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Deep learning method of stochastic reconstruction of three-dimensional digital cores
from a two-dimensional image
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Digital cores can characterize the true internal structure of rocks at the pore scale. This method has become
one of the most effective ways to quantitatively analyze the pore structure and other properties of digital cores in
rock physics and petroleum science. Deep learning can precisely extract features from training images for a rapid
reconstruction of digital cores. Usually, the reconstruction of three-dimensional (3D) digital cores is performed
by optimization using generative adversarial networks. The training data required for the 3D reconstruction are
3D training images. In practice, two-dimensional (2D) imaging devices are widely used because they can achieve
faster imaging, higher resolution, and easier identification of different rock phases, so replacing 3D images with
2D ones avoids the difficulty of acquiring 3D images. In this paper, we propose a method, named EWGAN-GP,
for the reconstruction of 3D structures from a 2D image. Our proposed method includes an encoder, a generator,
and three discriminators. The main purpose of the encoder is to extract statistical features of a 2D image. The
generator extends the extracted features into 3D data structures. Meanwhile, the three discriminators have been
designed to gauge the similarity of morphological characteristics between cross sections of the reconstructed
3D structure and the real image. The porosity loss function is used to control the distribution of each phase in
general. In the entire optimization process, a strategy using Wasserstein distance with gradient penalty makes
the convergence of the training process faster and the reconstruction result more stable; it also avoids the
problems of gradient disappearance and mode collapse. Finally, the reconstructed 3D structure and the target 3D
structure are visualized to ascertain their similar morphologies. The morphological parameter indicators of the
reconstructed 3D structure were consistent with those of the target 3D structure. The microstructure parameters
of the 3D structure were also compared and analyzed. The proposed method can achieve accurate and stable 3D
reconstruction compared with classical stochastic methods of image reconstruction.
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I. INTRODUCTION

The microstructure of porous media and the physical prop-
erties of solids and fluids determine several macroscopic
properties of the media [1–3]. These properties include petro-
physical properties and transport properties in the oil reservoir
[4–6], such as pore structures, permeability, electrical conduc-
tivity, wettability, capillary pressure, and relative permeability.
In many fields of technology [7,8], understanding and sim-
ulating the internal structure of porous media is of great
theoretical and practical significance. In recent years, three-
dimensional (3D) imaging methods, such as x-ray computed
tomography (CT) [9–11] and focused ion beam scanning elec-
tron microscope [12] have made rapid progress, which allow
us to directly obtain 3D images of rocks ranging from the mi-
crometer to nanometer scale. However, two-dimensional (2D)
imaging devices have advantages of low cost, fast scanning
speed, and higher resolution. Therefore, for the analysis of
3D microstructures, it is important to reconstruct statistically
equivalent 3D images from the 2D images [13,14].
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In recent decades, a variety of methods have been pro-
posed and developed for reconstruction of porous media.
The primary algorithms include optimization-based methods
[13–26], multiple-point statistical method (MPS) [27], direct
sampling (DS) [28,29], cross-correlation-based simulation
[30–32], and deep learning-based methods [33–37]. It is gen-
erally known that the premise of these reconstruction methods
is that 2D training images must satisfy the requirements of sta-
tionarity and ergodicity. It means that the 2D images must be
able to statistically characterize the features of the entire 3D
images [38,39]. Although starting from different perspectives,
the core idea of these methods is the same, i.e., they extract
morphological features (e.g., two-point correlation function or
MPS function) from a given 2D training image or 3D image,
and then they reproduce these features in the 3D reconstructed
image.

A typical example of optimization-based methods is the
simulated annealing (SA) method [13,14], which is a general
and flexible method and has been used in the reconstruction
of porous media. It can use any number of cost functions
of any type as the objective function. To improve the ini-
tially developed SA algorithm, a multitude of scholars have
successively proposed various optimization methods, includ-
ing hierarchical simulated annealing [15–17], multithread
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SA algorithm [20,21], higher-order correlation functions
[17,22,23], weighted correlation function [24–26], and co-
occurrence correlation function [40].

The MPS method is another classical and commonly used
reconstruction method. The original MPS [27] extracts local
multiple-point features by scanning a training image with a
specific template to obtain the probability of the center pixel
conditioned on its neighborhood pixels. Owing to the use of
multiple-point information, MPS effectively reproduces the
morphology of porous media (e.g., geometry and connec-
tivity) very well, especially for digital cores with complex
geometries. The original MPS requires rescanning the train-
ing image using a template for each new data event, which
makes the reconstruction process extremely time-consuming.
To overcome this shortcoming, some special methods, such as
single normal equation simulation [41], layer-by-layer recon-
struction method [42], DS method [28,29], and MPS method
accelerated based on deep learning (DL) [22] can be intro-
duced.

With the emergence and rapid development of DL [43],
original ideas and innovative methods have emerged. Owing
to the powerful ability of DL to extract features from training
images and to accelerate the speed of reconstruction based
on GPU frameworks, the rapid development of DL brings
another direction for the reconstruction of digital cores. Thus,
by designing a reasonable network structure, the parameters
of a network can be automatically learned according to the
cost functions, which frees us from the complexity of manual
feature designs. Another important advantage is that once
a network has been trained, input images are reconstructed
immediately.

Moreover, there have been several recent developments in
deep generative models. All these approaches have shown sat-
isfactory results in generating natural images because the deep
hierarchical structure can capture the complex structure of the
data; they can generate more realistic data than the traditional
generative models. The most dominant generative models are
variational autoencoders (VAEs) [44] and generative adversar-
ial networks (GANs) [45]. VAEs pair the coding network with
the decoding network or generative network, and their loss
functions are expressed as mean squared errors; the generated
images tend to be blurred. GANs are unsupervised generative
methods with a powerful ability to learn data characteristics.

The two models of GANs are trained simultaneously: a
generative model to synthesize the image and a discriminative
model to distinguish the real image from the synthesized
one. Although GANs can generate relatively clear images,
their lack of convergence is problematic. The prominent
conundrums of GANs are gradient disappearance, gradient
explosion, and mode collapse [46], which make the train-
ing process relatively unstable. Currently, a lot of work has
been devoted to enhance the quality of the generated images.
The conditional GAN (CGAN) [47] improves the mapping
problem by adding conditional probability to generators and
discriminators. In addition to improving the quality of gen-
erated data, it is also necessary to match the generated data
with the conditions in CGAN. The principle of deep convo-
lutional GAN (DCGAN) [48] is basically the same as that
of GAN, but it replaces the original multilayer perceptron of
the generator and discriminator with a convolutional neural

network [49]. This method greatly enhances the quality of
the generated images and accelerates the convergence speed.
Wasserstein GAN (WGAN) [50] brings the Earth mover dis-
tance into measuring the minimum distance of each joint
distribution between the real and the generated images, which
theoretically improves the instability of GANs in the training
process. Although WGAN has made better progress in terms
of stable training, the generated samples are sometimes poor,
owing to the use of the weight clipping strategy to force the
discriminator to meet the judgment. Therefore, Wasserstein
GAN with gradient penalty (WGAN-GP) [51] is a strategy
that uses Wasserstein distance as the loss function and gra-
dient penalty as the Lipschitz constraint so the discriminator
network in GAN does not perform the classification task but
acts as a critic. The method makes the training of WGAN
more stable and generates higher quality images. Therefore,
GANs have a wide application prospect in the aspect of 3D
core reconstruction.

