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Many weakly compressible models with intrinsic mechanisms for stabilizing computation have been proposed
to simulate incompressible flows. The present paper analyzes several weakly compressible models to establish
general mechanisms that incorporate them into a unified and simple framework. It is found that all these models
contain some identical numerical dissipation terms, mass diffusion terms in the continuity equation, and bulk
viscosity terms in the momentum equation. They are proven to provide general mechanisms for stabilizing
computation. Referring to the general mechanisms and the computational procedures of the lattice Boltzmann
flux solver, two general weakly compressible solvers for isothermal flows and thermal flows are proposed. They
can be directly derived from standard governing equations and implicitly introduce those numerical dissipation
terms. Detailed numerical investigations demonstrate that the two general weakly compressible solvers have
good numerical stability and accuracy for both isothermal and thermal flows, which validates the general
mechanisms further and the general approach of constructing general weakly compressible solvers.
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I. INTRODUCTION

Incompressible flow is a common phenomenon in both
natural and engineering applications. According to the ways
to update pressure, the numerical algorithms for simulations
of incompressible flows can be classified into two categories.
The first category is the exactly incompressible model whose
governing equations are

∂αuα = 0, (1)

∂t (ρ0uα ) + ∂β (ρ0uαuβ ) = −∂α p + μ∂β (∂αuβ + ∂βuα ), (2)

where uα is the velocity, ρ0 is the constant fluid density, p
is the pressure, and μ is the dynamic viscosity. It can be
seen from the governing equations that the velocity can be
updated explicitly, while the pressure needs to be updated im-
plicitly. The well-known algorithms include the semi-implicit
method for the pressure-linked equation (SIMPLE) [1],
SIMPLE revised [2], SIMPLE consistent [3], pressure implicit
with split operator (PISO) [4], and so on. On the one hand,
these algorithms require complicated iteration steps to update
pressure due to the implicit pressure equation. On the other
hand, without the pressure wave induced by compressibility,
these algorithms, in general, have good numerical stability.

The second category is the weakly compressible model,
where the pressure is updated explicitly. The earliest weakly
compressible model is the artificial compressibility method
(ACM) [5]. The governing equations are

∂tρ + ∂α (ρ0uα ) = 0, p = ρc2
s , (3)

*Corresponding author: jinhua.lu@tum.de

∂t (ρ0uα ) + ∂β (ρ0uαuβ ) = −∂α p + μ∂β (∂αuβ + ∂βuα ), (4)

where ρ0 is the constant fluid density, ρ is the reference
density related to pressure, and cs is the sound speed. Here,
the pressure equation [Eq. (3)] neglects the higher-order
term ∂α (δρuα ) compared with the standard continuity equa-
tion ∂tρ + ∂α (ρuα ) = 0, where δρ is the density perturbation
defined by ρ = ρ0 + δρ. Consequently, the pressure is decou-
pled from fluid density. Due to the pressure wave’s existence,
directly solving the governing equations with central differ-
ence schemes suffers from numerical instability. Additional
treatments, such as specified discretization schemes [6] and
numerical dissipation terms [7,8], are needed to stabilize com-
putation.

The linkwise artificial compressibility method (LWACM)
[9] uses the lattice framework of the lattice Boltzmann method
(LBM) [10] to solve the weakly compressible Navier-Stokes
equations. It belongs to the community of artificial compress-
ibility methods as well.

The second weakly compressible model is the LBM [10],
a mesoscopic method based on the Boltzmann equation. Us-
ing the Chapman-Enskog expansion analysis, the following
standard governing equations can be approximately recovered
with second-order accuracy.

∂tρ + ∂α (ρuα ) = 0, (5)

∂t (ρuα ) + ∂β (ρuαuβ ) = −∂α p + μ∂β (∂αuβ + ∂βuα ). (6)

Based on the original LBM [10], some improved models
have been developed to overcome its intrinsic drawbacks,
including the dependence on uniform meshes, coupled time
step with mesh size, and extra memory size. By combing
the lattice Boltzmann equation (LBE) with a fixed relaxation
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time τ = 1 and a corrector step to recover the correct viscous
forcing term, a fractional step LBM (FSLBM) [11] was pro-
posed to decrease the memory size. It was found to have good
numerical stability at high Reynolds number flows, even for
the inviscid flow. By adopting a second-order approximation
for LBE, the simplified LBM (SLBM) [12–15] was also pro-
posed to decrease the memory size. It has been proven to have
good numerical stability for high Reynolds number flows [15].
Besides, the lattice Boltzmann flux solver (LBFS) [16,17] was
proposed to overcome the three drawbacks of the LBM. Based
on the finite-volume scheme, it constructs a simplified LBE at
the cell face to calculate fluxes. It can simulate both viscous
and inviscid flows.

