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Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived
from a Caldeira-Leggett Hamiltonian
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We provide a first-principles derivation of the Langevin equation with shear flow and its corresponding
fluctuation-dissipation theorems. Shear flow of simple fluids has been widely investigated by numerical sim-
ulations. Most studies postulate a Markovian Langevin equation with a simple shear drag term in the manner of
Stokes. However, this choice has never been justified from first principles. We start from a particle-bath system
described by a classical Caldeira-Leggett Hamiltonian modified by adding a term proportional to the strain-rate
tensor according to Hoover’s DOLLS method, and we derive a generalized Langevin equation for the sheared
system. We then compute, analytically, the noise time-correlation functions in different regimes. Based on the
intensity of the shear rate, we can distinguish between close-to-equilibrium and far-from-equilibrium states.
According to the results presented here, the standard, simple, and Markovian form of the Langevin equation with
shear flow postulated in the literature is valid only in the limit of extremely weak shear rates compared to the
effective vibrational temperature of the bath. For even marginally higher shear rates, the (generalized) Langevin
equation is strongly non-Markovian, and nontrivial fluctuation-dissipation theorems are derived.

DOI: 10.1103/PhysRevE.107.064102

I. INTRODUCTION

The theory of Brownian motion is a milestone of nonequi-
librium statistical mechanics as it provides a simple and valid
approximation to the dynamics of nonequilibrium systems.
The motion of a Brownian particle interacting with a heat-bath
of solvent molecules and under the effect of external force
fields can be described either by a Langevin [1,2] or by a
Smoluchowski (Fokker-Planck) equation [3,4]. In Langevin’s
approach, the interaction of a particle with the solvent (hid-
den) molecules produces both friction and randomness: the
rapid changes in the particle’s velocity are dissipated by vis-
cosity. The Langevin equation is at the basis of diffusion
equations and fluctuation-dissipation theorems. In fact, as
noise and friction have the same physical origin in the interac-
tion with heat-bath molecules, there is a mathematical relation
that links the noise fluctuations to the friction. Traditionally,
this relation follows the second fluctuation-dissipation theo-
rem (FDT) and gives a proportionality between the noise’s
fluctuations amplitude and the friction kernel [5,6],

〈F (t )F (s)〉 ∝ kBT K (t − s). (1)

Usually, when dealing with Langevin equations, some hy-
pothesis on the average of the noise and on the expression of
the friction kernel is assumed. In most of the applications, the
noise function is assumed to be “white,” that is, it has zero
mean and a time-correlation function proportional to a Dirac
δ. Langevin equations with white noise and constant friction
coefficient are used to describe Markov processes.

*sara.pelargonio@uni.lu
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Brownian motion has been widely studied in the case of
particles in solvents that are not perturbed by any external
driving force [6,7]. However, many studies extended its ap-
plications to nonequilibrium and driven solvents [8,9] such
as fluid flows, and recently to active particles [10]. Among
fluid flows, shear flow is one of the most common exam-
ples for its theoretical and practical applications, such as in
aerospace engineering [11,12], atmospheric physics [13,14],
colloidal systems [3,15,16], polymers [17,18], or plasma
physics [19,20]. It is important also in the study of soft matter
systems to determine the microstructure of colloidal disper-
sions under flow conditions [4,21–24] and to understand and
describe diffusion of solutes in channel flows [25].

The Langevin formalism is widely used in numerical sim-
ulations to study the physical properties of nonequilibrium
glassy materials [26–28]. Usually, when performing simula-
tions, a Langevin equation with shear is postulated [29–31],
both in its original underdamped form [32]

mv̇ = −ζp + F(t ) − V ′[r] + γ̇ ζyx̂ (2)

and in the overdamped limit [27,33]

ζ
(
v(t ) − γ̇ yx̂

) = −V ′[r] + F(t ), (3)

where r is the particle’s position, ζ is the friction coefficient,
y is the particle’s position component along the y axis, and γ̇

is the strain-rate or shear-rate.
However, in spite of its wide use, a first-principles mathe-

matical derivation of the Langevin equation with shear flow,
including the form of the shear-rate-dependent friction ker-
nel, has apparently not been provided yet. Among previous
attempts, we shall mention the important work of Ref. [32],
where the Langevin equation with shear flow was derived
from first principles using the Mori-Zwanzig projection
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operator method. However, no explicit form of the friction
memory kernel was obtained. Without the knowledge of
the memory kernel, it is impossible to study the stochastic
properties of the noise and to derive meaningful fluctuation-
dissipation relations.

Shear-flow systems have been studied as examples of
driven systems to investigate the validity of fluctuation-
dissipation relations out of equilibrium [26,34,35]. It was
found that the first FDT is different from the equilibrium case
[35–38], but, on the other hand, according to some recent
studies [39,40], the second FDT should be valid even far from
equilibrium. For this reason, the second FDT allows one to
study some properties of a system even in more general cases
such as far from equilibrium.

Some studies [41,42] proved that, in the case of driven
environments, an extension of the second FDT is needed. For
this reason, it would be relevant to derive a second FDT for
systems under shear flow from first principles. It is known, in
fact, that most of the time the Markovianity is just an approx-
imation of a real non-Markovian behavior, and it is still not
clear whether, and eventually how, external force fields may
affect the stochastic nature of a sheared system. Therefore,
it would be relevant to provide a derivation of an extended
FDT for shear-flow systems without imposing any a priori
assumption on the nature of the stochastic noise.

We therefore provide a rigorous derivation of a Langevin
equation and its related second FDT with shear flow from
first principles. We proceed by following the particle-bath
Hamiltonian approach as it was at first proposed by Zwanzig
[6] to derive a Langevin equation for simple Brownian motion.
This method has already been used in other cases of externally
time-dependent driven systems [2], but it has never been ap-
plied to the case of fluids under external shear forces, which is
paradigmatic for a whole class of nonequilibrium dissipative
systems.

II. THEORY

A. DOLLS tensor method

Historically, the first method developed for performing
calculations on viscous flows was Hoover’s DOLLS tensor
method [43]. It is based on the idea that any mechanical flow
can be described by specifying the space and time dependence
of the strain-rate tensor ∇u, which describes the rate at which
any internal coordinate q changes with time according to

q̇ = q · ∇u. (4)

If standard conservation principles are valid, then the cor-
responding change in momentum is

ṗ = −∇u · p. (5)

A microscopic Hamiltonian that contains the usual changes
in coordinates and momenta from potential and kinetic energy
terms as well as changes due to an applied macroscopic me-
chanical deformation described by the DOLLS tensor qp : ∇u
reads

H = �(q) + K (p) + qp : ∇u. (6)

FIG. 1. Schematic of a planar Couette simple shear flow used in
the derivations.

The corresponding equations of motion can be integrated
numerically and used to perform numerical simulations on
fluid flow systems [44].

Later, an alternative computational approach, called
SLLOD, was developed in [45–47]. It is based on different
microscopic equations of motion that still describe the same
macroscopic flow and are consistent with thermodynamics
principles. However, unlike the DOLLS tensor equations, the
SLLOD equations of motion cannot be derived from any
Hamiltonian. The SLLOD equations of motion read as fol-
lows:

q̇ = p
m

+ q · ∇u,

ṗ = F − p · ∇u.

(7)

It has been demonstrated [45] that these equations give
the same dissipation as the DOLLS equations. Many stud-
ies [46–50] compared the results obtained by DOLLS and
SLLOD algorithms, pointing out that, in some instances, they
may lead to different results, such as the direction of the
rotation of particles under shear, or slightly different predicted
values for the normal stress. Even though the SLLOD method
is usually preferred, the DOLLS tensor Hamiltonian is still
widely adopted as the only Hamiltonian describing a micro-
scopic flow, and for this reason it will be taken as the starting
point of the model adopted here.