Mosser et al. [52] applied a GAN to reconstruct the solid-
void image of porous media with a size of 643, which allowed
implicitly characterizing the probability distribution of 3D
image data sets. Subsequently, they extended this method
to generate oolitic Ketton limestone micro-CT unsegmented
gray-scale images [53]. The results showed that GANs can ef-
fectively and accurately generate 3D images of porous media
with statistical properties and morphological characteristics
similar to those of the training images. Shams et al. [54]
combined CGAN with a statistical methodology to generate
homogeneous and heterogeneous 3D porous media from a
2D image. The reconstruction time was accelerated to nearly
1000-fold using CGANs compared with traditional statisti-
cal reconstruction methods. Feng et al. [55] proposed an
end-to-end 3D reconstruction framework using Bicycle-GAN,
which can achieve the reconstruction of statistically equiv-
alent 3D structures from a 2D image. They validated the
reconstruction results on two isotropic media and a nonsta-
tionary porous medium. The method achieved fast, accurate,
and stable reconstruction. Zhang et al. [56] proposed a hybrid
reconstruction model from a 2D image to a 3D porous media.
This method combined the VAE and GAN. Meanwhile, Zhang
et al. [57] combined the advantages of GAN and VAE to re-
construct 3D digital cores. To generate diverse 3D images and
alleviate mode collapse of GANs, determinantal point process
was used for feature extraction by the discriminator. Zha
et al. [58] applied Wasserstein GANs with gradient penalty
(WGAN-GP) to reconstruct 2D shale images. The training
time was much shorter when this method was used to avoid the
gradient disappearance of GANs. Valsecchi et al. [59] intro-
duced an algorithm for reconstructing 3D porous media from
2D images by utilizing GAN. The discriminator of the model
evaluated the three sections of a 3D image with existing 2D
images. Volkhonskiy et al. [60] also proposed a depth genera-
tive model with encoder, generator, and discriminator modules
to recover the entire 3D structure based on given central 2D
slices. Zhang et al. [61] presented a 3D reconstruction algo-
rithm of porous media using an improved WGAN-GP with
3D images as training data sets, which greatly improved the
efficiency and image quality of 3D reconstruction. Cao et al.
[62] designed a combined model of InfoGAN and style-based
GAN leaded by prior information (CISGAN) to generate more
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manageable and reasonable large-size digital rocks based on
small sample sets. The model utilized the Wasserstein distance
as the loss function and the gradient penalty as the constraint
to resolve the problem of gradient instability. Li et al. [63]
applied WGAN-GP to reconstruct rocks of Berea sandstone
and Ketton limestone from 2D to 2D images and extended
the size from 64×64 pixels to 128×128 pixels. However, the
training data in the above 3D reconstruction were 3D images.

In this paper, we take advantage of homogeneous and
isotropic 2D digital core images to automatically extract the
statistical features of 2D images through feature learning,
and we reconstruct 3D images with similar statistical features
based on a generative adversarial approach. Therefore, this
paper introduces an improved method that combines the en-
coder of VAE and WGAN-GP to generate 3D digital cores
from 2D core images, and is named EWGAN-GP. The model
consists of an encoder, a generator, and three discriminators.
We collapse the VAE decoder and WGAN generator into one
by letting them share parameters and training them jointly.
The VAE encoder is used to extract the statistical features of a
2D image, and the generator extends these features to the 3D
image data. While estimating the features of the 3D image,
three discriminators are applied to judge the reconstruction
effect of each slice along three orthogonal directions (x, y, z).
The porosity loss function is utilized to constrain structures of
3D images as a whole. In the optimization processes of the
encoder, generator, and discriminators, the strategy based on
WGAN-GP makes the training process converge faster and
the reconstruction results more stable. The proposed method
circumvents the problems of reconstruction, such as gradi-
ent disappearance, mode collapse, and gradient explosion. To
demonstrate the generative capability of the model on differ-
ent cores, we conducted tests on five kinds of core images.
In addition, we visualized and quantitatively compared the
generated 3D image with the target image.

The rest of this paper is organized as follows.
Section II elaborates the designed core reconstruction method
and framework. The assessment methods for reconstruction
are given in Sec. III. Section IV presents the reconstructed
results and analysis. In Sec. V, we make a summary.

II. METHODOLOGY

Here, we first introduce the motivation of our proposed
model. Next, the principles of VAE and GAN are elaborated.
Second, we describe the framework for reconstructing 3D
digital cores from 2D images, including the main principles
and network structure, as well as the loss function. Finally, we
develop the training algorithm of this model.

A. Motivation

Cores from different reservoirs in various regions dif-
fer significantly in morphology and also in quantity, which
creates the following problems. First, it is difficult to find
adequate 3D images for training, such as for sandstones, car-
bonates, shales, and fractures. Second, the core material of
some old reservoirs changes with time, but the bulk of stored
core 2D images will be preserved. Therefore, since a large
number of 2D images have been accumulated, it is of great

FIG. 1. Architecture of VAE.

research significance and application value to make full use
of the 2D data of these cores.

B. Basic principles of VAE and GAN

1. Introduction to VAE

A VAE is a generative model that combines the character-
istics of DL and statistical learning. It exploits the powerful
ability of deep models in fitting nonlinearities. It is often
used for feature extraction and dimensionality reduction of
data. A VAE is composed of an encoder and a decoder, and
its structure is shown in Fig. 1. The elementwise product is
denoted by �. The input image x is encoded into a latent
vector z, then the decoder gets the output image x̂ by decoding
the resultant latent vector z.

The encoder forecasts the probability distribution function
qφ (z | x) of the input image x, where φ are the variational
parameters. The decoder forecasts the probability distribution
function pθ (x̂ | z) of the output image x̂, where θ are the
generative model parameters. The definitions of qφ (z | x) and
pθ (x̂ | z) are as follows:

z ∼ encoder(x) = qφ (z | x), (1a)

x̂ ∼ decoder(z) = pθ (x̂ | z), (1b)

where encoder(·) and decoder(·) represent the encoding and
the decoding functions, respectively.

The definition of the loss function in VAE [44] is defined
as

LVAE = Eqφ (z|x)[log pθ (x̂ | z)] − DKL(qφ (z | x) ‖ pθ (z)),
(2)

where the prior probabilities are the multivariate Gaussian
normal distribution model, i.e., pθ (z) ∼ N (z; 0, I ). The first
term in the loss function of VAE is the reconstruction error,
which aims to make the generated image less different from
the input image. The second term is a regularizer, which
makes the distribution returned by the encoder close to the
standard normal distribution, also known as the Kullback-
Leibler (KL) divergence.

2. Introduction to GAN

In 2014, Goodfellow et al. [45] proposed GANs, which
can reproducibly and creatively generate a large number of
images that meet the needs of image generation. They have
been applied in many areas, including image inpainting [64],
super-resolution [65,66], and style transfer [67]. The basic
structure of GAN is shown in Fig. 2.