The LBM and related models can recover the two kinds of
governing equations mentioned above, Eqs. (3)–(6), approxi-
mately. Therefore, they are intrinsically weakly compressible
models. From a macroscopic perspective, these models should
have additional treatments to stabilize computation. Accord-
ing to recent research [18–20], the mechanisms of stabilizing
computation in these models can be identified as different
numerical dissipation terms. Therefore, a fundamental prob-
lem is whether general numerical dissipation terms exist for
stabilizing weakly compressible models. If such general terms
can be found, many weakly compressible models can be in-
corporated into a unified, simple framework. This objective
motivates the present work.

The present paper analyzes several weakly compress-
ible models [9–11,15,20,21]. It is found that these models
contain some identical numerical dissipation terms, which
provide general mechanisms for stabilizing computations.
Based on such general mechanisms and referring to com-
putational procedures of LBFS, a general approach, which
introduces numerical dissipation terms implicitly, is proposed
to construct general weakly compressible solvers from gov-
erning equations. The general weakly compressible solver
for isothermal flow (GWCSIF) is proposed first. Numerical
investigations demonstrate that GWCSIF has good numerical
stability for high Reynolds number flows. It is validated by
simulating viscous and inviscid, transient and steady, and two-
dimensional (2D) and three-dimensional (3D) incompressible
flows. Based on the general approach, a general weakly com-
pressible solver for thermal flow (GWCSTF) is also proposed.
Numerical investigations also demonstrate that GWCSTF has
good numerical stability for high Rayleigh number flows.

The remaining parts of the paper are organized as follows:
weakly compressible models are analyzed in Sec. II, and gen-
eral mechanisms for stabilizing computation are identified;
GWCSIF is constructed and analyzed in Sec. III, and it is
validated by numerical tests in Sec. IV; GWCSTF is con-
structed in Sec. V and validated by numerical tests in Sec. VI;
conclusions are given in Sec. VII.

II. ANALYSES OF WEAKLY COMPRESSIBLE MODELS

It has been proven that the mechanisms for stabilizing com-
putation in some weakly compressible models [18–20] can be
explained by numerical dissipation terms. The present section
analyzes several weakly compressible models to identify gen-
eral numerical dissipation terms for stabilizing computations.

A. Analysis of LBM

To illustrate the derivations of the macroscopic equations
of weakly compressible models based on LBM, LBM is in-
troduced here.

1. LBM

The evolution equation of LBM [10] is

fi(x + eiδt, t + δt ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq

i (x, t )
]
, (7)

f eq
i = wiρ

[
1 + eiαuα

c2
s

+ (eiαuα )2

2c4
s

− uαuα

2c2
s

]
, (8)

where ei is the discrete velocity; fi and f eq
i are distribution

function and equilibrium distribution function in discrete ve-
locity ei, respectively; τ is the relaxation parameter, δt is the
time interval; wi is the weight coefficient. The discrete veloci-
ties and weight coefficients of different models can be seen in
Ref. [10]. The equilibrium distribution functions satisfy∑

i

f eq
i = ρ,

∑
i

f eq
i eiα = ρuα,

∑
i

f eq
i eiαeiβ = ρc2

s δαβ + ρuαuβ,

∑
i

f eq
i eiαeiβeiγ = ρc2

s (uαδβγ + uβδαγ + uγ δαβ ), (9)

where subscripts α and β denote coordinate components. The
macroscopic pressure, velocity, and kinematic viscosity are
determined by

ρ =
∑

i

fi, p = ρc2
s , (10)

ρuα =
∑

i

fieiα, (11)

υ=μ/ρ=(τ − 0.5)c2
s δt . (12)