B. Model

We consider a homogeneous planar Couette flow, cf. Fig. 1,
described by the strain-rate tensor

∇u =
⎛
⎝ ∂ux

∂x
∂uy

∂x
∂ux
∂y

∂uy

∂y

⎞
⎠ =

(
0 0
γ̇ 0

)
, (8)

where γ̇ is the shear rate that, for simplicity, is assumed to
be constant. The strain-rate tensor determines a change in
velocity equal to

v = ∇u · x = γ̇ yx̂. (9)

We study the classical version of the Caldeira-Leggett cou-
pling [51] between a tagged particle and a bath of harmonic
oscillators, as already proposed by Zwanzig, and we add a
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new term that describes the microscopic deformation that
determines the fluid flow. As discussed above, this term can
be taken to be proportional to the strain-rate tensor and to
the DOLLS tensor. We therefore take the Hamiltonian of the
system of interest, namely the colloidal particle, and of its
environment, that are the bath’s degrees of freedom, to be

HP = P2

2M
+ V (Q) + QP : ∇u,

HB =
∑

i

[
p2

i

2
+ 1

2
ω2

i

(
qi − ci

ω2
i

Q
)2

+ qipi : ∇u
]
, (10)

where (P, Q) are the tagged particle’s coordinates, while
(pi, qi ) are the heat bath’s degrees of freedom. They are mod-
eled as harmonic oscillators with oscillation frequency ωi, and
they interact bilinearly with the tagged particle. The tagged
particle is assumed to perturb its environment weakly, so the
coupling is assumed to be small. The coupling’s strength is de-
termined by the constant ci, known as the strength of coupling
between the tagged particle and the ith bath oscillator. By
using the DOLLS strain-rate tensor Eq. (8), the Hamiltonians
become

HP = P2

2M
+ V (Q) + γ̇ QyPxx̂ŷ,

HB =
∑

i

[
p2

i

2
+ 1

2
ω2

i

(
qi − ci

ω2
i

Q
)2

+ γ̇ qiy pixx̂ŷ
]
. (11)

Apart from the terms in γ̇ , which are new and stem from
the DOLLS model for the strain rate applied to the system,
the above Hamiltonian coincides with the standard (classical)
Caldeira-Leggett Hamiltonian used throughout the literature
[2,6,51–54].

The second term in the brackets in the definition of HB

is manifestly breaking translation invariance. It should be
noted that a suitably renormalized potential Ṽ (Q) ≡ V (Q) −
1
2

∑
i

c2
i

ω2
i
Q2 provides a “counterterm” that makes the Hamilto-

nian translation-invariant, as emphasized by various authors
[51–53,55]. Since in our study the potential V (Q) is left
unspecified, we can implicitly assume that our V (Q) in
Eq. (11) contains such a counterterm so that the Hamiltonian
is translation-invariant.

Furthermore, it is assumed that the external deformation
field acts both on the tagged particle and on the heat bath’s
particles, and all the results presented in the next sections are
derived from this hypothesis. It is not the only possible case,

as one could expect the tagged particle to flow also because of
the interactions with the heat-bath’s degrees of freedom, with
only the latter being subjected to the deformation. We shall
demonstrate later on that this hypothesis leads to a slightly
different form of the Langevin equation with shear.

C. Derivation

The Hamiltonian Eq. (11) leads to the following system of
equations of motion:

Q̇x = Px

M
+ γ̇ Qy(t ),

Q̇y = Py

M
,

Ṗx = −V ′[Q]x +
∑

i

ci

(
qix − ciQx

ω2
i

)
,

Ṗy = −V ′[Q]y − γ̇ Py(t ) +
∑

i

ci

(
qiy − ciQy

ω2
i

)
,

q̇ix = pix + γ̇ qiy,

q̇iy = piy,

ṗix = −ω2qix + ciQx,

ṗiy = −ω2qiy − γ̇ pix + ciQy. (12)

We first consider the ordinary differential equation system
for the bath’s coordinates. It can be solved by considering the
vectors’ components separately. In matrix form, it reads

ẏ = Ay + C, (13)

where

y =

⎛
⎜⎜⎝

qx

qy

px

py

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

0 γ̇ 1 0
0 0 0 1

−ω2 0 0 0
0 −ω2 −γ̇ 0

⎞
⎟⎟⎠,

C =

⎛
⎜⎜⎝

0
0

Qx

Qy

⎞
⎟⎟⎠ (14)

and it is solved by diagonalizing A, changing variables to
A’s eigenvectors basis, solving the decoupled system using
Duhamel’s formula, and then performing the inverse change
of variables. It leads to

qix(t ) = ci

4ωi

∫ t

0
dt ′Qy(t ′)(e−λ2(t−t ′ ) + eλ2(t−t ′ ) ) + ci

4ωi

√
γ̇ − ωi√

ωi

∫ t

0
dt ′Qx(t ′)(e−λ2(t−t ′ ) − eλ2(t−t ′ ) )

− ci

4ωi

∫ t

0
dt ′Qy(t ′)(eλ4(t−t ′ ) + e−λ4(t−t ′ ) ) − ci

4ωi

√
γ̇ + ωi√−ωi

∫ t

0
dt ′Qx(t ′)(e−λ4(t−t ′ ) − eλ4(t−t ′ ) )

+
√

γ̇ − ωi

4ω2
i
√

ωi
pix (0)(e−λ2t − eλ2t ) + piy(0)

4ωi
(e−λ2t + eλ2t ) − ωi

√−ωi(γ̇ + ωi )

4ω2
i

pix(0)eλ4t

− piy(0)

4ωi
(e−λ4t + eλ4t ) − γ̇ + ωi

4ωi
√−ωi(γ̇ + ωi )

pix(0)e−λ4t +
√−ωi(γ̇ + ωi )

4ωi
qiy(0)(eλ2t − e−λ2t )

+
√

ωi(γ̇ − ωi )

4ωi
qiy(0)(e−λ4t − eλ4t ) + qix(0)

4
(e−λ4t + eλ4t ) + qix(0)

4
(e−λ2t + eλ2t ) (15)
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and

qiy(t ) = ci

4
√

ωi(γ̇ − ωi )

∫ t

0
dt ′Qy(t ′)(eλ2(t−t ′ ) − e−λ2(t−t ′ ) ) − ci

4ωi

∫ t

0
dt ′Qx(t ′)(eλ2(t−t ′ ) + e−λ2(t−t ′ ) )

+ ci

4
√−ω(γ̇ + ωi )

∫ t

0
dt ′Qy(t ′)(eλ4(t−t ′ ) − e−λ4(t−t ′ ) ) + ci

4ωi

∫ t

0
dt ′Qx(t ′)(eλ4(t−t ′ ) + e−λ4(t−t ′ ) )

+ pix (0)

4ωi
(eλ2t + e−λ2t ) − pix(0)

4ωi
(eλ4t + e−λ4t ) + piy(0)

4
√

ωi(γ̇ − ωi )
(eλ2t − e−λ2t )

+ piy(0)

4
√−ωi(γ̇ + ωi )

(eλ4t − e−λ4t ) + ωi

4
√

ωi(γ̇ − ωi )
qix(0)(eλ2t − e−λ2t )

− ωi

4
√−ωi(γ̇ + ωi )

qix(0)(eλ4t − e−λ4t ) + qiy(0)

4
(eλ2t + e−λ2t ) + qiy(0)

4
(eλ4t + e−λ4t ), (16)

where

λ2 =
√

ωi(γ̇ − ωi ),

λ4 =
√

−ωi(γ̇ + ωi ) (17)

are A’s eigenvalues along with λ1 = −λ2 and λ3 = −λ4. Upon evaluating the integrals by parts and plugging these solutions
into the equations for Px(t ) and Py(t ) in Eq. (12), we find the following generalized Langevin equation (GLE) with shear flow:

Ṗ = −V ′[Q] − γ̇ Px(t ) + F(t ) −
∫ t

0
dt ′Ktot(t − t ′)Q̇(t ′). (18)

Terms explicitly depending on Q or one of its Cartesian components are not allowed into the equation of motion because they
depend on the position of the particle, and therefore they have to vanish for a system with translational invariance, as noted
already by Andersen [56] and by Ray and Rahman [57].