The original GANs include two models: a generator and
discriminator. The input of the generator is a normally dis-
tributed random vector Z, and the output is the generated fake
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FIG. 2. Architecture of GAN.

image. The data distribution of the generated fake image is
denoted by pG(x; θ ), where the parameters θ are determined
by the network parameters. The distribution of the real data
is pdata(x). The ultimate goal of adversarial training is to find
the θ that makes the distribution pG(x; θ ) approximate to the
distribution pdata(x). The discriminator determines whether
the input image is from real data or from a fake one, and
then outputs a scalar value of 0 or 1. The purpose of training
a discriminator is to assign the correct labels to the training
image and generated one. The aim of training a generator
is to make the generated image close to the real one so the
discriminator cannot estimate whether the input is real or not.
The definition of loss function for GANs is a minimization-
maximization problem described as

min
G

max
D

V (D, G) = Ex∼pdata (x)[log D(x)]

+ Ez∼pz (z)[log(1 − D(G(z)))]. (3)

The training of GANs is a two-step process. In the first
step, the parameters of the generator are fixed and the dis-
criminator is trained to maximize

LD = Ex∼pdata (x)[log D(x)]

+ Ez∼pz (z)[log(1 − D(G(z)))]. (4)

In the second step, the parameters of the discriminator
are fixed. The ”fake” images G(z) are generated by the gen-
erator from the hidden latent space Z. The latent space is
comprised of independent normally or uniformly distributed
random variables. The generator is trained to minimize

LG = Ez∼pz (z)[log(1 − D(G(z)))]. (5)

In general, we do not minimize the Generator but maximize
it.

The solutions to this optimization problem have been
proved to be a Nash equilibrium in which each participant
reaches a local minimum of the designed loss function. The
key problem of GANs is how to train the generator and dis-
criminator. The fake data produced by the generator can fool
the discriminator with falsehoods, but the discriminator can
also judge the fake data produced by the generator. GANs
exhibit a high degree of instability during training and require
a lot of debugging to find a set of hyperparameters that achieve
stable training. Many researchers have published heuristic
methods that have been fulfilled to stabilize GANs training,
such as one-sided label smoothing or adding white noise to
the input layer of the networks.

C. Structure of EWGAN-GP

The reconstruction of a 3D image from a 2D image is
essentially a problem of dimensional expansion. We know
that the 2D image is one of the 3D images, and a 2D image
should correspond to a number of 3D structures. Therefore,
we reconstruct 3D structures with similar features based on
the statistical features of 2D images. The first requirement of
the reconstruction is to accurately extract the required statis-
tical features from 2D images using DL methods. The second
one is to reproduce the statistical features of 2D images into
3D structures using dimensional expansion methods. These
two requirements can be naturally associated with the encoder
model for extracting image features and the GAN model
for generating images. However, the GANs mentioned above
have a lot of disadvantages, such as training instability and
model collapse. If two models are simply concatenated, they
do not satisfy the design requirements. Below we introduce
our method in detail.

According to 2D-to-3D reconstruction requirement, we
put forward the EWGAN-GP network frameworks shown in
Fig. 3. The symbol ⊕ represents the addition of the corre-
sponding elements of vectors. Our proposed method consists
of three parts: (i) an encoder E , (ii) a generator G, and (iii)
three discriminators Dxy, Dyz, and Dzx. The main function of
the encoder E is to extract the statistical features of a 2D
image. The encoder E learns the mapping between the input
image x2D and the latent vector space Zenc. The mapping
is denoted as the distribution p(zenc|x2D). The generator G
generates a 3D structure x̃G by feeding the combination of
the sampled latent vector zenc and the Gaussian noise znoise

to the generator G. For homogeneous and isotropic cores, all
of their cross sections along three orthogonal directions (x, y,
z) have similar morphological and statistical properties to the
2D images. Therefore, to compare the similarity between the
generated 3D structure with the 2D image, we design three
discriminators to judge the discrepancy between all cross sec-
tions of the generated 3D structure along the three orthogonal
directions (x, y, z) and the input 2D image. To constrain the
pore properties of 3D structures as a whole, we propose a
porosity loss function, and we will elaborate on the networks
of the EWGAN-GP, loss functions, and the training algorithm.

1. Architecture of encoder

The network structure of the encoder is shown in Fig. 4.
The encoder removes the redundant information in the 2D
image so as to achieve the purpose of dimensionality re-
duction. For the input 2D image, the encoder extracts the
statistical properties of the image in terms of the mean μ and
the standard deviation σ, and then randomly samples to obtain
the actual encoding zenc. The encoder includes six downsam-
pling layers, each consisting of a 2D convolution (Conv2D)
function, a leaky rectified linear unit (LeakyReLU) activa-
tion function, and a batch normalization (BatchNorm2D)
function. The start and end downsampling layers do not in-
corporate the BatchNorm2D function. The Conv2D is a 2D
convolution function that uses a convolution kernel to tra-
verse the input image to extract the features of the data. We
choose LeakyReLU as the activation function, so the infor-
mation will not be lost when the input information is less
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FIG. 3. Architecture of EWGAN-GP.

than 0. The LeakyReLU activation function gives a negative
slope for the negative part, which alleviates the problem of
gradient disappearance and expands the range of function
representation. Assuming that x denotes the data computed
by the network, the mathematical formula of the activation
function is

LeakyReLU(x) =
{

x, x � 0
αx, x < 0, α ∈ (0, 1), (6)

where α controls the gradient of the negative part of the
linear function. The role of the BatchNorm2D function is to
ensure that the input of each layer of the neural network keeps
the same distribution during the training. Meanwhile, it can
alleviate the difficulty of training the neural network and speed
up the learning process. The main parameters of the encoder
are listed in Table I.

2. Architecture of generator

The function of the generator is to produce the corre-
sponding 3D structure from the extracted 2D image features
(represented by latent vectors). The network structure of the

FIG. 4. Architecture of encoder.

generator is given in Fig. 5. The generator is composed of
six 3D transposed convolution (ConvTranspose3D) functions,
which extend the dimension from two dimensions to three
dimensions. After each 3D transposed convolution opera-
tion, a batch normalization (BatchNorm3D) function is added.
Considering the complexity of the network, we choose the
ReLU activation function without worrying about information
loss. To make the training more effective and to increase the
diversity of the output, we add Gaussian noise to the input
layer. For the last layer of the network, we only adopt the
ConvTranspose3D function and the hyperbolic tangent func-
tion Tanh, so the real values of our final output are limited
between −1 to 1. The activation function Tanh is an s-shaped
saturated activation function. If x denotes the data computed
by the neural network, then

Tanh(x) = ex − e−x

ex + e−x
. (7)

Therefore, as the last layer of the generator, the activa-
tion function Tanh normalizes the calculation results into
(−1, 1). These functions are more controllable than ReLU
functions. The main parameters of the generator are given in
Table II.

3. Architecture of discriminators

The generated 3D structure has similar statistical and
morphological features to the 2D image. It means the three
orthogonal sections of the 3D structure also have simi-
lar morphological features to the 2D image. The designed
discriminators are used to compare each of the three or-
thogonal sections of the 3D structure with the 2D image.
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TABLE I. Main parameters of encoder.