2. Macroscopic equations recovered from LBE

It has been proven that by using the Chapman-Enskog
expansion analysis, LBE can recover the continuous govern-
ing equations, Eqs. (5) and (6), with second-order accuracy
[10]. However, LBM is a discrete algorithm. To explain its
mechanisms for stabilizing computation, the discretized rather
than continuous governing equations need to be recovered.
Therefore, the more actual macroscopic equations (MAMEs)
[18] with actual numerical dissipation terms are derived to
explain the good numerical stability of LBM. The derived
MAMEs are

ρn+1 = ρn − ∂α (ρuα )nδt + 0.5δt2∂α∂β (ρuαuβ + ρc2
s δαβ )n

+ O(δt3), (13)

(ρuα )n+1 = (ρuα )n − ∂β (ρuαuβ + ρc2
s δαβ )nδt

+υδt∂β [∂β (ρuα ) + ∂α (ρuβ ) + ∂γ (ρuγ )δαβ]n

+ (
υ/c2

s − 0.5δt
)
δt∂t∂β

(
ρuαuβ + ρc2

s δαβ

)n

+ O(δt3). (14)
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Subsequent research indicates that some additional terms
in MAMEs are unnecessary, and simplified MAMEs [21] have
been proposed. The equations are

ρn+1 = ρn − ∂α (ρuα )nδt + 0.5δt2∂α∂β

(
ρc2

s δαβ

)n
, (15)

(ρuα )n+1 = (ρuα )n − ∂β

(
ρuαuβ + ρc2

s δαβ

)n
δt

+υδt∂β∂β (ρuα )n − (
υ + 0.5c2

s δt
)

× [∂αρn+1 − ∂αρn]. (16)

Both additional terms in the density and momentum equa-
tions help stabilize computations [21].

Substituting Eq. (15) into Eq. (16), the momentum equa-
tion can be rewritten as

(ρuα )n+1 = (ρuα )n − ∂β

(
ρuαuβ + ρc2

s δαβ

)n
δt

+υδt∂β∂β (ρuα )n+(
υ + 0.5c2

s δt
)

× [
∂α∂β

(
ρuβ

)n − 0.5c2
s δt∂α∂β∂γ

(
ρc2

s δβγ

)n]
.

(17)

It can be seen that the additional terms contain a mass
diffusion term related to ∂α∂β (ρδαβ )n in the continuity equa-
tion and a bulk viscosity term related to ∂α (∂βuβ )n in the
momentum equation.

B. Analysis of SLBM

SLBM is a second-order approximation of LBM. The early
SLBM [12] has obvious numerical diffusion affecting the
accuracy. Later, the improved model [15] was proposed. The
present analysis is based on the improved model [15]. The
procedures of the model are listed as follows:

Predictor step:

ρ∗=
∑

i

f eq
i (x − eiδt, t ), (18)

ρ∗u∗
α=

∑
i

f eq
i (x − eiδt, t )eiα. (19)

Corrector step:

ρn+1=ρ∗, (20)

(ρuα )n+1 = ρ∗u∗
α + (τ − 1)

∑
i

eiα f eq
i (x + eiδt, t + δt )

− (τ − 1)ρnun
α, (21)

where the subscript * represents the predicted variables.
By using a Taylor series expansion, the second-order

macroscopic equations [19] are given as follows:
Predictor step:

ρ∗ = ρn − ∂α (ρuα )nδt + 0.5δt2∂α∂β

(
ρuαuβ + ρc2

s δαβ

)n
,

(22)

(ρuα )∗ = −∂β

(
ρuαuβ + ρc2

s δαβ

)n
δt + 0.5c2

s δt2∂β

× [∂β (ρuα ) + 2∂γ (ρuγ )δαβ]n. (23)

Corrector step:
ρn+1 = ρ∗, (24)

(ρuα )n+1 = ρ∗u∗
α + (τ − 1)

{
ρuα + δt∂β

(
ρuαuβ + ρc2

s δαβ

)
+0.5c2

s δt2∂β[∂β (ρuα ) + ∂α (ρuβ ) + ∂γ (ρuγ )δαβ]

}∗
− (τ − 1)ρuα. (25)

It can be seen that there is a mass diffusion term in the continuity equation. The momentum equation can be rewritten as

