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Thermodynamics of fermions at any temperature based on parametrized partition function
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In this work, we study the recently developed parametrized partition function formulation and show how we
can infer the thermodynamic properties of fermions based on numerical simulation of bosons and distinguishable
particles at various temperatures. In particular, we show that in the three-dimensional space defined by energy,
temperature, and the parameter characterizing parametrized partition function, we can map the energies of bosons
and distinguishable particles to fermionic energies through constant-energy contours. We apply this idea to
both noninteracting and interacting Fermi systems and show it is possible to infer the fermionic energies at
all temperatures, thus providing a practical and efficient approach to obtain thermodynamic properties of Fermi
systems with numerical simulation. As an example, we present energies and heat capacities for 10 noninteracting
fermions and 10 interacting fermions and show good agreement with the analytical result for the noninteracting
case.
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I. INTRODUCTION

The ability to simulate fermions is of paramount impor-
tance in the field of numerical calculation; early methods
to simulate Fermi systems primarily use the Hartree-Fock
method and density functional approach. Those methods have
been applied to gain valuable insights into the atomic struc-
ture; unfortunately though, they treat the quantum correlation
and exchange effects in an approximate manner, and being
able to take such effects into account is crucial for realis-
tic many-body quantum systems. Later, a numerically exact
method based on the path integral formulation of quantum
mechanics was developed, known as path integral Monte
Carlo/molecular dynamics [1–3], and it has been successfully
applied to extract thermodynamic properties of Bose systems
from ab initio simulations [4–12]. In principle, path integral
Monte Carlo/molecular dynamics takes all quantum effects
into account, but when we try to apply this methodology to
fermions, we encounter an insurmountable difficulty known
as the fermion sign problem [13–27], where the probabilities
used for sampling become negative. In this work, we consider
the recently developed parametrized path integral formulation
[28,29] and propose a scheme to overcome the difficulties as-
sociated with the numerical simulation of Fermi systems and
obtain a method to numerically study the ab initio properties
of Fermi systems.

The recently developed parametrized partition function
[28] provides a scheme to extrapolate the thermodynamics of
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fermions from distinguishable particles and bosons, in partic-
ular, the energy as a monotonic function of the extrapolation
parameter ξ . In a previous work [29], an attempt was made
to infer the thermodynamics of fermions by numerically sim-
ulating the parametrized partition function for ξ � 0 through
path integral molecular dynamics (PIMD), and then extrap-
olate the results to ξ = −1 corresponding to fermions; of
course, direct simulation for ξ < 0 is infeasible due to fermion
sign problem where the probability distribution in importance
sampling becomes negative, rendering any sampling methods
inapplicable. This approach worked well for interacting Fermi
systems at medium and high temperatures, but the extrapola-
tion scheme was shown to be unreliable at low temperature or
for noninteracting Fermi systems. In particular, such extrapo-
lation fails completely for the ground state of noninteracting
fermions.

In this work, we further study the properties of
parametrized partition function and consider the three-
dimensional phase space defined by energy, temperature, and
ξ . We show that instead of trying to infer fermion energies
in the two-dimensional plane defined by energy and ξ as we
did in the extrapolation scheme, the addition of temperature
greatly improves credibility for the inference process; that is,
within the framework of this method we demonstrate how we
could connect the thermodynamics of fermions with that of
bosons and distinguishable particles through constant-energy
contours in this three-dimensional space. Moreover, we show
theoretically that the contours can be described by parabolic
curves for the examples in the text, giving rise to the afore-
mentioned credibility when performing the inference. Our
method can be applied to study both the ground-state and
finite-temperature properties of Fermi systems; that is, by
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obtaining all the information for the ξ � 0 region, which can
be done efficiently, we gained access to the thermodynamic
properties for the Fermi system. To test our method, we apply
it for both interacting and noninteracting Fermi systems and
give results for heat capacity that can be compared against an-
alytical and other results. We also discuss the general method
to improve the precision by making fuller use of the extra
parameter in the parametrized partition function, in addition
to the temperature.