Layer Function Filers Kernel Stride Padding Batch Normal Activation

1 Conv2D 64 4 2 1 No LeakyReLU
2 Conv2D 128 4 2 1 Yes LeakyReLU
3 Conv2D 256 4 2 1 Yes LeakyReLU
4 Conv2D 512 4 2 1 Yes LeakyReLU
5 Conv2D 1024 4 2 1 Yes LeakyReLU
6 Conv2D 128 4 1 0 No No

Accordingly, we construct three discriminators Dxy, Dyz, Dzx,
which, respectively, assess the difference between the 2D
training image and the slices of the 3D structure along three
orthogonal directions. The network structure of the three dis-
criminators is the same because all three slices of the 3D
structure are compared with the 2D training image. The net-
work structure of the corresponding discriminator is provided
in Fig. 6. For the generated cube volume with edge length
l pixels, a total of 3l 2D slices can be obtained by slicing one
pixel along the x, y, and z directions. For each generated 3D
structure, the three discriminators can compare each slice with
the correspondent 2D training image. Because the objective of
the discriminators is to differentiate the real images from the
slices, the core of the network is implemented by a series of
2D convolution (Conv2D) functions. After each convolution
operation, a nonlinear activation function ReLU is appended.
The discriminators not only need to meet Lipschitz continuity
[68], but also their gradient must be limited to a certain nu-
merical range. Here we apply gradient penalty to each sample
in each batch. We do not use batch normalization functions
here since they may break the Lipschitz continuity of the
discriminator. The main parameters of the discriminator are
given in Table III.

D. Loss functions

The loss functions are an essential part of DL. Well-
designed loss functions help the network to converge fast and
get good generalizability results. The loss function of VAE in
EWGAN-GP is defined as

LVAE = Lpixel
like + Lprior. (8)

The loss function Lpixel
like of VAE describes the difference

between the generated image and the input image in each
layer; Lprior is the KL divergence, which makes the distribu-
tion returned by the encoder approximate the standard normal
distribution.

According to the literature of GANs [68], when the dis-
criminator reaches optimality, the optimized cost function is

FIG. 5. Architecture of generator.

expressed by JS divergence, i.e.,

L∗ = 2DJS(pdata ‖ pG) − 2 lg 2, (9)

where pdata denotes the distribution of the real data, and pG the
distribution of the generated data. Jensen-Shannon divergence
(JS divergence) is a non-symmetric measurement of similarity
between two distributions, which is defined as

DJS(pdata ‖ pG) = 1

2
KL

(
pdata

∥∥∥∥ pdata + pG

2

)

+ 1

2
KL

(
pG

∥∥∥∥ pdata + pG

2

)
,

where KL is the Kullback-Leibler divergence (KL divergence)
defined by the following equation

KL(pdata ‖ pG) = Ex∼pdata (x)

[
log

(
pdata

pG

)]
.

Under the condition of optimal discriminator, the loss
function LG of the generator is equated to minimize the JS
divergence between the distribution pdata of the real data and
the distribution pG of the generated data. However, due to the
small overlap between pdata and pG in the high-dimensional
space, it is difficult to let pG approximate to pdata by optimiz-
ing JS divergence. This will lead to the gradient disappearance
and training instability of GANs.

The WGAN provides an efficient distance measure be-
tween real and generated data by minimizing the Wasserstein
distance W (pG, pdata ). Compared with the JS divergence, the
advantage of this distance is that it reflects the proximity
of the two distributions even if there is no overlap between
them. This distance can be considered as the minimum cost of
transferring the generated data distribution pG to the real data
distribution pdata. Ideally, W (pG, pdata ) is always continuous
and differentiable, which can be expressed as

W (pG, pdata ) = 1

K
sup

‖ f ‖L�K
Ex∼pdata (x)[ f (x)] − Ex̃∼pG(x̃)[ f (x̃)],

(10)

where the supremum is over all the K-Lipschitz functions f ,
and x̃ represents the generated data, which is equal to G(z).
The function f can be fitted with a neural network and K
exists by limiting all parameters in the neural network to a
certain range.

The Lipschitz constraint is implemented by directly con-
trolling the gradient norm of the discriminator’s output. To
simplify this constraint and improve the training speed, we
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TABLE II. Main parameters of generator.

Layer Function Filers Kernel Stride Padding Batch Normal Activation

1 ConvTranspose3D 512 4 2 0 Yes ReLU
2 ConvTranspose3D 256 4 2 1 Yes ReLU

3 ConvTranspose3D 128 4 2 1 Yes ReLU

4 ConvTranspose3D 64 4 2 1 Yes ReLU

5 ConvTranspose3D 32 4 2 1 Yes ReLU

6 ConvTranspose3D 1 4 1 1 No Tanh

think of directly controlling the gradient norm of the discrim-
inator’s output regarding its input. Let px̂ be the distribution
of x̂, where x̂ is the uniform sampling on the line between real
data and generated data. The loss function of the discriminator
in WGAN-GP is obtained as

LD = E
x̃∼pG

[D(x̃)] − E
x∼pr

[D(x)]

+ λ E
x̂∼px̂

[(‖ ∇x̂D(x̂)‖2 − 1)2], (11)

where λ is a constant (generally given the value 10).
The loss function of the generator in WGAN-GP is

LG = − E
x̃∼pG

[D(x̃)]. (12)

During training, the stochastic Adam optimizes the param-
eters of the discriminator and generator by iteratively updating
LD and LG, respectively.

In this method, Wasserstein distance with gradient penalty
is taken here as a measure of the similarity between the gen-
erated and the real images. The reconstruction loss function
Lrec of the generator G and slice loss functions of the three
discriminators Ldis(Dxy, Dyz, Dzx ) are given below.

The loss function Lrec of the generator G is defined as

Lrec(G) = −E[Dxy((G(E (x), znoise)) · Sxy)]

− E[Dyz((G(E (x), znoise)) · Syz )]

− E[Dzx((G(E (x), znoise)) · Szx )]. (13)

The generated 3D structure is sent to the discriminators.
This function is used to compute the reconstruction loss along
three orthogonal directions, where the symbol · indicates the
slicing operation along the x, y, and z directions.

The loss function Ldis(Dxy, Dyz, Dzx ) of the three discrimi-
nators Dxy, Dyz, and Dzx is defined as

Ldis(Dxy, Dyz, Dzx ) = −L′
dis + L′′

dis + λL′′′
dis, (14)

where λ is set as 10.
(1) The loss functions calculated by the three discrimina-

tors for training images are

L′
dis = E[Dxy(x)] + E[Dyz(x)] + E[Dzx(x)]. (15)

(2) Given a training image xr , the corresponding generated
3D structure is xG ∼ G(E (xr ), znoise). The loss functions cal-
culated by the three discriminators for the slices along three
orthogonal directions of the generated 3D structure xG are

L′′
dis = E[Dxy(xG · Sxy)] + E[Dyz(xG · Syz )]

+ E[Dzx(xG · Szx )]. (16)

(3) Given a training image xr , the corresponding gener-
ated 3D structure is xG ∼ G(E (xr ), znoise). Let εxy, εyz, εzx ∈
U [0, 1] be randomly selected numbers, then randomly se-
lected samples x̂yz, x̂zx, x̂xy along the x, y, and z directions,
respectively, are expressed as

x̂yz = εyzxr + (1 − εyz )(xG · Syz ),

x̂zx = εzxxr + (1 − εzx )(xG · Szx ),

x̂xy = εxyxr + (1 − εxy)(xG · Sxy).