Furthermore, the memory kernel is the sum of four terms: Ktot = K1 + K2 + K3 + K4, which are given by the following
expressions:

K1 =
⎛
⎝ 0 − ∑

i
c2

i

4ωi
√

ωi (γ̇−ωi )
(eλ2(t−t ′ ) − e−λ2(t−t ′ ) )∑

i
c2

i

4ωi
√

ωi (γ̇−ωi )
(eλ2(t−t ′ ) − e−λ2(t−t ′ ) ) 0

⎞
⎠,

K2 =
⎛
⎝∑

i
c2

i

4ω2
i
(eλ2(t−t ′ ) + e−λ2(t−t ′ ) ) 0

0 − ∑
i

c2
i

4ωi (γ̇−ωi )
(eλ2(t−t ′ ) + e−λ2(t−t ′ ) )

⎞
⎠,

K3 =
⎛
⎝ 0

∑
i

c2
i

4ωi
√−ωi (γ̇+ωi )

(eλ4(t−t ′ ) − e−λ4(t−t ′ ) )

− ∑
i

c2
i

4ωi
√−ωi (γ̇+ωi )

(eλ4(t−t ′ ) − e−λ4(t−t ′ ) ) 0

⎞
⎠,

K4 =
⎛
⎝∑

i
c2

i

4ω2
i
(eλ4(t−t ′ ) + e−λ4(t−t ′ ) ) 0

0
∑

i
c2

i
4ωi (γ̇+ωi )

(eλ4(t−t ′ ) + e−λ4(t−t ′ ) )

⎞
⎠. (19)

The splitting of Ktot into four additive terms has been done such that the entries of each matrix have the same structure (or as
similar as possible) and contain the same bracket of exponentially decaying functions. Furthermore, the noise function is

F(t ) =
(

Fx(t )
Fy(t )

)
(20)

with

Fx(t ) =
∑

i

{
ci

√
γ̇ − ωi

4ωi
√

ωi
pix (0)(e−λ2t − eλ2t ) +

[
− c2

i

4ω2
i

Qx(0) + ci

4
qix(0) + ci

4ωi
py(0)

]
(eλ2t + e−λ2t )

+
[

− c2
i

4ω2
i

Qx(0) + ci

4
qix(0) − ci

4ωi
piy(0)

]
(eλ4t + e−λ4t ) − ci

4ω2
i

√
−ωi(γ̇ + ωi )pix (0)eλ4t
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+
[

c2
i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) − ci

√
ωi(γ̇ − ωi )

4ωi
qiy(0)

]
(eλ2t − e−λ2t )

+
[

− c2
i

4ωi
√−ωi(γ̇ + ωi )

Qy(0) + ci
√−ωi(γ̇ + ωi )

ωi
qiy(0)

]
(eλ4t − e−λ4t )

− ci
γ̇ + ωi

4ωi
√−ωi(γ̇ + ωi )

pix(0)e−λ4t

}
, (21)

Fy(t ) =
∑

i

{(
− c2

i Qy(0)

4ωi(γ̇ − ωi )
+ ci

4
qiy(0) − ci

4ωi
pix

)
(eλ2t ′ + e−λ2t ′

)

+
(

c2
i Qx(0)

4ωi
√−ωi(γ̇ + ωi )

− ciωi√−ωi(γ̇ + ωi )
qix(0) + ci piy(0)

4
√−ωi(γ̇ + ωi )

)
(eλ4t ′ − e−λ4t ′

)

+
(

− c2
i Qx(0)

4ωi
√

ωi(γ̇ − ωi )
+ ciωi√

ωi(γ̇ − ωi )
qix (0) + ci piy(0)

4
√

ωi(γ̇ − ωi )

)
(eλ2t ′ − e−λ2t ′

)

+
(

− c2
i Qy(0)

4ωi(γ̇ + ωi )
+ ci

4
qiy(0) + ci

4ωi
pix

)
(eλ4t ′ + e−λ4t ′

)

}
. (22)

We then compute the noise time-correlation function as-
suming the heat bath’s initial conditions to be drawn from a
Boltzmann distribution [6],

〈F(t )F(t ′)〉 =
∫ +∞

−∞
dq(0)dp(0)F(t )F(t ′)e−HB/kBT . (23)

Depending on when the external shear deformation be-
gins to act on the system, there are two different physical
situations. We can consider a system that is in mechani-
cal equilibrium at t = 0 with the external shear perturbation
acting from t > 0 or a system that is already sheared, and
not in equilibrium, at t = 0. That is, we can compute two
different time-correlation functions, leading to two different
fluctuation-dissipation relations, by taking the Boltzmann’s
weight HB to be

HB =
∑

i

[
p2

i

2
+ 1

2
ω2

i

(
qi − ci

ω2
i

Q
)2]

(24)

or

HB =
∑

i

[
p2

i

2
+ 1

2
ω2

i

(
qi − ci

ω2
i

Q
)2

+ γ̇ qiy pixx̂ŷ
]
, (25)

respectively.
We compute the time-correlation function of the noise

for both of the cases discussed above. As the noise func-
tion has two different expressions for every component, the
integration is carried out on qx(0), px(0) and qy(0), py(0) sep-
arately. For the equilibrium initial conditions, the Boltzmann
weight does not mix q(0)’s and p(0)’s x and y compo-
nents as there is no shear term that couples them, so they
can be regarded as independent random variables. That is,
given two functions depending on one component only,
f (qx(0), px(0)), g(qy(0), py(0)), the average of their product
is equal to the product of the single averages:

〈 f (qx(0), px(0))g(qy(0), py(0))〉
= 〈 f (qx(0), px(0))〉〈g(qy(0), py(0))〉. (26)

Consequently, every integral of the form∫
f (qx(0), px (0))g(qy(0), py(0))e−HB/kBT

× dqx(0)d px(0)dqy(0)d py(0) (27)

can be evaluated as a product of integrals carried out on single
Cartesian components:∫

( f (qx(0), px(0))g(qy(0), py(0)))e−HB/kBT dqx(0)

× d px(0)dqy(0)d py(0)

=
∫

f (qx(0), px(0))e−HB/kBT dqx(0)d px(0)

×
∫

g(qy(0), py(0))e−HB/kBT dqy(0)d py(0). (28)

In the case of nonequilibrium initial conditions, the posi-
tions and momenta of the heat bath’s oscillators are correlated
random variables as the shear term couples px(0) and qy(0) so
in that case we have integrals of the form

〈 f (qx(0), px(0))g(qy(0), py(0))〉

=
∫

f (qx(0), px(0))g(qy(0), py(0))e−HB/kBT

× dqx(0)d px(0)dqy(0)d py(0). (29)

III. RESULTS

We begin by solving the heat bath’s equations of motion.
They form a system of coupled ordinary differential equa-
tions. To be solved, the system needs to be diagonalized first.

By looking at the eigenvalues in Eq. (17), one of them is
always imaginary while the other one can be either real or
imaginary depending on the shear rate’s intensity compared to
the harmonic oscillators’ frequencies. If the shear rate is lower
than the oscillators’ frequency, the system’s solution will be a
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FIG. 2. Qualitative phase diagram of the obtained results for the
different forms of the Langevin equation with shear. The solid line
indicates the schematic dependence of the vibrational temperature
(frequency) of the thermal bath as a function of the applied shear
rate across three different regimes discussed in the text: to the left,
γ̇ 	 ωi; in the middle, γ̇ < ωi; and to the right, γ̇ > ωi.

linear combination of trigonometric functions, that is, the heat
bath’s degrees of freedom will oscillate with an oscillation
frequency modified by the shear rate. However, if the shear
rate is higher than the oscillators’ frequency, the shear will
affect the overall behavior.

Consequently, we present the results we obtained by dis-
tinguishing two different cases or limits: γ̇ < ωi ∀i and γ̇ >

ωi ∀i. As in natural units the vibrational frequency equals
the vibrational temperature, it is also possible to relate the
shear rate’s intensity to the average vibrational temperature
of the heat-bath molecules.

This allows one to visualize the obtained results drawing a
qualitative phase diagram presented in Fig. 2. We first present
the results graphically and then we explain them in detail in
the next sections.

A. Generalized Langevin equation with shear

1. Close to equilibrium: γ̇ � ωi

If γ 	 ωi, all the terms like γ̇ + ωi or γ̇ − ωi can be
approximated to � ωi. In this case, the Langevin equation

reduces to

Ṗ = −V ′[Q] + F(t ) −
∫ t

0
K (t − t ′)Q̇(t ′)dt ′ − γ̇ Pxŷ, (30)

where

K (t − t ′) ≡ ν(t − t ′) =
∑

i

c2
i

ω2
i

cos (ωi(t − t ′)). (31)

This equation is very similar to Eq. (2) widely used in the
literature [6]. In particular, the memory kernel is exactly the
same as the one derived by Zwanzig for the GLE without shear
[6].