II. THEORY

The partition function of N particles is

Z (β ) = Tr(e−βĤ ). (1)

Here β = 1/kBT , with kB being the Boltzmann constant and T
being the system temperature. The average energy is E (β ) =
−∂ ln Z (β )/∂β, with other parameters being fixed.

For N identical particles, we consider the follow-
ing parametrized partition function [28,29] with a real
parameter ξ ,

Z (ξ, β ) ∼
∑
p∈SN

ξNp

∫
dr1dr2 . . . drN 〈p{r}|e−βĤ |{r}〉. (2)

Here {r} denotes {r1, . . . , rN }. SN represents the set of N! per-
mutation operations denoted by p. The factor ξNp is due to the
exchange effect of identical particles, with Np being a number
defined to be the minimum number of times for which pairs
of indices must be interchanged in permutation p to recover
the original order. In this parametrized partition function, the
quantum statistics parameter ξ interpolates continuously from
bosons (ξ = 1), distinguishable particles (ξ = 0), to fermions
(ξ = −1). In addition, we still have

E (ξ, β ) = −∂ ln Z (ξ, β )

∂β
. (3)

In the above calculation, the parameter ξ is fixed to get the
energy E (ξ, β ).

Using e−βĤ = e−�βĤ . . . e−�βĤ with �β = β/P and the
technique of path integral, the partition function Z (ξ, β ) with
a general parameter ξ can be also mapped as a classical system
of interacting ring polymers [28,29], based on the idea of
recursion formula for identical particles [7,25]. The so-called
exact numerical simulation of the thermodynamics for a quan-
tum system is through this path integral formalism so that
Z (ξ, β ) can be written as the high-dimensional integral of all
the coordinates of NP beads. Unfortunately, for negative ξ , the
fermion sign problem makes the direct numerical calculation
of the energy for fermions with path integral formalism infea-
sible under the condition of large particle number or ultralow
temperature. The purpose of the present work is to provide
an efficient and reliable method to calculate the energy of
fermions for any temperature by calculating first the energy
for ξ � 0 with PIMD.

Because ξ is a quantum statistics parameter which has an
equivalent repulsive exchange interaction for fermions and
equivalent attractive exchange interaction for bosons, for the
same temperature, the energy should decrease with increasing
ξ . In addition, for the same ξ , the energy increases with

FIG. 1. A general illustration of the ξE (T ) curve with constant
energy E . For the whole region ξ � 0, we can give exact numeri-
cal calculation of the energy E (ξ, T ) with path integral molecular
dynamics or path integral Monte Carlo, without suffering from the
fermion sign problem. The general physical consideration tells us
that E (ξ, T ) has monotonic behavior about the parameters ξ and T ,
so that E1 < E2 < · · · < E9. The horizontal lines are for bosons with
ξ = 1 and fermions with ξ = −1, respectively. As an example, the
solid circles give ξE (T ) for the same energy E9. From the data given
by the solid circles, we may determine the function ξE (T ) based on
ξE (T ) = a(E ) + b(E )T 2 or more general expression of ξE (T ). After
obtaining ξE (T ), because ξ = −1 for fermions, the vertical dashed
line will give the temperature T9 of the fermions with energy E9.
The curve for E6 is special because the curve ξE (T ) passes through
the point (ξ = −1, T = 0). This means that E6 is the ground-state
energy of fermions at T = 0. For E < E6, there is no real number
solution of the temperature for ξ = −1. This result is not surpris-
ing because the energy is already below the ground-state energy of
fermions.

increasing T if other parameters are fixed for most physical
systems because of the positive heat capacity. In Fig. 1, we
illustrate a series of contour lines ξE (T ) with constant energy
E which satisfy these two monotonic behaviors. In the caption
of this figure, we give the method to calculate the temperature
of fermions corresponding to a given energy, if we know in
advance the property of the contour line ξE (T ) for any given
energy larger than the ground-state energy of fermions.