(17)

The evaluation of the discriminators for the selected sam-
ples can be calculated using the formula

L′′′
Dis = E[(‖∇x̂xy Dxy(x̂xy)‖

2
− 1)2]

+ E[(‖∇x̂yz Dyz(x̂yz )‖
2
− 1)2]

+ E[(‖∇x̂zx Dzx(x̂zx )‖2 − 1)2]. (18)

For the generated 3D structure, we implement constraints
on the statistical and morphological features in three direc-
tional slices. In order to better evaluate the 3D structure as
a whole, we compare the porosity between the 2D and 3D
images, so that the porosity of the generated 3D structure
better approximates the porosity of the training image. The
proposed porosity loss function is defined as

Lporosity = ‖(G
(
E (x), znoise))porosity − xporosity‖2

2 (19)

Therefore, the loss functions of the whole network are

Ltotal(E , G, D) = LVAE + Ldis(Dxy, Dyz, Dzx )

+ Lrec(G) + λporosityLporosity, (20)

where λporosity is the weighting factor of the porosity loss
function.

The complete training procedure about EWGAN-GP struc-
ture is described in Algorithm 1.

FIG. 6. Architecture of discriminator.
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TABLE III. Main parameters of discriminator.

Layer Function Filers Kernel Stride Padding Activation

1 Conv2D 32 4 2 1 ReLU
2 Conv2D 64 4 2 1 ReLU
3 Conv2D 128 4 2 1 ReLU
4 Conv2D 256 4 2 1 ReLU
5 Conv2D 512 4 2 1 ReLU
6 Conv2D 1 4 1 0 No

III. RECONSTRUCTION EVALUATION CRITERIA

In this paper, to validate the reconstruction performance
of the proposed method, we compared statistical feature
functions and morphological descriptors, including two-point
correlation function, lineal-path function, two-point cluster
function and local porosity distribution (LPD) function, as
shown in Fig. 7. Before introducing the experimental results,
we make a brief presentation of the morphological descriptors.

A. Morphological descriptors

Regarding correlation functions, we primarily adopted
Torquato’s definition [1]. Here, we are mainly concerned
with two-phase cores. In the n−dimensional Euclidean space
Rn(n = 1, 2, 3), the indicator function of position u is defined
as

I (i)(u) =
{

1, u ∈ Vi

0, u ∈ V̄i,
(21)

where Vi ∈ Rn is the region covered by phase i (equal to 1
or 2) and V̄i ∈ Rn is the region covered by the other phase.

Figure 7 depicts the definitions of the two-point corre-
lation function, the lineal-path function, and the two-point
cluster function. The two-point correlation function S2(u1, u2)
[1] represents the correlation between two randomly selected
points u1 and u2 in spatial distribution. The probability that
two points are located to the same phase is defined as

S2(u1, u2) = 〈I (u1)I (u2)〉, (22)

where angular brackets 〈·〉 express an ensemble average.
For homogeneous and isotropic cores, the two-point corre-

lation function is only related to the distance r = |u1 − u2| of
these two points. This indicates that in a homogeneous core,
the distribution of the two-point correlation function in the
three orthogonal directions (x, y, z) is relatively close. There-
fore, the two-point correlation function of a 2D image can be
used to approximate the two-point correlation function in 3D
space. For convenience, the two-point correlation function is
briefly denoted by S2(r). Usually, r is generally elided and
expressed as S2. When r=0, the two-point correlation function
is the porosity.

The lineal-path function [69] is also denoted as a multiple-
point connectivity probability, which portrays the connectivity
of a phase in the image. The function L(r) represents
the probability that a line segment r of length r = |r| is

Algorithm 1 EWGAN-GP algorithm for the reconstructions of
isotropic cores.

Require: θE , θG, and θD, the trainable parameters for E , G, and D
respectively; the number of discriminator iterations per generator
iteration nD; the batch size m; volume edge length l; the gradient
penalty coefficient λ; the hyperparameter of porosity loss λporosity;
and Adam optimizer hyperparameters α, β1, β2.
1: while θG has not converged do
2: Discriminators training:
3: for t = 0, · · · , nD do
4: for i = 0, · · · , m do
5: Sample {xr} ∼ pr (xr ) a batch of the real data
6: Sample z ∼ p(z) a batch of random noise
7: x f ← GθG (xr, z) generate a 3D volume
8: for a = 1, 2, 3 do
9: for d = 1, · · · , l do
10: x f _a ← 2D slice of x f at depth d along axis a
11: Sample a random number ε ∼ U [0, 1]
12: xrandom ← εx f _a + (1 − ε)xr

13: L(a,d )
D ← DθD (x f _a ) − DθD (xr )
+ λ(‖∇xrandom DθD (xrandom )‖2 − 1)2

14: end for
15: end for
16: θD ← Adam(∇θD

1
m

∑3
a=1

∑l
d=1 L

(a,d )
D )

17: end for
18: end for
19: Generator and encoder training:
20: for i = 0, · · · , m do
21: Sample {xr} ∼ pr (xr ) a batch of the real data
22: zE ← E (xr )
23: Sample z ∼ p(z) a batch of random noise
24: x f ← GθG (xr, z) generate a 3D volume
25: LKL ← DKL(q(zE |xr ) ‖ p(zE ))
26: LD

like ← −Eq(zE |xr )[log pθG (x f |zE )]
27: θE ← Adam(∇θE

1
m (LKL + LD

like ))
28: for a = 1, 2, 3 do
29: for d = 1, · · · , l do
30: x f _a ← 2D slice of x f at depth d along axis a
31: L(a,d )

G ← −DθG (x f _a)
32: Lporosity ←‖ x fporosity

− xrporosity
‖2

2

33: end for
34: end for
35: θG ← Adam(∇θG

1
m

∑3
a=1

∑l
d=1 (L(a,d )

G + λporosityLporosity ))
36: end for
37: end while
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C2(r)

S2(r)

L(r)

Solid

Pore

r

r

r

FIG. 7. Three morphological descriptors.

completely contained in the same phase. Usually, we calculate
the lineal-path function of the 3D structure in three orthogonal
directions. In an isotropic homogeneous core, the lineal-path
function is only related to length r of the line segment r,
so it can be expressed as L(r) or L. For the pore phase, the
lineal-path function can be defined as follows:

L(r) = Prob{I (u) = 1, I (u + 1) = 1, . . ., I (u + r) = 1}.
(23)

When u is the pore phase, then I (u) = 1; the other phase,
then I (u) = 0. It is obvious that the porosity is φ = L(0).

The two-point cluster function C2 [70] is another important
function that depicts the connectivity of a core. The cluster is
an independent connected region in an image. The two-point
cluster function C2 expresses the probability that two points
are in the same cluster. From definitions, C2 represents higher-
order connectivity information than S2.

B. Local porosity distribution

LPD [71,72] is also a generally used method to represent
the geometry of cores. The porosity of each local location is
measured by a measurement unit that traverses the 2D or 3D
image. The local porosity is defined as

φ(r, L) = V [P ∩ K (r, L)]

V [K (r, L)]
, (24)

where P is the pore phase in 2D or 3D image, K (r, L) repre-
sents a measurement unit with an edge length L centered at
the lattice vector r, and V denotes the area or the volume of
the measurement unit. Thus, the LPD can be represented as

μ(φ, L) = 1

m

∑
δ[φ − φ(r, L)], (25)

where m is the sum of times the measurement unit
K (r, L) is traversed. δ(·) is the Dirac function, defined as
δ[φ − φ(r, L)] = {1, φ=φ(r, L)

0, φ �=φ(r, L).

Therefore, μ(φ, L) represents the probability distribution
of the porosity range in [φ, φ + dφ] with a measurement unit
of an edge length L.