There are, however, some remarkable differences that will
be analyzed in the following sections. As a sanity check, it
is important to notice that if γ̇ is set equal to zero, then
the equation for the Brownian particle in a solvent with no
external drag forces is recovered. In particular, the memory
function ν(t − t ′) is precisely the same, as all the dependence
on γ̇ is encoded in the drag term γ̇ Pxŷ. However, the drag term
is different because the friction does not appear as a factor.
Also, this drag force is oriented along the ŷ-axis direction and
not along the x̂-axis direction.

2. Moderately close to equilibrium: γ̇ < ωi

Let us now consider the regime γ̇ < ωi. If the shear rate
is less than the heat bath’s frequencies but not entirely negli-
gible, we expect the fluid’s particles to oscillate around their
equilibrium positions with a frequency modified by the shear
rate. As we are in the limit of small shear rate, we can perform
a Taylor expansion around γ̇ = 0. If only terms up to first
order are kept, the Langevin equation reads

Ṗ = − V ′[Q] −
∫ t

0
ν(t − t ′)Q̇(t ′)dt ′

− γ̇

∫ t

0
K1(t − t ′)Q̇(t ′)dt ′ − γ̇

∫ t

0
K2(t − t ′)Q̇(t ′)dt ′

+ F(t ) − γ̇ Px(t )ŷ + o(γ̇ ), (32)

where K1(t − t ′) and K2(t − t ′) are friction matrices, which
have the following form:

K1(t − t ′) =
⎛
⎝ 0

∑
i

c2
i

2ω2
i

cos [ωi(t − t ′)](t − t ′)

− ∑
i

c2
i

2ω2
i

cos [ωi(t − t ′)](t − t ′) 0

⎞
⎠, (33)

K2(t − t ′) =
⎛
⎝ 0 − ∑

i
c2

i

2ω3
i

sin [ωi(t − t ′)]∑
i

c2
i

2ω3
i

sin [ωi(t − t ′)] 0

⎞
⎠ (34)

and ν(t − t ′) is the memory function in the absence of shear, introduced above.
At first order, the shear rate does not affect the oscillation frequencies but introduces some additional friction terms, which

are, in general, non-Markovian as they cannot be easily reduced to be proportional to a Dirac’s δ function.
If also second-order terms are kept, the GLE becomes

Ṗ = −V ′[Q] −
∫ t

0
K (t − t ′)Q̇(t ′)dt ′ − γ̇

∫ t

0
K1(t − t ′)Q̇(t ′)dt ′ − γ̇

∫ t

0
K2(t − t ′)Q̇(t ′)dt ′ − γ̇ 2

∫ t

0
K3(t − t ′)Q̇(t ′)dt ′

+ F(t ) − γ̇ Px(t )ŷ + o(γ̇ 2), (35)
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where the friction matrices read

K1(t − t ′) =
⎛
⎝ 0

∑
i

c2
i

2ω2
i

cos
[(

ωi − γ̇ 2

8ωi

)
(t − t ′)

]
(t − t ′)

− ∑
i

c2
i

2ω2
i

cos
[(

ωi − γ̇ 2

8ωi

)
(t − t ′)

]
(t − t ′) 0

⎞
⎠, (36)

K2(t − t ′) =
⎛
⎝ 0 − ∑

i
c2

i

2ω3
i

sin
[(

ωi − γ̇ 2

8ωi

)
(t − t ′)

]
∑

i
c2

i

2ω3
i

sin
[(

ωi − γ̇ 2

8ωi

)
(t − t ′)

]
0

⎞
⎠, (37)

K3(t − t ′) =
(

0 0

0
∑

i
c2

i

ω4
i

cos
[(

ωi − γ̇ 2

8ωi

)
(t − t ′)

]
+ c2

i

2ω3
i
(t − t ′) sin

[(
ωi − γ̇ 2

8ωi

)
(t − t ′)

])
, (38)

and

K (t − t ′) =
∑

i

c2
i

ω2
i

cos

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)
cos

(
γ̇

2
(t − t ′)

)
+ o(γ̇ 2). (39)

By looking both at the friction matrices and at the memory function, we see that the shear rate introduces a second-order
correction in the heat bath’s oscillation frequencies. Moreover, the memory function Eq. (39) differs from the first-order one
Eq. (31) both for the oscillation frequency and for the new expression, as in this case there’s a product with a function depending
on γ̇ . As

cos

(
γ̇

2
(t − t ′)

)
� 1 − 1

2

(
γ̇

2
(t − t ′)

)2

+ o(γ̇ 2), (40)

the memory function K (t − t ′) can also be rewritten as

K (t − t ′) =
∑

i

c2
i

ω2
i

[(
1 − γ̇ 2

8

)
(t − t ′)2 cos

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)]
. (41)

If all the terms proportional to powers of γ̇ are grouped in the same friction matrix, Eq. (35) can also be written as a more
compact expression as shown in Appendix A. However, the former expression makes the interpretation of the corresponding FDT
clearer, as we shall see in Sec. III B, since making the memory function explicit allows us to give a more physical interpretation
to the FDT.

As in the previous case, by setting γ̇ = 0 the Langevin equation for the Brownian particle with no shear is recovered because
all the additional terms proportional to γ̇ vanish and the heat bath’s oscillation frequencies become identically equal to ωi.

3. Far from equilibrium: γ̇ > ωi and γ̇ � ωi

We present the GLE obtained by considering the same system far from equilibrium. That is, we assume the external shear
perturbation to be higher than the thermal agitation. If we take γ̇ � ωi ∀ i = 1, . . . , N , then γ̇ ± ωi � γ̇ , and Eq. (18) becomes

Ṗ = −V ′[Q] −
∫ t

0
K1(t − t ′)Q̇(t ′)dt ′ −

∫ t

0
K2(t − t ′)Q̇(t ′)dt ′ − γ̇ Px(t )ŷ, (42)

where the friction matrices now read

K1(t − t ′)

=
⎛
⎝ 0

∑
i

c2
i

2ωi
√

γ̇ ωi
[sin (

√
γ̇ ωi(t − t ′)) − sinh (

√
γ̇ ωi(t − t ′))]∑

i
c2

i

2ωi
√

γ̇ ωi
[− sin (

√
γ̇ ωi(t − t ′)) + sinh (

√
γ̇ ωi(t − t ′))] 0

⎞
⎠,

(43)

K2(t − t ′) =
⎛
⎝∑

i
c2

i

ω2
i
[− cosh (

√
γ̇ ωi(t − t ′)) + cos (

√
γ̇ ωi(t − t ′))] 0

0
∑

i
c2

i
ωi γ̇

[− cosh (
√

γ̇ ωi(t − t ′)) + cos (
√

γ̇ ωi(t − t ′))]

⎞
⎠.

(44)

As in the previous case, we find a GLE with different memory functions. In this case, the memory functions reflect the effect
of the external driving force: on the one hand, there is an exponential growth (due to the cosh), and on the other hand, there is an
oscillation around the equilibrium positions with a modified frequency. As before, it is possible to write the Langevin equation by
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grouping all the friction matrices like

Ṗ = −V ′[Q] −
∫ t

0
K(t − t ′)Q̇(t ′)dt ′ − γ̇ Px(t )ŷ, (45)

where

K1(t − t ′)

=
⎛
⎝ ∑

i
c2

i

ω2
i

[
cosh (

√
γ̇ ωi(t − t ′)) + cos (

√
γ̇ ωi(t − t ′))

] ∑
i

c2
i

2ωi
√

γ̇ ωi

[
sin (

√
γ̇ ωi(t − t ′)) − sinh (

√
γ̇ ωi(t − t ′))

]
∑

i
c2

i

2ωi
√

γ̇ ωi

[
− sin (

√
γ̇ ωi(t − t ′)) + sinh (

√
γ̇ ωi(t − t ′))

] ∑
i

c2
i

2γ̇ ωi

[
cosh (

√
γ̇ ωi(t − t ′)) + cos (

√
γ̇ ωi(t − t ′))

]
⎞
⎠.

(46)

Also in this case we see how the external shear force affects
the dynamics at every level of description, since the new
oscillation frequency depends on γ̇ as

√
γ̇ .