For a given energy, we first consider the behavior of ξE (T )
near T = 0. Because the energy is a function of ξ and β, we
also have ξ (E , β ) and β(E , ξ ). In this case, we always have
the following exact relation based on calculus:

∂ξ (E , T )

∂T
= −∂E (ξ, T )/∂T

∂E (ξ, T )/∂ξ
. (4)

Because E (ξ, T = 0) is the ground-state energy,
while ∂E (ξ, T )/∂T is the heat capacity, we have
limT →0 ∂E (ξ, T )/∂T = 0. Hence, we obtain the following
simple relation:

∂ξ (E , T )

∂T

∣∣∣∣
T =0

= 0. (5)
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This means that for a given energy, if we expand ξE (T ) about
T with Taylor series, there should be an absence of the linear
term. In this case, we have

ξE (T ) = a(E ) + b(E )T 2 +
∑
n>2

cn(E )T n. (6)

To consider the behavior of cn(E ) for n > 2, we discuss
ξ (E , T ) (≡ ξE (T )) at high temperature. For β → 0 (or T →
∞), E (β, ξ ) is independent of the quantum statistics parame-
ter ξ . In this case, we have

E (ξ, β → 0) = const. (7)

For small β, based on the above result and the monotonic
behavior of E (ξ, β ) about ξ , for fixed β, E (ξ, β ) can be
approximated as a linear function of ξ , i.e.,

E (ξ, β ) ≈ E (ξ = 0, β ) + d (β )ξ . (8)

This linear behavior at high temperature was first found by the
numerical simulation in Ref. [29].

The combination of the low-temperature and high-
temperature behaviors suggest that ξE (T ) may take
the following simple expression (see more details in
Appendix A):

ξE (T ) ≈ a(E ) + b(E )T 2. (9)

Of course, all the difficulties are now contained in the coeffi-
cients a(E ) and b(E ). Fortunately, because the above relation
is obtained from the general consideration of arbitrary value of
ξ , it applies to ξ � 0 too. Hence, the accurate calculation of
the energy for ξ � 0 provides the chance to determine a(E )
and b(E ), which then predicts the temperature of fermions
having energy E , by solving −1 = a(E ) + b(E )T 2.

III. RESULTS

Now we turn to consider the validity of the above rela-
tion with 10 noninteracting particles in a two-dimensional
harmonic trap with potential function 1

2 mω2(x2 + y2). The
choice of noninteracting particles is due to the fact it provides
a standard to test any new method [25]. In all our calcula-
tions, we will use the convention of h̄ = m = kB = ω = 1.
For noninteracting particles, we have shown in Ref. [29] that
the energy can be calculated accurately with the following
equations in the grand canonical ensemble:

N =
∑

n

1

eβ(ε(n)−μ) − ξ
, (10)

E (ξ, β, N ) =
∑

n

ε(n)

eβ(ε(n)−μ) − ξ
. (11)

ε(n) is the single-particle eigenenergies of the system. With
given parameters of N, β, and ξ , from Eq. (10), we can get the
chemical potential μ(ξ, β, N ). Using Eq. (11), we can get the
energy E (ξ, β, N ) in the grand canonical ensemble.

In Fig. 2, for different energies, the circles give the relation
between ξ and T . The solid lines are the fitting with Eq. (9),
which shows good agreement. In the inset of Fig. 2, we show
the relative deviation, compared with the parabolic function.
The maximum relative deviation is about 0.1%, while the
mean relative deviation is smaller than 0.03%, which does

FIG. 2. For 10 noninteracting particles, the circles show ξ for
different temperatures, while the solid lines are the fitting with the
function ξE (T ) = a(E ) + b(E )T 2, respectively. Here, four curves
are for the contour lines with different energies. In the inset, we show
the relative deviation, compared with the parabolic function.

show agreement with the parabolic function. The validity of
the relation (9) gives us a simple way to predict the energy of
fermions for different temperatures including the situation of
extreme zero temperature. For a given energy E , if we know
the corresponding temperature T0 for ξ = 0 and T1 for ξ = 1,
we may get the coefficients a(E ) and b(E ) based on Eq. (9).
By setting ξ = −1 in Eq. (9), we then get the temperature T
for the fermions with this energy. Changing the energy and
repeating these simple calculations, we may get continuously
the relation between energy and temperature of fermions from
zero temperature to high temperature.