The LPD function μ(φ, L) can reflect the homogeneity of
the core to some extent. The measurement results of local
porosity are directly related to the size of the measurement
unit. The curves of the LPD calculated by measurement units
of different sizes are different. When size L of the measure-

ment unit is fixed, the function μ(φ, L) reflects the overall
porosity distribution of the core with porosity φ as the inde-
pendent variable. The concentration of its distribution reflects
the good or bad homogeneity of the 3D structure. The more
concentrated the curve distribution is, the better the homo-
geneity is, and vice versa.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data set and parameter settings

In this paper, we mainly focused on the 3D reconstruction
of two-phase core images. The training data sets used in our
model were composed of 2D images, and they had no corre-
sponding 3D structure.

During model training, the hyperparameter λporosity is given
in Eq. (20) and set to 500. The batch size and the number
of noise channels added are set to 8 and 32, respectively. We
used the Adam optimizer and set the learning rates to 0.0001
for the encoder, generator, and discriminators. We trained
the discriminators twice before training the generator and the
encoder once, iteratively updating their parameters.

B. Results and analyses

To test the effectiveness of the algorithm, we chose five
types of homogeneous core images, including Bentheimer
sandstones, Fontainebleau sandstones with two different
porosities, Berea sandstones, and another type of Ketton lime-
stones. The 2D images with their corresponding 3D structure
were chosen as the test set, and the results are exhibited by
visual and quantitative comparison. In addition, to validate
the stability and precision of the proposed method, we per-
formed ten reconstructions for each 2D image. At the same
time, the results of ten reconstructions and the average values
were compared with the target structure in the light of mor-
phological description functions and LPD. Furthermore, the
3D structural parameters of the reconstructed structure and
the target structure were also analyzed and evaluated. In our
paper, for an isotropic core, three morphological descriptors
were calculated along three orthogonal directions and then
averaged. In our experiments, we primarily focused on 1283

image reconstruction.

1. Bentheimer sandstone reconstruction

Bentheimer sandstones [73] are considered to be ideal
laboratory core samples because they have lateral continuity
and homogeneous block-scale nature. In addition, they have
limited amount of minerals, a constant grain size distribution,
porosity, permeability and dielectrical values, which make
them suitable for experimental research and corresponding
theoretical comparisons. Thus, Bentheimer sandstones were
adopted to verify our method. The size of the selected Ben-
theimer sandstones was 1283 with the resolution 3.004 μm.
The porosity of this sandstone was 0.2222. Further, to account
for the reconstruction effect of our method, we compared our
method with other DL methods [56], here named Zhang’s
method.

A 2D Bentheimer sandstone image with φporosity= 0.2238
was the input for 3D reconstruction. Figure 8 depicts the
comparison of the Bentheimer sandstone image reconstruc-
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(a) Input 2D slice (b) Target (c) Our method

(e) Target’s orthogonal sections (f) Our reconstruction’s orthogonal sections

(d) Zhang’s method

(g) Zhang reconstruction’s orthogonal sections

FIG. 8. Sample 1: Visual comparison of reconstruction results of Bentheimer sandstone.

tion results. Figures 8(a) and 8(b) are the input 2D slice and
target 3D structure, respectively. Figures 8(c) and 8(d) are
two reconstructed 3D structures with our method and Zhang’s
method, respectively. Figures 8(e)–8(g) are the orthogonal
sections of Figs. 8(b) and 8(d), respectively.

The two reconstructed structures resembled the original 3D
structure in the exterior appearance and interior of structure.
In addition, the orthogonal sections of the two reconstructed
3D structures can learn the morphological properties and
textures of the 2D images. From the perspective of visual
inspection, two methods can reproduce the connectivity and
isotropy of sandstone. However, our constructions much re-
semble the target 3D structure according to morphological
characteristics. Thus, we can see that the reconstructed 3D
structure with our method effectively reproduced the connec-
tivity and morphological features of the original 3D structure,
and also could maintain the homogeneity and pore connec-
tivity. Meanwhile, the reconstructed 3D structure showed
continuous constant variation in pore distribution.

However, the visualization and the observation of the target
structure and two reconstructed structures were not suffi-
cient to adequately measure the accuracy and stability of
the proposed method. Therefore, we gave a comprehensive
quantitative comparison below, including some morpholog-
ical descriptor functions and LPDs, and 3D microstructure
pore throat parameters. The capability of the proposed method
was further confirmed.

Compared to the target structure’s porosity 0.2222, the
average porosity of the structures reconstructed by our method
and Zhang’s method are 0.2208 ± 0.0029 (mean ± standard
deviation) and 0.2146 ± 0.0047, respectively. Figures 9(a)–
9(c) show the results of the three morphological descriptors
(i.e., S2, L, and C2) of the target microstructure and two
generated microstructures. Figure 9(d) gives the comparison
of the LPDs. The local porosity has two key values: (i) the
peak value, which always closely corresponds to the porosity
of the core, and (ii) the concentration of the distribution (i.e.,
the width of the curve), which indicates the homogeneity of a
core. In Fig. 9, the blue short dot line represents the average
of the ten reconstructions of Zhang’s method. Both Zhang’s

method and our method can depict statistical features. These
statistical descriptors of the generated microstructures are
consistent with those of the target structure. We can obviously
find that the sizes of the peak value and the concentration
of porosity distributions between the two reconstructed mi-
crostructures and the target images were similar. However, our
method exhibits better behavior than Zhang’s method because
the curve of our method is closer to that of the target 3D
structure.

In addition, the storage and transport properties about the
microstructure are mainly affected by the distribution and
volume of pores, as well as the size and distribution of
the throat connecting the pores. The shape factor is directly
related to the morphology of the pores. The coordination
number and effective permeability reveal the pore connec-
tivity. We contrasted the 3D structure of the target with two
reconstructed structures through some commonly used 3D
microstructure parameters, as listed in Table IV. From the
table, we can find that the parameters of our results are closer
to those of the target CT compared with the results of Zhang’s
method.

From the above analysis, through both visual and quanti-
tative comparisons, our method performs well and produces
different results than Zhang’s method.

2. Fontainebleau sandstone reconstruction

Fontainebleau sandstones [74] are usually chosen as a
reference standard for validating models due to their special
properties. They consist of well-sorted single-crystal quartz
grains. They do not have clay and present only intergranular
pores with multiple variations.

Two kinds of Fontainebleau sandstones with different
porosities were selected here for 3D reconstructions. The size
of the selected Fontainebleau sandstones is 1283 with the res-
olution 7.5 μm. The average porosities of the two sandstones
were 0.2016 and 0.1631, respectively. Two slice images with
porosity 0.2014 and 0.1636 were selected as input images for
testing the model.
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FIG. 9. Sample 1: Comparison of S2, L, C2, and LPD among the ten reconstructions, their average, and target.

(a) The first-type porosity of Fontainebleau sandstone re-
construction. The comparison of the sandstone image recon-
struction results is shown in Fig. 10, where Figs. 10(a)–10(c)
are the input 2D slice, target 3D structure, and reconstructed
3D structure, respectively; Figs. 10(d) and 10(e) are the or-
thogonal sections of Figs. 10(b) and 10(c), respectively.

We can clearly observe that the reconstructed 3D structure
effectively recreated the connectivity and morphological fea-
tures of the original 3D structure. It is clear that the proposed
method could keep the homogeneity and pore connectivity,

and the transformation of the 3D pore space can also be
seen. In addition, the orthogonal sections of the reconstructed
3D structure can well recur the morphological properties and
textures of the 2D images. Further, we made a comprehensive
quantitative comparisons of some morphological descriptor
functions, LPDs, and 3D microstructure pore throat param-
eters.