B. Fluctuation-dissipation theorems

Starting from the noise’s expression Eqs. (21) and (22),
we compute a FDT both for equilibrium and nonequilibrium
heat bath’s initial conditions. In doing so, different cases are
analyzed. We still distinguish between high and low shear
rate, but also between equilibrium and nonequilibrium initial
conditions. That is, we compute a FDT for small shear rates
both for a system already perturbed at t = 0 and for an un-
perturbed one in equilibrium at t = 0, respectively. We then
present some physical considerations about the behavior for
high shear rates, and we obtain an analytical result in the
long-time limit.

1. Equilibrium initial conditions

If the system is assumed to be in equilibrium at t = 0 and
the external drag force acts from t > 0 on, when computing
〈F(t )F(t ′)〉 the Boltzmann weight is given by the heat bath’s
Hamiltonian with no shear Eq. (24). If only first-order terms
are kept, we find

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + o(γ̇ ), (47)

where the memory function ν(t − t ′) is given by Eq. (31).
This is precisely the same fluctuation-dissipation relation for a
Brownian particle in a quiescent system (i.e., in the absence of
external shear) derived, e.g., in [6]. This is also reassuring as
a sanity check. Therefore, all the considerations already done
about this expression are still valid. If also second-order terms
are considered, then the fluctuation-dissipation theorem (cf.
Appendix B 1 for the full details) becomes

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + γ̇ 2kBT H(t, t ′, ωi )

+ γ̇ 2kBT ν(t − t ′)ŷ + o(γ̇ 2), (48)

where

H(t, t ′, ωi ) =
∑

i

c2
i

8ω3
i

[
sin (ωi(t + t ′))(t − t ′)

− sin (ωi(t − t ′))(t + t ′)
]
. (49)

This expression Eq. (48) is made of a term proportional to
the memory function ν(t − t ′) Eq. (39) plus two second-order
corrections. One term is proportional to a function H(t, t ′, ωi )
depending both on t − t ′ and on t + t ′, that is, not only on time
differences but also on the entire time evolution of the system.
The other term is proportional to γ̇ 2 and to the friction func-
tion ν(t − t ′), so it stands for the standard energy dissipation
as it occurs in sheared fluids [58].

Therefore, up to linear order in γ̇ , this result is consistent
with the hypotheses that are usually assumed in numerical
simulations [30]. However, at second order in γ̇ this is no
longer true. The dissipative term quadratic in γ̇ is consistent
with the physical picture of the system, as there is a term
representing transverse energy dissipation as one expects for
a Couette flow as different fluid layers move parallel with a
velocity directed along the x axis so that energy dissipation
occurs along the y axis.

2. Nonequilibrium initial conditions

We now assume the system to be already perturbed at t =
0. Heat-bath initial conditions are then Boltzmann-distributed
with a weight given by Eq. (11). At first order, we find

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + γ̇ G̃(t, t ′, ωi ) + o(γ̇ ), (50)

where

G̃(t, t ′, ωi ) =
(

Gx(t, t ′, ωi )
Gy(t, t ′, ωi )

)
=

⎛
⎝∑

i

[
c2

i

2ω2
i

sin (ωi(t + t ′))(t + t ′) + c2
i

2ω2
i
(t − t ′) sin (ωi(t − t ′))

]
∑

i

[
c2

i

2ω3
i

cos (ωi(t + t ′)) + c2
i

2ω3
i

cos (ωi(t − t ′))
]

⎞
⎠. (51)

The main difference with respect to Eq. (47) is that here there are some corrections at first order in γ̇ already. Although these
corrections break parity symmetry, it is important to remark that parity is broken already in the initial state, as it is indicated by
the Hamiltonian Eq. (11). As in Eq. (47), one of the additional terms is proportional to a function G̃(t, t ′, ωi ) that depends on
the entire time evolution of the system. If also second-order terms in γ̇ are kept, the FDT reads (cf. Appendix B 2 for the full
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details)

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + γ̇ G̃(t, t ′, ωi ) + γ̇ 2kBT H̃(t, t ′, ωi ) + γ̇ 2kBT ν(t − t ′)ŷ + o(γ̇ 2), (52)

where

H̃(t, t ′, ωi ) =
(

H̃x(t, t ′, ωi )
H̃y(t, t ′, ωi )

)

=
⎛
⎝∑

i

[
c2

i

8ω4
i

cos
((

ωi − γ̇ 2

8ω2
i

)
(t − t ′)

)
cos

(
γ̇

2 (t + t ′)
)

+ cos
((

ωi − γ̇ 2

8ω2
i

)
(t + t ′)

)
cos

(
γ̇

2 (t − t ′)
)]

∑
i

3c2
i

2ω4
i

cos ((ωi − γ̇ 2

8ωi
)(t + t ′)) cos ( γ̇

2 (t + t ′))

⎞
⎠.

(53)

As before, the function H̃(t, t ′, ωi ) depends also on the
time evolution of the system. It is important to notice that
also here there is a term that represents viscous fluid energy
dissipation [58].

C. Far from equilibrium (γ̇ � ωi) and turbulence

We also calculated a FDT in the case of strong external
shear perturbation. In this case, the oscillation frequencies are
replaced by

√
γ̇ ωi. We focused on the corresponding long-

time limit. The final expression is lengthy and it features a
linear combination of products between hyperbolic functions
and trigonometric functions. For this reason, it is not possible
to determine, analytically, whether the t → ∞ limit converges
or not. For high shear rates, the flow is expected to become tur-
bulent, so the model used here is expected to fail. Therefore,
it is necessary to determine when the transition from laminar
to turbulent flow happens and to relate this to the shear rate’s
intensity. This can be done by writing the Reynolds number
as a function of the shear rate. It is known, in fact, that a flow
is laminar as long as the Reynolds number is lower than a
threshold, which depends on the characteristics of the device,
and becomes turbulent above the threshold. The Reynolds
number is defined as a ratio of the inertial forces to the viscous
forces

Re = ρud

μ
, (54)

where ρ is the fluid’s density, μ is the fluid’s kinematic vis-
cosity, d is the diameter of the considered fluid’s section, and
u is the flow’s velocity. Since for, e.g., a Couette flow the
flow velocity is known and proportional to the shear rate, the
Reynolds number can also be written as

Re(γ̇ ) = ργ̇ yd

μ
. (55)

As a laminar flow occurs when Re < 2300, this threshold
gives an upper bound on the shear rate’s intensity up to which
the above model is applicable. It depends also on the partic-
ular fluid the model is applied to, as in Eq. (55) also some
parameters depend crucially on the fluid’s physicochemical
characteristics.

IV. DISCUSSION

A. Generalized Langevin equation with shear

The first task we addressed was the derivation of a gen-
eralized Langevin equation (GLE) with shear flow from first

principles. We found an equation that is, in general, different
from the one used in the literature. However, we notice that
in the limit of extremely low shear rate, it has a form that is
very similar to the latter one, except for the drag term. This is
because the drag term is directed along the ŷ axis, and is not
multiplied by a friction coefficient. The friction coefficient is
implicit in Px(t )’s analytic expression as it can be obtained
by integrating the same equations that give the memory func-
tions. Instead, the fact that the drag term is directed along
ŷ, and not along x̂, is a feature of the DOLLS dynamics. It
would be possible to obtain the same equation used in the
literature by rotating the reference system, but it would affect
the physical picture of the other results, such as the transverse
energy dissipation.

We performed a perturbative expansion in series of γ̇ cen-
tered in γ̇ = 0 as it points out the effect of the external shear
force by treating it as a perturbation. It shows that the addi-
tional memory functions appear as perturbative corrections
to the already known equation, as they are proportional to
the power of γ̇ . In the GLE Eq. (35) there is also a second-
order term (not shown) that apparently breaks translational
invariance as it is proportional to the tagged particle’s position
Q(t ). As pointed out by Andersen [56] and Ray and Rahman
[57], this term should vanish for a system with translational
invariance and therefore it has been ignored.