We still consider the example of 10 noninteracting parti-
cles. For both ξ = 0 and ξ = 1, we get a series of energies
for different temperatures, based on Eqs. (10) and (11). Of
course, we may also calculate these data accurately by PIMD
[29]. Here, we use Eqs. (10) and (11) to calculate the energy
of different temperatures for ξ = 0 and ξ = 1 so that one may
follow our calculation and method more easily. By reliable
interpolation and fitting, we can get two energy functions
f0(T ) for ξ = 0 and f1(T ) for ξ = 1. For a given E , we get
numerically T0 and T1 by solving E = f0(T ) and E = f1(T ),
respectively. In this case, we can determine the coefficients
a(E ) and b(E ) with Eq. (9). By solving further the equa-
tion −1 = a(E ) + b(E )T 2, we get the corresponding fermion
temperature T (E ) for this energy. Following this method, we
get a series of E (T ) for fermions from the information of
f0(T ) and f1(T ) without suffering from fermion sign problem.
The heat capacity for fermions can be obtained with C(T ) =
dE (T )/dT . In a testing simulation, the heat capacity is more
demanding than energy; hence, in Fig. 3, we give the heat
capacity based on our method (red line) and the heat capacity
(blue dashed line) directly from Eqs. (10) and (11).

We consider the two-dimensional harmonic trap by includ-
ing a Coulomb-type interaction:

Vint =
N∑

l< j

λ

|rl − r j | . (12)
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FIG. 3. The red solid line is the simulated heat capacity C(T )
with our method for 10 noninteracting fermions, while the blue
dashed line is the result based on the formula of grand canoni-
cal ensemble. The blue solid line is the simulated heat capacity
with our method for 10 fermions with Coulomb repulsive interac-
tion. In the limit of T → ∞, the heat capacity should be 20 for
noninteracting case.

Here λ represents the dimensionless coupling constant of the
Coulomb-type interaction. For 10 particles and λ = 0.5, with
the method in Ref. [28,29], for different temperatures, we
obtain energies for ξ = 0 and ξ = 1 with PIMD shown in the
upper inset of Fig. 4, which enables us to obtain two functions:
f0(T ) and f1(T ). From f0(T ), f1(T ) and the relation (9), we
get the energy of the fermions for different temperatures. In
Fig. 3, the blue line gives the heat capacity of 10 interacting
fermions with different temperatures.

In Fig. 4, by calculating more data of the energy for dif-
ferent temperatures and ξ � 0, we verify again that ξE (T )
satisfies the simple relation (9). In the lower inset of Fig. 4, we
show the relative deviation, compared with the parabolic func-

FIG. 4. For 10 interacting particles, the circles from the left to
right correspond to energy contours of 38.6, 39.3, 41, 42, 43.5, 45,
47, and 48, respectively. The corresponding lines are the fits with
a + bT 2. The blue circle and yellow circle in the upper inset show the
simulated energy for ξ = 0 and ξ = 1, while the green circle is the
energy of fermions calculated with our method. In the lower inset, we
show the relative deviation, compared with the parabolic function.

tion. The maximum relative deviation is about 0.1%, while
the mean relative deviation is smaller than 0.04%, which does
show good agreement with the parabolic function. We have
also found that the fermion energy (E = 46.83) for β = 1
does not conflict with the result (E = 49 ± 3) by Dornheim
[30] and our previous calculation [29], while in both Refs. [29]
and [30], it is difficult to consider the temperature below
β = 1 and impossible for T << 1. The extrapolation method
in Ref. [29] predicts E ≈ 49.9, which is larger than the result
of this work, because the potential inflection point will make
the result of the extrapolation method based on the energy data
of ξ � 0 always being larger than the actual energy.