The average porosity of the reconstructed structure was
0.2009 ± 0.0057, which is very close to the target structure’s
porosity 0.2016. Figures 11(a)–11(c) show the comparisons

TABLE IV. Sample 1: Comparison of microstructure parameters.

Parameters Target Average of our reconstructions Average of Zhang’s method

Amount of pores 702 696 1046
Amount of throats 1720 1605 1829
Average shape factor 0.030 0.030 0.029
Average size of pore radius (m) 2.29×10−5 2.26×10−5 2.02×10−5

Average size of throat radius (m) 9.69×10−6 9.74×10−6 9.35×10−6

Average volume of pore (m3) 9.27×10−13 9.42×10−13 6.05×10−13

Average volume of throat (m3) 5.75×10−14 5.68×10−14 4.86×10−14

Average ratio of radius size of pore and throat 0.282 0.282 0.276
Average coordination number 4.903 4.618 3.499
Effective permeability (m2) 1.80×10−12 1.60×10−12 8.61×10−13
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(a) Input 2D slice (b) Target (c) Reconstruction

(d) Target’s orthogonal sections (e) Reconstruction’s orthogonal sections

FIG. 10. Sample 2: Visual comparison of reconstruction results of Fontainebleau sandstone.
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FIG. 11. Sample 2: Comparison of S2, L, C2 and LPD among the ten reconstructions, their average, and target.
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TABLE V. Sample 2: Comparison of microstructure parameters.

Parameters Target Average of reconstructions

Amount of pores 829 923
Amount of throats 1850 1771
Average shape factor 0.030 0.031
Average size of pore radius (m) 1.35×10−5 1.34×10−5

Average size of throat radius (m) 5.91×10−6 6.15×10−6

Average volume of pore (m3) 1.86×10−13 1.67×10−13

Average volume of throat (m3) 1.31×10−14 1.33×10−14

Average ratio of radius size of pore and throat 0.279 0.271
Average coordination number 4.466 3.840
Effective permeability (m2) 5.10×10−13 5.00×10−13

of the three morphological functions (i.e., S2, L, and C2) of
the target microstructure and generated microstructure. It can
be seen that the three statistical functions of the generated mi-
crostructure matched well with those of the real images, which
proves that our method was able to accurately reconstruct and
recover the connectivity of the pores.

On the other hand, to farther validate the proposed method
to generate the local distribution of pores, we compared the
LPD. Figure 11(d) shows the comparison of the local porosity.
We can clearly observe that the LPD of the target 3D structure
was very close to that of the reconstructed 3D structure by our
method; the size of the peak value and the concentration of
porosity distribution were similar.

In addition, we compared the 3D structure of the tar-
get with reconstructed images through 3D microstructure
parameters. Table V shows the comparison of 3D microstruc-
ture parameters between the target and the average of ten
reconstructions. We can observe that the 3D microstructure
parameters of the generated images are similar to those of the
target images, indicating that our method can accurately im-
itate the pore structure and spatial connectivity. On the other
hand, the number of pores in our reconstructed 3D structure
was slightly larger than that in the target structure, which is
due to the existence of some isolated small pores, resulting in
a certain low pore volume and average coordination number.

(b) The second-type porosity of Fontainebleau sandstone
reconstruction. To verify the generalizability of our method,
a 2D Fontainebleau sandstone image with φPorosity= 0.1636
was input for the reconstruction of the 3D structure. Figure 12
shows the contrast of the sandstone image reconstruction re-
sults, where Figs. 12(a)–12(c) are the input 2D slice, target
3D structure, and reconstructed 3D structure, respectively;
Figs. 12(d) and 12(e) are the orthogonal sections of Figs. 12(b)
and 12(c), respectively.

From the visual point of view, the reconstructed image was
similar to the original 3D image. The reconstructed struc-
ture inherited the homogeneity of the target structure and the
connectivity of the pores, while its 3D pore space was also
transformed.

The average porosity of the generated structure was
0.1634 ± 0.0014, which is very approximate to the tar-
get structure’s porosity 0.1631. Figures 13(a)–13(c) exhibit
the comparison results of the three morphological descrip-
tors (i.e., S2, L, and C2) of the target microstructure and

reconstructed microstructure. Figure 13(d) shows the com-
parison of the LPDs. These statistical descriptors of the
generated microstructure matched well with those of the
real images.

In addition, with regard to pores and throats, we also com-
pared the 3D structure of the target with reconstructed images
through commonly used 3D microstructure parameters, as
shown in Table VI. We can observe that the 3D microstructure
parameters of the generated images captured the structural
features of the target images. Meanwhile, due to the existence
of some isolated small pores, the number of pores in the
reconstructed 3D structure increased compared with than that
in the target, which led to a lower pore volume and average
coordination number.

3. Berea sandstone reconstruction

Berea sandstones [75,76] have been widely used for many
years by the petroleum industry as a standard material for
core analysis studies and laboratory core experiments. The
Berea sandstones are a medium to fine-grained fluvial-phase
sandstones. These sandstones are relatively well distributed
and well characterized. They consist of subangular, well-
sorted, rounded quartz grains, but also contain minor feldspar,
dolomite, and clay, most of which are free of preexisting
cracks. Thus, Berea sandstones were selected to verify our
method. The size of the selected Berea sandstones was 1283

with the resolution 5.549 μm. The porosity of this sandstone
was 0.2099.

A 2D Berea sandstone image with φporosity= 0.2069 was
input for 3D reconstruction. Figure 14 depicts the compar-
ison of the Berea sandstone image reconstruction results.
Figures 14(a)–14(c) are the input 2D slice, target 3D structure,
and reconstructed 3D structure, respectively; Figs. 14(d) and
14(e) are the orthogonal sections of Figs. 14(b) and 14(c),
respectively.

The exterior and interior of the reconstructed image resem-
bled the original 3D image. The reconstructed 3D structure
showed continuous variation in pore distribution. More-
over, we made a comprehensive quantitative comparison
between the generated image and the target 3D image. Mi-
crostructure pore throat parameters include the above four
evaluation functions, as well as 3D microstructure pore throat
parameters.

055309-13



LI, TENG, ZHANG, CHEN, AND HE PHYSICAL REVIEW E 107, 055309 (2023)

(a) Input 2D slice (b) Target (c) Reconstruction

(d) Target’s orthogonal sections (e) Reconstruction’s orthogonal sections

FIG. 12. Sample 3: Visual comparison of reconstruction results of Fontainebleau sandstone.
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FIG. 13. Sample 3: Comparison of S2, L, C2, and LPD among the ten reconstructions, their average, and target.
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TABLE VI. Sample 3: Comparison of microstructure parameters.