(ρuα )n+1 = (ρuα )n − δt∂β

(
ρc2

s δαβ

)n + τ
{−δt∂β (ρuαuβ ) + 1

2 c2
s δt2[∂β∂β (ρuα ) + 2∂α∂β (ρuβ )]

}n

+ (τ − 1)
{
δt∂β (ρuαuβ ) + 1

2 c2
s δt2[∂β∂β (ρuα ) + 2∂α∂β (ρuβ )]

}∗

+ (τ − 1)c2
s δt∂α

[−∂β (ρuβ )nδt + 0.5δt2∂β∂γ

(
ρuβuγ + ρc2

s δβγ

)n]
. (26)

It can be seen that it contains bulk viscosity terms
in τρnc2

s δt2∂α (∂βuβ )n, (τ−1)ρ∗c2
s δt2∂α (∂βuβ )∗, and

−(τ−1)ρnc2
s δt2(∂αuα )n.

C. Analysis of FSLBM

The original FSLBM [11] is based on the standard LBM
[10]. Later, FSLBM based on the incompressible LBM [22]
was proposed to decouple the fluid density and pressure. The
present analysis is for the FSLBM based on the incompress-
ible LBM [23].

The model consists of two steps:
Predictor step:

fi(x, t + δt ) = f eq
i (x − eiδt, t ), (27)

where f eq
i = wiρ + wiρ0[ eiαuα

c2
s

+ (eiαuα )2

2c4
s

− uαuα

2c2
s

]. The pre-
dicted pressure and velocity are

ρ∗ =
∑

i

fi, p = ρc2
s , (28)

ρ0u∗
α =

∑
i

fieiα. (29)

Corrector step:

ρn+1 = ρ∗, (30)

un+1
α = u∗

α + (
υ − 0.5c2

s δt
)
δt∂β∂βuα. (31)
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By using a second-order Taylor series expansion,
f eq
i (x − eiδt, t ) is expanded as

f eq
i (x − eiδt, t )

= f eq
i − δteiα∂α f eq

i + 1
2δt2eiαeiβ∂α∂β f eq

i +O(δt3). (32)

The equilibrium distribution functions satisfy∑
i

f eq
i = ρ,

∑
i

f eq
i eiα = ρ0uα,

∑
i

f eq
i eiαeiβ

= ρc2
s δαβ + ρ0uαuβ,∑

i

f eq
i eiαeiβeiγ = ρ0c2

s (uαδβγ + uβδαγ + uγ δαβ ). (33)

Substituting Eqs. (32) and (33) into Eqs. (28) and (29) and
then combining Eqs. (30) and (31), the recovered macroscopic
equations are

ρn+1 = ρn − ∂α (ρ0uα )nδt + 0.5δt2∂α∂β

(
ρ0uαuβ + ρc2

s δαβ

)n
,

(34)

(ρ0uα )n+1 = (ρ0uα )n − ∂β

(
ρ0uαuβ + ρc2

s δαβ

)n
δt

+ υδt∂β (∂βuα )n + ρ0c2
s δt2∂β (∂γ uγ δαβ )n. (35)

It can be seen that they contain a mass diffusion term and
a bulk viscosity term.

D. Analysis of LBFS

LBFS [16] is a finite-volume solver that uses the solution of
a simplified LBE to calculate face fluxes. First, a unit lattice is
constructed at the finite-volume cell face, and LBE with τ = 1
is used to obtain predicted variables at the cell face:

ρ(xs, t + δt ) =
∑

i

f eq
i (xs − eiδt, t ), (36)

(ρuα )(xS, t + δt ) =
∑

i

eiα f eq
i (xs − eiδt, t ). (37)

Then f eq
i (xS, t + δt ) can be determined by Eq. (8).

Second, the mass flux Pα and momentum flux 
αβ at the
cell face are calculated by

Pα = eiα f eq
i (xS, t + δt ), (38)


αβ = eiαeiβ f eq
i (xS, t + δt ) + (0.5 − τ )eiαeiβ

× [
f eq
i (xS, t + δt ) − f eq

i (xS − eiδt, t )
]
, (39)

and the variables are updated by

∂tρ = − 1

�V

∑
k

Pα�Sknkα, (40)

∂t (ρuα ) = − 1

�V

∑
k


αβ�Sknkβ, (41)

where �V is the volume of the finite-volume cell, �Sk is the
area of the kth face, and nkα is the outward normal of the kth
face.