In all our results in this work, the error due to the statistical
fluctuations is negligible, and hence we do not give the error
bar in the present work. Of course, in practical application or
precise calculations one may give more accurate calculation
and more careful analysis of the statistical fluctuations. It is
worth pointing out that the main purpose of the present work
is to propose and verify the idea of our method. Hence, we
only use moderate 107 MD steps and P = 12/T beads with
separate Nosé-Hoover thermostat [31–35] in our calculation
to assure convergence, to test our idea, and to show the effi-
ciency of our method. In practical applications, to satisfy the
high precision calculation of some problems, we may consider
to increase significantly the MD steps and the number of beads
P per particle.

We may improve on this scheme by employing more com-
plicated inference processes, for example, by using higher
order curves to describe the contours. By satisfying the condi-
tion of ∂ξ (E , T )/∂T |T =0 = 0, we may consider the following
more general expression:

ξ + d (E )ξ 2 = a(E ) + b(E )T 2 + c(E )T 3. (13)

In this case, to determine the coefficients
a(E ), b(E ), c(E ), d (E ), we need to calculate E (ξ � 0, T )
with four different parameters ξ . In Appendix B, we use this
formula to give more accurate calculation of the fermion
energy for greater number of particles with and without
interparticle interactions. Even for dozens of particles, the
constant energy contour remains a concave curve, and there
is no inflection point, so in principle we can always infer the
curve from sufficient data in the ξ � 0 half plane. However,
as the number of particles increases, the contour curve tends
to take a sharper turn (larger second derivative), so more data
and more parameters are needed to capture this behavior, as
shown in Appendix B.

It is worth pointing out that, in practice, one can use
some reference (experimental data or estimation) to roughly
determine the fermionic energy at temperatures of interest.
Then we run the simulation for ξ � 0 on a wide range of
temperatures to pin down at which temperature range the
corresponding fermionic energy is located. Even if no prior
information about fermions is available, we can still get the
energies for a range of temperatures by running more simula-
tions on ξ � 0 half plane.

IV. CONCLUSIONS

As a summary, in this work we considered the three-
dimensional phase space based on the parametrized path
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integral formulation [28,29] and proposed a scheme to infer
the fermion energy at all temperatures from the available
information in the half space with ξ � 0, via constant-energy
contours. We successfully applied the present method to study
both noninteracting and interacting particles and obtained rea-
sonable heat capacity curve. The scope of application of the
present method is well beyond that of traditional method and
it is expected that our method can be applied to study some
Fermi systems previously intractable by other simulation tech-
niques [36–49].

From a rigorous mathematical point of view, we cannot
proclaim that fermion sign problem has been solved. How-
ever, from a practical point of view, at least for some physical
systems, we are able to apply PIMD/PIMC combined with
the method here to yield an accurate calculation of the energy
even when the fermion sign problem is severe. For the ξE or-
bit, we can first check the noninteracting Fermi system based
on analytical formulas. If we can verify that the noninteracting
case works, that means our method is applicable for the cases
of Fermi system with weakly repulsive and/or attractive inter-
action. This implies that this method contains intrinsic value
for dilute ultracold Fermi atomic gases. In Ref. [50], we ob-
tained the heat capacity peak caused by fermionic pairing for
two-component attractive Fermi gases based on our current
method.

In this paper, we considered the case of strongly repulsive
Coulomb interaction. It is unfortunate that we cannot rigor-
ously compare our results with other simulation results due to
the difficulty of fermion sign problem. In future work, we need
to apply our method to realistic physical systems to verify
its viability, for example, the thermodynamic experiments of
many trapped Fermi ions or electrons with repulsive Coulomb
interaction. Of course, if the ξE orbit when ξ < 0 exhibits
strange behavior in some circumstances, it is possible to give
erroneous inferences for the fermionic energies. In that case,
we can try other types of orbits to avoid this problem. Thus,
we need to be careful when applying this method in practice.
The applicability of the method requires dedicate studies in
the future, comparison with experiments and other simula-
tions can give us valuable insights. The data that support the
findings of this study are available from the corresponding
author upon reasonable request. The code of this study is
openly available in GitHub [51].
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APPENDIX A: THE DETAILS TO OBTAIN RELATION
ξE (T ) ≈ a(E ) + b(E )T 2 BASED ON GENERAL

