃ (k), (A4)

the Fourier and the ordinary Laplace transforms of Eq. (42)
provide

˜̂P(k, s) = 1

s + Dγ |k|γ . (A5)

Using the formula

L−1

[
1

s + a

]
(t ) = e−at , (A6)
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we get

P̃γ (k, t ) = e−Dt |k|γ . (A7)

Since P̃γ (k, t ) ≡ P̃γ (−k, t ), we have

F−1[P̃γ (k, t )](x) ≡ (1/π )
∫ ∞

0
cos(kx)P̃γ (k, t )dk. (A8)

The relations (A7) and (A8) provide

Pγ (x, t ) = 1

π

∫ ∞

0
cos(kx)e−Dt |k|γ dk. (A9)

Using the relation
∫ ∞

0 xνe−axc
cos(xy)dx = gc(y), where

gc(y) = (1/c)
∑∞

i=0(−1)ia−(1+ν+2i)/c�((1+ν+2i)/c)y2i/(2i)!,
ν > −1, c > 1, and a > 0 (see Eq. (3.56) in Ref. [151]) we
get∫ ∞

0
cos(kx)e−Dtkγ

dk = 1

γ

∑
i=0

(−1)i�((1 + 2i)/γ )x2i

(2i)!(Dt )(1+2i)/γ
.

(A10)
We obtain

P(x, t ) = 1

πγ

∞∑
i=0

(−1)i�((1 + 2i)/γ )|x|2i

(2i)!(Dγ t )(1+2i)/γ
. (A11)

There are (2i)! = (2i)!!(2i − 1)!!, where (2i)!! =
2×4× · · · ×2i = 2ii!, and (2i − 1)!! = 1×3× · · · ×(2i − 1).
Based on the following properties of � function,
�(1 + u) = u�(u), �(1/2) = √

π , and �(1 + i) = i!, where
i is a natural number, i ∈ N , we get (see also Chap. 6 in
Ref. [152])

�(i + 1/2) = (2i − 1)!!
√

π

2i
, (A12)

�(−i + 1/2) = (−1)i2i√π

(2i − 1)!!
. (A13)

From the above equations we obtain

�(i + 1/2)�(−i + 1/2) = (−1)iπ, (A14)

and

(2i)! = �(i + 1/2)i!4i

√
π

. (A15)

Combining Eqs. (A11) and (A15) we get Eq. (45). Due to
Eq. (A1), the series representation of Eq. (44) is Eq. (45).
Thus, the solution to the superdiffusion equation is given by
Eq. (44).

In Ref. [1] there has been shown that the Green’s
function of fractional superdiffusive equation is Eq. (46).
Equations (46) and (A1) provide

Pγ (x, t ) = 1

γ (Dγ t )1/γ

∞∑
i=0

(
− |x|

(Dγ t )1/γ

)i

× �((1 + i)/γ )

i!�((1 − i)/2)�((1 + i)/2)
. (A16)

Since 1/�(− j) = 0 when j ∈ N , the terms in the series on the
right-hand side of Eq. (A16) are nonzero only if (1 − i)/2 �=
− j, i.e., when i = 2 j. Putting i = 2 j into the series and using
Eqs. (A14) and (A15) we get

Pγ (x, t ) = 1

γ (Dγ t )1/γ

∞∑
j=0

(
− |x|

(Dγ t )1/γ

)2 j

× �((1 + 2 j)/γ )

(2 j)!�(− j + 1/2)�( j + 1/2)

= 1

γ
√

π (Dγ t )1/γ

∞∑
j=0

(
− |x|2

4(Dγ t )2/γ

) j

×�(1/γ + 2 j/γ )

j!�( j + 1/2)
. (A17)

Thus, Eq. (A17) takes the form of Eq. (45). The Green’s
function derived in Refs. [130,131] are expressed by Eq. (47).
From this equation and Eq. (A1) we get Eq. (A16). In conclu-
sion, the functions Eqs. (44), (46), and (47) are equivalent to
each other.
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