It is remarkable that if γ̇ is set equal to zero, the same
Langevin equation for a Brownian particle with no exter-
nal perturbation is recovered [6]. We also investigated how
the GLE changes when the external shear force is higher
compared to the bath’s thermal agitation. We found an equa-
tion that has the same form as the one with small shear
Eq. (35) but with different friction matrices. In fact, as we as-
sumed γ̇ > ωi ∀i, one of the eigenvalues is real so the memory
functions are not all trigonometric functions but there are also
hyperbolic functions that express the exponential expansion
of the system determined by the high external driving force.
We can conclude that we derived a GLE that can be used
either close to or far from equilibrium, and that, in the special
case of a system very close to equilibrium, is similar to the
known Langevin equation with shear used in the literature.
How to more closely derive the latter is shown in the following
subsection.

Relation to the Langevin equation with shear used in numerical
simulation studies

In the previous sections, it was stated that the results pre-
sented above were based on a system where both the colloidal
particle and the heat-bath degrees of freedom were subjected
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to the external force field. This led to a generalized Langevin
equation that is, in general, different from the one that can
be found in the literature. It is therefore relevant to investigate
whether the same equation can be obtained assuming different
hypothesis. If the external force field is assumed to act only
on the heat bath’s degrees of freedom and not directly on
the tagged particle, different equations of motion are found
because the tagged particle’s Hamiltonian will not have the
additional DOLLS term. In this case, the dynamics of the
tagged particle is simply the Caldeira-Leggett one:

Q̇ = P
M

,

Ṗ = −V ′[Q] +
∑

i

ci

(
qi − ciQ

ω2
i

)
. (56)

By proceeding in the same way as before and plugging
heat bath’s solutions Eqs. (15) and (16) into these equations of
motion, a different Langevin equation with shear is found. In
this case, indeed, the somewhat unphysical drag term γ̇ Pxŷ
is now absent, which is clear since the tagged particle does
not experience any direct perturbation due to the externally
applied field.

Furthermore, the previous Langevin equation was obtained
by integrating by parts all the integral terms appearing in
Eqs. (15) and (16). However, if the integration of the heat
bath’s x component Eq. (15) is carried over the Qx integrals
only while all the integral terms appearing in the y component
Eq. (16) are integrated as before, the following Langevin
equation with shear is found:

Ṗ = − V ′[Q] + F(t ) −
∫ t

0
ν(t − t ′)Q̇(t ′)dt ′

+ γ̇

∫ t

0
η(t − t ′)Qy(t ′)dt ′x̂ + γ̇

∫ t

0
μ(t − t ′)Q̇x(t ′)dt ′ŷ,

(57)

where η(t − t ′) and μ(t − t ′) are new memory functions:

η(t − t ′) =
∑

i

[
c2

i

ωi
(t − t ′) sin (ωi(t − t ′))

]
(58)

μ(t − t ′) =
∑

i

[
c2

i

2ω2
i

(t − t ′) cos (ωi(t − t ′))

− c2
i

4ω3
i

sin (ωi(t − t ′))
]
. (59)

This equation has the right drag term, which is proportional
to the y component of the tagged particle’s position and is
directed along the longitudinal x axis, but it still has an ad-
ditional term [the last one on the right-hand side of Eq. (60)]
that does not appear in Eq. (2). However, this term becomes
negligible if the high-frequency limit is taken, as the terms
in Eq. (59) are proportional to negative higher-order (>1)
powers of the oscillation frequencies ωi. In this limit, we thus
get

Ṗ = − V ′[Q] + F(t ) −
∫ t

0
ν(t − t ′)Q̇(t ′)dt ′

+ γ̇

[∫ t

0
dt ′η(t − t ′)Qy(t ′)dt ′

]
x̂. (60)

Consequently, this equation recovers the generic form of
the Langevin equation that can be found in the literature under
the above stated assumptions. The main difference is that, in
this case, there is a strongly non-Markovian behavior as the
drag term (proportional to γ̇ ) cannot be easily reduced to be
proportional to a Dirac δ function. In other words, we found
a generalized Langevin equation with shear flow that is the
non-Markovian equivalent of that used in the literature [27].

This Langevin equation has a noise function that is
slightly different from the one in the previous Langevin equa-
tion [Eq. (32)], but this does not affect the FDT. In fact,
the differences are proportional to the tagged particle’s initial
position, and, as was stated before, the dependence on them
has been suppressed because, with no loss of generality, the
tagged particle can be assumed to be initially at the origin of
the reference framework. For this reason, the FDT reads

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + γ̇ 2kBT H(t, t ′, ωi )

+ γ̇ 2kBT ν(t − t ′)ŷ + o(γ̇ 2) (61)

in the case of equilibrium initial conditions, and

〈F(t )F(t ′)〉 = kBT ν(t − t ′) + γ̇ G̃(t, t ′, ωi )

+ γ̇ 2kBT H̃(t, t ′, ωi ) + γ̇ 2kBT ν(t − t ′)ŷ

+ o(γ̇ 2) (62)

with nonequilibrium initial conditions [see Eqs. (48) and (52)
for more details].

There is some arbitrariness in the procedure described
above, as the terms to be integrated out in the dynamics have
been chosen in an ad hoc way. This particular choice implies
ignoring the dynamics of microscopic degrees of freedom
along the y-axis direction (while not along the x-axis direc-
tion), which could be tentatively justified based on the physics
of the system since the external shearing force is directed
along the x axis. This axis thus represents the “special” di-
rection along which the dynamics is being tracked and cannot
be integrated out together with the other degrees of freedom.

B. Fluctuation-dissipation theorems

From the explicit noise expression, we computed the as-
sociated FDT. The first issue that has been encountered was
the choice of the initial distribution. In fact, depending on the
form of the Boltzmann weight, different physical situations
are described, and because of this sort of arbitrariness we
decided to analyze two different paradigmatic cases.

It is important to point out that, depending on the choice
of initial distribution, different results are found, which is
expected for out-of-equilibrium systems. In the following
discussion, we will assume independence from the tagged
particle’s initial conditions. In fact, it can be assumed, with
no loss of generality, that the tagged particle is at the origin of
the coordinate frame at t = 0.

At first we analyzed a situation of “start-up” shear, that is,
we assumed the external driving force to not act at t = 0 but
only at t > 0. As for the generalized Langevin equation with
shear, under these assumptions we found a FDT that recov-
ers the classical one with no shear for low shear rates. By
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performing a perturbative expansion around γ̇ = 0, in the
same way as we did for the GLE, and assuming a marginally
higher shear rate, we found a different FDT with two addi-
tional terms. They are both second-order corrections as they
are proportional to γ̇ 2. The first term contains a function
H(t, t ′, ωi ) that depends on the entire time evolution of the
system, while the second correction term is proportional also
to a memory function and represents the ordinary energy dissi-
pation in a viscous fluid [58]. Moreover, the memory function
differs from the one that appears in [6] for the zero-shear case.
As Eq. (48) shows a violation of the ordinary FDT (as shown
already with different methods in Refs. [26,38,59–61]), one
could ask whether it represents a fluctuation-dissipation rela-
tion or not, but as there is a term compatible with the energy
dissipation in fluids, it is meaningful to say that Eq. (48) still
relates the noise’s fluctuations with the energy dissipation.
Moreover, if γ̇ is set equal to zero, the ordinary zero-shear
FDT is correctly recovered. When assuming the system not
to be already perturbed at t = 0, a different FDT is found.
As shown by Eq. (52), there are some corrections at first
order in γ̇ already, which thus break parity and time-reversal
symmetry (which already occurs in the initial nonequilibrium
state). The other first-order correction is proportional to a
vector function that depends on the entire time evolution of
the system. On the other hand, second-order corrections are
similar to those in Eq. (48) except for H, which has a different
expression. Consequently, if nonequilibrium conditions are
assumed, the corresponding fluctuation-dissipation relation
violates the usual FDT already at first order in γ̇ (cf. different
methods, Refs. [26,38,59–61]).