The recovered macroscopic equations with actual numeri-
cal dissipation terms of LBFS [24] are

ρ∗ = ρn − ∂α (ρuα )nδt + 0.5δt2∂α∂β

(
ρuαuβ + ρc2

s δαβ

)n
,

(42)

(ρuα )∗ = − ∂β

(
ρuαuβ + ρc2

s δαβ

)n
δt

+ 1
2 c2

s δt2∂β

[
∂β (ρuα ) + 2∂γ (ρuγ )δαβ

]n
, (43)

∂tρ = −∂α (ρuα )∗, (44)

∂t (ρuα ) = − ∂β

(
ρuαuβ + ρc2

s δαβ

)
+ υ∂β[∂β (ρuα ) + ∂β (ρuα ) + ∂γ (ρuγ )δαβ]

+ (τ − 1.5)
[
∂β

(
ρuαuβ + ρc2

s δαβ

)∗

− ∂β

(
ρuαuβ + ρc2

s δαβ

)]
. (45)

Substituting Eqs. (42) and (43) into Eqs. (44) and (45), the
final second-order macroscopic equations are

∂tρ = − ∂α (ρuα ) + δt∂α∂β

(
ρuαuβ + ρc2

s δαβ

)
+ 1.5c2

s δt2∂β∂β∂α (ρuα ), (46)

∂t (ρuα ) = − ∂β

(
ρuαuβ + ρc2

s δαβ

)
+ υ∂β[∂β (ρuα ) + ∂β (ρuα ) + ∂γ (ρuγ )δαβ]

+ (τ − 1.5)[∂β (ρuαuβ )∗ − ∂β (ρuαuβ )]

+ (τ − 1.5)c2
s δt∂α

[ − ∂β (ρuβ )

+ 0.5δt∂α∂β

(
ρuαuβ + ρc2

s δαβ

)]
. (47)

It can be seen that they contain mass diffusion and addi-
tional bulk viscosity terms.

E. Analysis of LWACM

The LWACM without forcing term consists of three steps,

f ∗
i (x − eiδt, t ) = f eq

i (x − eiδt, t ) − (1 − τ )

× [
f eq
i (x − eiδt, t ) − f eqo

i (x − eiδt, t )
]
,

(48)

f ∗∗
i (x, t + δt ) = f ∗

i (x − eiδt, t ), (49)

fi(x, t + δt ) = f ∗∗
i (x, t + δt )

+ (1 − τ )
[

f eq
i (x, t ) − f eqo

i (x, t )
]
, (50)

where f eq
i is the same as that of the LBM, Eq. (8), and f eqo

i is
the oppsite equilibrium distribution function defined as

f eqo
i = wiρ

{
1 + eiα (−uα )

c2
s

+ [eiα (−uα )]2

2c4
s

− (−uα )2

2c2
s

}
.

(51)

It is easy to prove that f eqo
i satisfies∑

i

f eqo
i = ρ,

∑
i

f eqo
i eiα = −ρuα,

∑
i

f eqo
i eiαeiβ

= ρc2
s δαβ + ρuαuβ,∑

i

f eqo
i eiαeiβeiγ = −ρc2

s (uαδβγ + uβδαγ + uγ δαβ ). (52)

The macroscopic variables ρ, ρuα , and υ are determined
by Eqs. (10)–(12), respectively.
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Combining Eqs. (48)–(50), the evolution equation of the
distribution function can be rewritten as

fi(x, t + δt ) = τ f eq
i (x − eiδt, t ) + (1 − τ ) f eqo

i (x − eiδt, t )

+ (1 − τ )
[

f eq
i (x, t ) − f eqo

i (x, t )
]
. (53)

Expanding f eq
i (x − eiδt, t ) and f eqo

i (x − eiδt, t ) with a
second-order Taylor series expansion leads to

f eq
i (x − eiδt, t ) = f eq

i − δteiα∂α f eq
i

+ 1
2δt2eiαeiβ∂α∂β f eq

i +O(δt3), (54)

f eqo
i (x − eiδt, t ) = f eqo

i − δteiα∂α f eqo
i

+ 1
2δt2eiαeiβ∂α∂β f eqo

i +O(δt3). (55)

Substituting Eqs. (54) and (55) into (53) leads to

fi(x, t + δt ) = τ
[

f eq
i − δteiα∂α f eq

i

+ 1
2δt2eiαeiβ∂α∂β f eq

i +O(δt3)
]
.