Parameters Target Average of reconstructions

Amount of pores 646 687
Amount of throats 1360 1257
Average shape factor 0.030 0.030
Average size of pore radius (m) 2.71×10−5 2.68×10−5

Average size of throat radius (m) 1.17×10−6 1.22×10−6

Average volume of pore (m3) 1.52×10−12 1.56×10−12

Average volume of throat (m3) 1.29×10−13 1.44×10−13

Average ratio of radius size of pore and throat 0.285 0.286
Average coordination number 4.214 3.665
Effective permeability (m2) 1.16×10−13 1.06×10−13

Compared to the target structure’s porosity 0.2099, the
average porosity of the reconstructed Berea structure was
0.2103 ± 0.0047. Figures 15(a)–15(c) show the results of the
three morphological descriptors (i.e., S2, L, and C2) of the tar-
get microstructure and generated microstructure. Figure 15(d)
displays the comparison of the LPDs. These statistical de-
scriptors of the generated microstructure matched well with
those of the target images. We can clearly see that the sizes
of the peak value and the concentration of porosity distribu-
tions between the reconstructed microstructure and the target
images were similar.

In addition, to further investigate its internal mechanism,
we compared the 3D structure of the target with reconstructed
images through some commonly used 3D microstructure pa-
rameters, as listed in Table VII. We can observe that the 3D
microstructure parameters of the generated images matched
the pore structure and spatial connectivity of the target im-

ages. The existence of some isolated small pores increased the
number of pores in the reconstructed 3D structure compared
with that in the target, which resulted in a lower pore volume
and average coordination number.

4. Ketton reconstruction

Ketton limestones [77] are mainly nonferroan calcite
grains. The microstructure shows that the samples have re-
duced porosity. The samples comprise large grains compared
to the entire image size from Figs. 16(a) and 16(b). The size
of the Ketton limestones was 1283 with resolution 15.2 μm.
The porosity of the samples was 0.1442.

A 2D Ketton image with φporosity= 0.1448 was input for
3D reconstruction. Figure 16 describes the comparison of the
Ketton image reconstruction results. Figures 16(a)–16(c) are
the input 2D slice, target 3D structure, and our reconstructed

(a) Input 2D slice (b) Target (c) Reconstruction

(d) Target’s orthogonal sections (e) Reconstruction’s orthogonal sections

FIG. 14. Sample 4: Visual comparison of reconstruction results of Berea sandstone.
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FIG. 15. Sample 4: Comparison of S2, L, C2, and LPD among the ten reconstructions, their average, and target.

3D structure, respectively; Figs. 16(d) and 16(e) are the or-
thogonal sections of Figs. 16(b) and 16(c), respectively.

There is no significant difference between the recon-
structed image and the original 3D image in the exterior
appearance and interior of structure. The reconstructed 3D
structure preserved the large grains well and showed some
sparse small pores in pore distribution. Moreover, we con-
trasted some of the significant microstructure pore throat
parameters in the generated image and the target 3D image.

Compared to the target structure’s porosity 0.1442, the
average porosity of the reconstructed Ketton structure was
0.1390 ± 0.0076. Figures 17(a)–17(c) display the results of
the three morphological descriptors (i.e., S2, L, and C2)
of the target microstructure and generated microstructure.
Figure 17(d) demonstrates the comparison of the LPDs. These
statistical descriptors of the generated microstructure accord
closely with those of the target images. From the LPD, we can
clearly find that there are similarities in porosity distributions

TABLE VII. Sample 4: Comparison of microstructure parameters.

Parameters Target Average of reconstructions

Amount of pores 972 1110
Amount of throats 2081 2158
Average shape factor 0.029 0.029
Average size of pore radius (m) 1.76×10−5 1.67×10−5

Average size of throat radius (m) 8.20×10−6 8.17×10−6

Average volume of pore (m3) 5.20×10−13 4.50×10−13

Average volume of throat (m3) 3.75×10−14 3.90×10−14

Average ratio of radius size of pore and throat 0.286 0.292
Average coordination number 4.283 3.887
Effective permeability (m2) 1.03×10−12 8.52×10−13
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(a) Input 2D slice (b) Target (c) Reconstruction

(d) Target’s orthogonal sections (e) Reconstruction’s orthogonal sections

FIG. 16. Sample 5: Visual comparison of reconstruction results of Ketton.
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FIG. 17. Sample 5: Comparison of S2, L, C2, and LPD among the ten reconstructions, their average, and target.
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TABLE VIII. Sample 5: Comparison of microstructure parameters.

Parameters Target Average of reconstructions

Amount of pores 175 141
Amount of throats 389 246
Average shape factor 0.029 0.029
Average size of pore radius (m) 3.95×10−5 4.24×10−5

Average size of throat radius (m) 1.79×10−5 1.94×10−5

Average volume of pore (m3) 5.30×10−12 6.43×10−12

Average volume of throat (m3) 3.43×10−13 5.42×10−13

Average ratio of radius size of pore and throat 0.300 0.292
Average coordination number 4.457 3.514
Effective permeability (m2) 8.67×10−12 3.25×10−12

significantly between the reconstructed microstructure and the
target images.

Further, we compared the 3D structure of the target with
reconstructed images through 3D microstructure parameters,
as given in Table VIII. We can observe that there are some
small differences in the microstructure parameters and spatial
connectivity between the 3D generated images and the target
images.

V. CONCLUSION

For digital cores with complex topology, it is a promi-
nent and difficult problem to generate 3D structures with
equivalent statistical features from 2D slices. In this paper,
to address this conundrum, we present a deep generative
model for reconstructing 3D structures by extracting statis-
tical features of 2D slices. When training the model, we
used the Wasserstein distance with gradient penalty as the
evaluation criterion for two different images. Thus, a large
number of diverse 3D structures with similar statistical fea-
tures can be generated from a single input 2D slice. The
designed method was applied on five different core images, all
of which achieved satisfactory results. All the reconstructed
3D structures had statistical features consistent with the target
3D structures. Further, we also compare our method with
Zhang’s methods. In terms of visual and quantitative com-
parisons, our method not only has a better reconstruction
effect but also can be applied to homogeneous and isotropic
kinds of porous media. Through experimental verification,
the designed method has the following advantages. First, our
method can achieve accurate, efficient, and stable 3D recon-
struction. More importantly, immediately after training, a 3D
structure can be reconstructed from a 2D slice. Second, the
method is designed for statistical reconstruction of 3D struc-
tures based on homogeneity and isotropy 2D slices. Therefore,
the method is not only suitable for the 3D reconstruction of
core images but also for 3D reconstruction of homogeneous

and isotropic porous media, such as silica or battery materials.
However, our method also has some flaws. For heterogeneous
and anisotropic cores, our method cannot be used to recon-
struct cores with such characteristics by doing experiments.
For the Ketton limestone in Figs. 16(a) and 16(b), a larger size
reconstruction is needed to better characterize this core. This
is an important direction that our method needs to be extended
in further.

The reconstructed 3D structure was similar to the tar-
get 3D structure in terms of visualization. The reconstructed
statistical parameter metrics agreed well with those of the
target 3D structure, such as the two-point correlation function,
lineal-path function, two-point cluster function, and LPD.
However, there was a slight discrepancy in the comparison
of microstructure parameters of the 3D structure, for two
reasons. First, our network consists of an encoder, a genera-
tor, and three discriminators, and it is difficult to train these
networks simultaneously, which results in our network not
being optimally trained. Second, the loss function used in the
network structure for generating 3D structures from 2D im-
ages is not suitable for solving this problem. If more adequate
loss functions were designed, such as adding constraints for
the two-point correlation function, then the accuracy of 3D
reconstruction from 2D images could be further improved.

It is worth noting that the method we designed is suitable
for homogeneous and isotropic cores, while real cores will
be larger in size or more heterogeneous; therefore, we aim to
continue our work in this direction.
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