C. Markovianity

The Langevin dynamics with shear is usually assumed,
throughout the literature, to be a Markov process. If γ̇ 	 ωi,
second-order corrections appearing in the FDT expression
Eq. (48) can be ignored and therefore the ordinary FDT for
the Brownian particle [6] is recovered. However, already in
the limit γ̇ < ωi, the FDT contains some corrections propor-
tional to functions depending on the entire time evolution
of the system. This indicates that, in general, this process is
not Markovian since, by definition, in a Markov process the
dynamics at a fixed time t is determined only by the dynamics
of the system in a previous time instant and not by the entire
time evolution. If the Taylor expansion is truncated at first
order, we recover the same FDT as in Zwanzig’s derivation
[6]. Consequently, by taking the continuum limit

∑
i

→
∫

dωg(ω) (63)

with

g(ω) � ω2 (64)

as for bosonic particles, we find

〈F(t )F(t ′)〉 � kBT δ(t − t ′) (65)

so that the process is Markovian. If also second-order terms
in γ̇ are kept, it is no longer Markovian because of the func-
tion H(t, t ′, ωi ). Since H(t, t ′, ωi ) is proportional to 1

ω3 , the
integral ∫ ∞

0
dωg(ω)H(t, t ′, ω) (66)

diverges close to ω = 0 unless the frequencies distribution
(i.e., the density of states) g(ω) has a different dependence
on ω.

When nonequilibrium initial conditions are chosen, the
process is strongly non-Markovian at first order in γ̇ already.
As in the previous case, when the continuum limit is per-
formed, the integrals diverge in ω = 0, so the density of
states g(ω) should have a different dependence on ω other
than quadratic, to prevent the divergence. It is important to
underline that the coupling between the tagged particle and
the heat bath’s degrees of freedom has been assumed to be
constant with frequency. The divergence of these integrals
may also be avoided by requiring the coupling to be a suitable
function of ω.

In the case of high external shear force, the process is ex-
pected to be generally non-Markovian because, as explained
in the previous sections, the FDT has a linear combination of
products of hyperbolic functions and trigonometric functions,
and this cannot be reduced to a Dirac δ function. Therefore,
we expect that it will not be possible to recover a Markovian
FDT for the Langevin equation with shear flow apart from the
very special limit of nearly vanishing shear rate and equilib-
rium initial conditions.

V. CONCLUSION

In the present work, we have analytically derived the
Langevin equation with shear flow and its correspond-
ing fluctuation-dissipation theorems from first principles.
We followed a particle-bath Hamiltonian approach using a
Caldeira-Leggett model supplemented with a term that de-
scribes the externally applied mechanical deformation. The
only microscopic Hamiltonian that describes a fluid flow is
Hoover’s DOLLS tensor Hamiltonian, which therefore has
been chosen. For simplicity, but without loss of generality,
we examined the easiest example of shear flow, that is, pla-
nar Couette flow. We conclude that, in general, the model
we proposed recovers the most important features of the
Langevin models with shear used in the literature, but with
some important differences. In particular, the Markovian limit
is recovered only in the case of extremely low shear-rate
values compared to the bath’s thermal frequencies. We also
demonstrated that it would be important to specify whether
the initial state is in thermodynamic equilibrium or not, as
this can lead to a different form of the fluctuation-dissipation
relation. In a future perspective, it would be interesting to
test the generalized non-Markovian Langevin equation with
shear flow, which we derived here in its different limits, with
numerical simulations. Moreover, this simple model may be
used as the starting point to develop a new theory of the
effective vibrational temperature in nonequilibrium sheared
systems.

In future work, it could be useful to attempt a similar
derivation as in [32] using the Mori-Zwanzig projection op-
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erator method to derive the GLE but crucially including also
the derivation of the memory kernel. This could be done, e.g.,
by taking advantage of very recent advances in the field of
memory kernel-reconstruction techniques for systems out of
equilibrium [40,62].
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APPENDIX

1. Compact form of Eq. (35)

We show how it is possible to write the generalized Langevin equation (GLE) Eq. (35) in a compact form. If we group all the
friction functions and the memory function, we obtain

Ṗ = −V ′[Q] −
∫ t

0
K(t − t ′)Q̇(t ′) + F(t ) − γ̇ Px(t )ŷ + o(γ̇ 2) (A1)

with a 2 × 2 friction matrix

K(t − t ′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i

c2
i

ω2
i

[
cos

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)
·

cos

(
γ̇

2
(t − t ′)

)]
∑

i

[
c2

i

2ω2
i

(t − t ′) cos

((
ωi − γ̇

8ωi

)
(t − t ′)

)

− c2
i

2ω3
i

sin

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)]

∑
i

[
− c2

i

2ω2
i

cos

((
ωi − γ̇

8ωi

)
(t − t ′)

)
(t − t ′)

+ c2
i

2ω3
i

sin

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)]

∑
i

[
c2

i

ω2
i

cos

((
ωi + γ̇ 2

8ωi

)
(t − t ′)

)
cos

(
γ̇

2
(t − t ′)

)

+ c2
i

ω4
i

cos

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)

+ c2
i

2ω3
i

(t − t ′) sin

((
ωi − γ̇ 2

8ωi

)
(t − t ′)

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A2)

2. Fluctuation-dissipation theorems

In this section, we present the details of the derivation of the fluctuation dissipation theorem (FDT).
The main idea is to compute 〈Fx(t )Fx(t ′)〉 and 〈Fy(t )Fy(t ′)〉 separately, as they have different expressions, and then collect the

components into a vector expression.

a. Equilibrium initial conditions

If we take equilibrium initial conditions, then some terms in 〈Fx(t )Fx(t ′)〉 and 〈Fy(t )Fy(t ′)〉 have their Boltzmann’s ensemble
average equal to zero: they are the mean of the Gaussian distribution given by e−HB/kBT . This Gaussian distribution is centered

in pi and (qi − ci
Q
ω2

i
), therefore

〈px(0)〉 = 〈py(0)〉 = 0,

〈(
ci

4
qx(0) − c2

i

4ω2
i

Qx(0)

)〉
=

〈(
ci

4
qy(0) − c2

i

4ω2
i

Qy(0)

)〉
= 0.

Only the products between the other terms will contribute to the time-correlation function leading to

〈(
c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) − ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)2〉
= c2

i

[
kBT ω2

i (γ̇ − ωi )2 − c2
i Qy(0)2(γ̇ − 2ωi )2

]
16ω5

i (γ̇ − ωi )
, (A3)

〈(
− c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) + ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)2〉
= −c2

i

[
kBT ω2

i (γ̇ + ωi )2 + c2
i Q2

y (0)(γ̇ + 2ωi )2
]

16ω5
i (γ̇ + ωi )

, (A4)
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〈(
c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) − ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)(
− c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) + ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)〉
=

− c2
i

[
kBT ω2

i

(
γ̇ 2 − ω2

i

) + c2
i Q2

y (0)
(
γ̇ 2 − 4ω2

i

)]
16ω5

i

√
ωi(γ̇ − ωi )

√−ωi(γ̇ + ωi )
, (A5)

〈[
− c2

i

ω2
i

Qx(0) + ci

4
qx(0) + ci

4ωi
py(0)

]2〉
= c2

i

8ω2
i

kBT,

〈[
− c2

i

ω2
i

Qx(0) + ci

4
qx(0) − ci

4ωi
py(0)

]2〉
= c2

i

8ω2
i

kBT,

〈
p2

x

〉 = 〈
p2

y

〉 = kBT

(A6)

in 〈Fx(t )Fx(t ′)〉 and to

〈( −c2
i Qy(0)

4ωi(γ̇ + ωi )
+ ci

4
qy(0) − ci

4ωi
px

)2〉
= −c2

i

[
4c2

i Qy(0)2 + kBT ω2
i

]
16ω4

i

+ γ̇
c2

i kBT

16ω3
i

, (A7)

〈(
c2

i Qy(0)

4ωi(γ̇ − ωi )
+ ci

4
qy(0) + ci

4ωi
px

)2〉
= −c2

i

[
4c2

i Qy(0)2 + kBT ω2
i

]
16ω4

i

− γ̇
c2

i kBT

16ω3
i

, (A8)

〈(
c2

i Qy(0)

4ωi(γ̇ − ωi )
+ ci

4
qy(0) + ci

4ωi
px

)(
−c2

i Qy(0)

4ωi(γ̇ + ωi )
+ ci

4
qy(0) − ci

4ωi
px

)〉
= c2

i

[
4c2

i Qy(0)2 + kBT ω2
i

]
16ω4

i

(A9)

in 〈Fy(t )Fy(t ′)〉.
If a Taylor expansion is performed, and if all the terms proportional to the tagged particle’s initial position are neglected, as

with no loss of generality, one could assume the tagged particle to be in the origin at t = 0, then the expressions to be evaluated
are