PHYSICAL CONSIDERATION

From the following simple relation proved in the text,

∂ξ (E , T )

∂T

∣∣∣∣
T =0

= 0, (A1)

for a given energy, if we expand ξE (T ) about T with Taylor
series, there should be an absence of the linear term. In this

case, we have

ξE (T ) = a(E ) + b(E )T 2 +
∑
n>2

cn(E )T n. (A2)

At the high temperature limit of β → 0 (or T → ∞),
E (β, ξ ) should be independent of the quantum statistics pa-
rameter ξ . In this case, we have

E (β → 0, ξ ) = const. (A3)

For small β, based on the above result and the monotonic
behavior of E (β, ξ ) about ξ , for fixed β, E (β, ξ ) can be
approximated well as a linear function of ξ , i.e.,

E (β, ξ ) ≈ E (β, ξ = 0) + d (β )ξ . (A4)

For small β with linear behavior of ξ , E (T, ξ ) may be written
as

E (T, ξ ) ≈ E (T = 0, ξ = 0) + (α1 + α2T )T + (γ1 + γ2T )ξ .

(A5)

At high temperature, it is clear that |α2| << |α1| and |γ2| <<

|γ1|. In this case, for a fixed energy E , we have

ξE (T ) ≈ �E

γ1
−

(
�Eγ2

γ 2
1

+ α1

γ1

)
T +

(
α1γ2

γ 2
1

− α2

γ1

)
T 2.

(A6)

Here �E = E − E (T = 0, ξ = 0). This means that at high
temperature, the expansion to T 2 is a good approximation
to ξE (T ). Usually, as the independent variable increases, the
more we need to keep higher order terms. This means the
possibility that the expansion to T 2 is a good approximation
for the whole temperature region.

The combination of the low- and high-temperature behav-
ior suggests that ξE (T ) may be approximated well by the
following simple expression verified by the calculation in
the text:

ξE (T ) ≈ a(E ) + b(E )T 2. (A7)

To sum up, the above simple relation originates from two
physics: (i) the monotonic behavior of E (ξ, β ) about ξ and β

and (ii) the exact relation (A1).

APPENDIX B: MORE GENERAL CONSIDERATION
OF THE ORBIT ξE (T )

In Fig. 5, we illustrate the reason why the present method
predicts the fermion energy from zero temperature to high
temperature, while our previous method [28,29] fails for low
temperature. In this figure, for 10 noninteracting particles in
the two-dimensional harmonic trap, we give the contour map
of E (ξ, T ). We emphasize that PIMD and PIMC can only give
accurate calculations for ξ � 0. Here we give the full contour
map by using the exact expressions (10) and (11) in the text to
show the general structure.

The dashed circle encloses a low-temperature region where
E (ξ, T ) is almost a constant. For T = 0 as an example, we
will find that E (ξ � 0, T = 0) = 20. In this case, it is obvious
that we cannot predict the fermion energy at zero temperature
based on these data along the line of constant temperature.
Outside this dark region enclosed by the dashed circle, how-
ever, E (ξ, T ) has regular change, so that we have the chance
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FIG. 5. Shown is the complete contour map of 10 noninteracting
particles. In the black region in the upper left corner, the energies are
almost constant, showing that the function E (ξ, T ) is nonanalytical
there for a large particle number and this demonstrates why the
previous extrapolation scheme fails for this region, in which we
attempted to extrapolate along the vertical lines on the contour map.
With our method, however, we bypass this black region and instead
do inference along the black curves with constant energy. Those
black curves reside in a region where E (ξ, T ) has good analytical
property so the inference process works for all temperatures.

to predict the fermion energy from the accurate data of E (ξ �
0, T ). For each constant E , we have a fully defined trajectory
ξE (T ) with the same energy. Even under this general idea, we
still need to have a clever method to solve the problem. In
hindsight, it is obvious that the orbit ξE (T ) with constant E is
a good choice to predict the fermion energy. We give a brief
reason as follows.