〈Fx(t )Fx(t ′)〉 =
∑

i

{[
− c2

i

16ω2
i

kBT + γ̇
c2

i

16ω3
i

kBT

]
(eλ2t − e−λ2t )(eλ2t ′ − e−λ2t ′

)

×
[

c2
i

16ω2
i

kBT + γ̇
c2

i

16ω3
i

kBT

]
(eλ4t − e−λ4t ′

)(eλ4t ′ − e−λ4t ′
) + c2

i

16ω2
i

kBT (eλ2t − e−λ2t )(eλ4t ′ − e−λ4t ′
)

+ c2
i

16ω4
i

kBT (eλ4t − e−λ4t )(eλ2t − e−λ2t ) + c2
i

8ω2
i

kBT (eλ4t + e−λ4t )(eλ4t ′ + e−λ4t ′
)

+ c2
i

8ω2
i

kBT (eλ2t + e−λ2t )(eλ2t ′ + e−λ2t ′
) +

[
− c2

i

16ω2
i

+ γ̇
c2

i

16ω3
i

]
(e−λ2t − eλ2t )(e−λ2t ′ − eλ2t ′

)

− c2
i

16ω2
i

kBT (e−λ2t + e−λ2t )e−λ4t ′ +
[

− c2
i

16ω2
i

+ γ̇
c2

i

16ω3
i

]
(e−λ2t − eλ2t )(e−λ2t ′ − eλ2t ′

)

− c2
i

16ω2
i

kBT (e−λ2t − eλ2t )e−λ4t ′ + c2
i

16ω2
i

kBT (e−λ2t − eλ2t )eλ4t ′

− c2
i

16ω2
i

kBTe−λ4t (e−λ2t ′ − eλ2t ′
) + c2

i

16ω2
i

kBTeλ4t (e−λ2t ′ − eλ2t ′
)

+ c2
i (γ̇ + ωi )

16ω3
i

kBT (e−λ4(t−t ′ ) + e−λ4(t−t ′ ) − e−λ4(t+t ′ ) − eλ4(t+t ′ ) ) (A10)

and

〈Fy(t )Fy(t ′)〉 =
∑

i

{
c2

i

8ω2
i

(eλ2t + e−λ2t )(eλ2t ′ + e−λ2t ′
) + c2

i

8ω4
i

(eλ4t + e−λ4t )(eλ4t ′ + e−λ4t ′
)

−
[

c2
i

8ω2
i

+ γ̇
c2

i

8ω3
i

]
(eλ2t − e−λ2t )(eλ2t ′ − e−λ2t ′

) +
[

− c2
i

8ω2
i

+ γ̇
c2

i

8ω3
i

]
(eλ4t − e−λ4t )(eλ4t ′ − e−λ4t ′

)

}
. (A11)
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As we are in the low shear-rate regime, then the eigenvalues become

λ2 = i

(
ωi − γ̇

2
− γ̇ 2

8ωi

)
,

λ4 = i

(
ωi + γ̇

2
− γ̇ 2

8ωi

)
, (A12)

and the exponential factors then read

eλ2t − e−λ2t = 2i sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
,

eλ4t − e−λ4t = 2i sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
,

eλ2t + e−λ2t = 2 cos

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
,

eλ4t + e−λ4t = 2 cos

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
. (A13)

By grouping the terms having the same coefficients, and performing some algebraic manipulations using standard trigono-
metric identities, then Eq. (48) is found.

b. Nonequilibrium initial conditions

In this case, the Boltzmann averages are〈(
c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) − ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)2〉
= −c2

i kBT

16ω2
i

+ γ̇
c2

i kBT

16ω3
i

+ γ̇ 2 c2
i

4ω4
i

kBT, (A14)

〈(
− c2

i

4ωi
√−ωi(γ̇ + ωi )

Qy(0) + ci
√−ωi(γ̇ + ωi )

4ωi
qy(0)

)2〉
= −c2

i kBT

16ω2
i

− γ̇
c2

i kBT

16ω3
i

+ γ̇ 2 c2
i

4ω4
i

kBT, (A15)

〈(
c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) − ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)(
− c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) + ci

√
ωi(γ̇ − ωi )

4ωi
qy(0)

)〉

= c2
i kBT

16ω2
i

+ γ̇ 2 7c2
i

32ω4
i

kBT, (A16)

〈
p2

x(0)
〉 = kBT + 4γ̇ 2

ω4
i

, (A17)〈(
c2

i

4ωi
√

ωi(γ̇ + ωi )
Qy(0) − ci

√
ωi(γ̇ + ωi )

4ωi
qy(0)

)
px(0)

〉
= γ̇

ci

2iω2
i

, (A18)

〈(
− c2

i

4ωi
√

ωi(γ̇ − ωi )
Qy(0) + ci

√
ωi(γ̇ + ωi )

4ωi
qy(0)

)
px(0)

〉
= −γ̇

ci

2iω2
i

, (A19)

and 〈( −c2
i Qy(0)

4ωi(γ̇ + ωi )
+ ci

4
qy(0) − ci

4ωi
px

)2〉
= c2

i

8ω2
i

+ γ̇
c2

i

4ω3
i

kBT + γ̇ 2 c2
i

2ω4
i

kBT, (A20)

〈(
c2

i Qy(0)

4ωi(γ̇ − ωi )
+ ci

4
qy(0) + ci

4ωi
px

)2〉
= c2

i

8ω2
i

− γ̇
c2

i

4ω3
i

kBT + γ̇ 2 c2
i

2ω4
i

kBT, (A21)

〈(
c2

i

4ωi
√−ωi(γ̇ + ωi )

− ciωiqx(0)

4
√−ωi(γ̇ + ωi )

+ ci√−ωi(γ̇ + ωi )
py(0)

)2〉
= − ci

8ω2
i

+ γ̇
ci

8ω3
i

− γ̇ 2 ci

8ω4
i

, (A22)

〈(
− c2

i

4ωi
√

ωi(γ̇ − ωi )
+ ciωiqx(0)

4
√

ωi(γ̇ − ωi )
+ ci√−ωi(γ̇ + ωi )

py(0)

)2〉
= − ci

8ω2
i

− γ̇
ci

8ω3
i

− γ̇ 2 ci

8ω4
i

. (A23)

The other products do not contribute as their average is proportional to the tagged particle’s initial conditions.
As in this case there are some additional terms with nonzero Boltzmann average, then it is possible to take the FDT computed

with equilibrium initial conditions and then just add the new terms.
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We first take the x component and the terms in Eqs. (A14)–(A16), which give

c2
i

4ω2
i

kBT

[
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)
+ sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)

− sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)
− sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)]

+ γ̇
c2

i

4ω2
i

kBT

[
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)
− sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)

× sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)]
− γ̇ 2 c2

i

4ω4
i

kBT

[
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)

+ sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)
+ 7

8
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)

+ 7

8
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)]
. (A24)

Then we analyze the extra term coming from 〈p2
x(0)〉 in Eq. (A17),

γ̇ 2 c2
i

ω2
i

kBT

[
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

))
+ sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

))

+ sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)
+ sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
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2
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)
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(A25)

and from the mixed products in Eqs. (A18) and (A19) that give

c2
i

ω2
i

kBT

[
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)
− sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)]

+ γ̇
c2

i

2ω3
i

kBT

[
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)
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((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
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((
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2
− γ̇ 2

8ωi

)
t ′
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+ γ̇ 2 c2
i
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i
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)
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2
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)
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)
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2
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)
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.

(A26)

In 〈Fy(t )Fy(t ′)〉, the additional terms come from Eqs. (A20) and (A21),

γ̇
c2

i

ω3
i

kBT

[
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((
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2
− γ̇ 2

8ωi

)
t

)
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((
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2
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2
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)
t

)
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+ 2γ̇ 2 c2
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2
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)
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)
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)
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)]
(A27)

and those from Eqs. (A22) and (A23) are
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)
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+ γ̇ 2 c2
i

2ω4
i

kBT

[
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi + γ̇

2
− γ̇ 2

8ωi

)
t ′

)

− sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t

)
sin

((
ωi − γ̇

2
− γ̇ 2

8ωi

)
t ′

)]
. (A28)

By plugging these terms into Eq. (48) and by performing standard trigonometric manipulations, Eq. (52) is found.
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