From

E (ξ, T ) = const, (B1)

we see that ξ is a function of T along the constant energy E .
In this case, we have

∂E

∂ξ

dξ

dT
+ ∂E

∂T
= 0. (B2)

This leads to

dξ

dT
= −∂E/∂T

∂E/∂ξ
. (B3)

Because dξ

dT is along the constant energy E , we may also write
the above equation as

∂ξ

∂T
= −∂E/∂T

∂E/∂ξ
. (B4)

This gives a simple derivation of Eq. (4) in the text. From the
third law of thermodynamics, we have

∂E

∂T

∣∣∣∣
T =0

= 0. (B5)

FIG. 6. For particle number N = 20, 30, 40, 50 without inter-
action, the red circles show the energy of fermions based on our
method, while the blue circles correspond to the result of Eqs. (10)
and (11) in the text.

In this case, we have the following exact relation:

lim
T →0

dξ

dT

∣∣∣∣
E

= 0. (B6)

With the symbol in the text, it is

lim
T →0

dξE (T )

dT
= 0. (B7)

It is this exact condition that makes the orbit of constant
energy a good choice to predict the fermion energy.

Generally speaking, the orbit satisfying the above condi-
tion with constant energy may be written as

ξE +
∑
n�2

dn(E )ξ n
E = a(E ) + b(E )T 2 +

∑
n>2

cn(E )T n. (B8)

All these coefficients are determined by the physics of the sys-
tem, which is not known in advance. Fortunately, the accurate
data of the relation between ξ � 0 and T for a given constant
energy gives us the opportunity to determine accurately these
coefficients. The more coefficients we consider, the more ac-
curately we can determine the orbital and thus more accurately

FIG. 7. For particle number N = 20, 30, 40, 50 without interac-
tion, shown are the relative deviations, compared with the analytical
result of the energy of fermions.

055308-6



THERMODYNAMICS OF FERMIONS AT ANY TEMPERATURE … PHYSICAL REVIEW E 107, 055308 (2023)

FIG. 8. For particle number N = 20, shown are the energy
of fermions for different temperature with Coulomb interaction
of λ = 0.5.

obtain the fermion temperature for a given energy. In the main
text, we only use two coefficients, a(E ) and b(E ). Now, we
consider the following expression which does improve our
results, compared with the choice ξE = a(E ) + b(E )T 2 in the
text:

ξE + d (E )ξ 2
E = a(E ) + b(E )T 2 + c(E )T 3. (B9)

To determine these four coefficients, we need four inputs with
ξ � 0.

In this Appendix, we use the following program to predict
the fermion energy:

(1) For ξ = 0, 0.25, 0.5, 1, we calculate the energy for
different temperatures so that we get four sets of data.

(2) By interpolation and fitting, we get four functions f j (T )
( j = 1, 2, 3, 4) for different ξ .

(3) For a given E , by solving E = f j (T ) ( j = 1, 2, 3, 4),
we have {ξ j, Tj} ( j = 1, 2, 3, 4).

(4) These solutions {ξ j, Tj} can determine the coefficients
a(E ), b(E ), c(E ), d (E ) with Eq. (B9).

(5) By setting ξE = −1 in Eq. (B9), we finally get the
temperature of the fermions for the given energy.

(6) Repeating the above process, we will get the fermion
energy for different temperatures including the zero tempera-
ture.

In Fig. 6, we give the energy of fermions for different
particle number with the above method, and good agreement
is found, compared with the results of Eqs. (10) and (11). In
Fig. 7, we give the relative deviation �E/E , to show clearly
the small deviation. Here �E is the difference between our
method and the analytical result of Eqs. (10) and (11) in the
text.

In Fig. 8, we give the energy of fermions for 20 interacting
particles with λ = 0.5.

We emphasize that due to the monotonic behavior of
E (ξ, β ) about ξ and β and the exact relation (A1), for the
examples in this work, Eq. (A7) is already a good approxi-
mation. Hence, higher order terms in (B8) should only give
a small correction. This means that the curve ξE (T ) outside
the black region in Fig. 5 should always show simple be-
havior, which assures the precision of the thermodynamics of
fermions by our method.
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