+ (1 − τ )
[

f eqo
i − δteiα∂α f eqo

i

+ 1
2δt2eiαeiβ∂α∂β f eqo

i +O(δt3)
]

+ (1 − τ )
(

f eq
i − f eqo

i

)
(56)

Taking summation of Eq. (56) over index i, we can obtain

ρn+1 = ρn − (2τ − 1)δt∂α (ρuα )n

+ 0.5δt2∂α∂β

(
ρuαuβ + ρc2

s δαβ

)n
. (57)

Multiplying both sides of Eq. (56) with ei and then mak-
ing summation over index i, we can obtain the macroscopic
momentum equation:

(ρuα )n+1 = (ρuα )n − δt∂β

(
ρuαuβ + ρc2

s δαβ

)
+ υδt∂β[∂β (ρuα ) + ∂α (ρuβ ) + ∂γ (ρuγ )δαβ].

(58)

The mass diffusion term in the density equation and the
bulk viscosity term in the momentum equation can also be
found here.

F. Summary

From the analyses of five weakly compressible models,
it can be seen that all models contain mass diffusion terms
related to ∂α∂αρ in the continuity equation and bulk viscosity
terms related to ∂α (∂βuβ ) in the momentum equation. Espe-
cially, the additional terms in the macroscopic equations of
the FSLBM include only the mass diffusion and bulk viscosity
terms. And it has been proven that in the simplified MAMEs
[21], both the additional terms in the density equation (mass

FIG. 1. The reconstructed unit lattice at the finite-volume cell face.

diffusion term) and momentum equation (bulk viscosity term)
are effective in stabilizing computation. These results imply
that the mass diffusion and bulk viscosity terms provide gen-
eral mechanisms for stabilizing the computation of weakly
compressible models.

It should be noticed that compared with LBM, both
MAMEs and the simplified MAMEs can only maintain nu-
merical stability for small τ (τ < 0.88 for MAMEs and τ <

1.16 for the simplified MAMEs) [21]. The reason for the
good numerical stability of LBM at large τ still needs to be
explored.

As to SLBM and LBFS, only equilibrium distribution func-
tions are involved, which implies that they are intrinsically
macroscopic models. The two models also show good nu-
merical stability at high Re (small τ ) and limited numerical
stability at low Re (large τ ) [19,24]. The derived macroscopic
equations of SLBM [19] and LBFS [24] can recover the
numerical stability and accuracy of the original models very
well. FSLBM and LWACM only contain equilibrium distribu-
tion functions; thus, their numerical stability and accuracy can
be recovered by the derived macroscopic equations as well.

III. GENERAL WEAKLY COMPRESSIBLE SOLVER
FOR ISOTHERMAL FLOW AND VALIDATION OF THE

GENERAL MECHANISMS

Referring to the general mechanisms and the computa-
tional procedures of LBFS, a general weakly compressible
solver for isothermal flows, abbreviated as GWCSIF, is
proposed.

A. Construction of GWCSIF

The detailed procedures of GWCSIF are summarized as
follows:

(a) A unit lattice is constructed at the finite-volume cell
face, as shown in Fig. 1. For 2D cases, a 3 × 3 unit lattice is
adopted, and for 3D cases, a 3 × 3 × 3 unit lattice is adopted.
It should be noted that the unit lattice is based on a local coor-
dinate to ensure lattice symmetry about the face. Variables at
the lattice nodes are interpolated by

φ =
⎧⎨
⎩

φL + ∇φL · (xS − eiδt − xL ) xS − eiδt at the left cell
φR + ∇φR · (xS − eiδt − xR) xS − eiδt at the right cell
0.5[φL +∇φL · (xS − eiδt − xL ) + φR + ∇φR·(xS − eiδt − xR)] xS − eiδt at the interface

. (59)
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where φ denotes an arbitrary variable; subscripts S, L, and
R denote the variables at the face, left cell, and right cell,
respectively. The partial derivatives at the cell centers are
calculated by the Green-Gauss gradient scheme:

�V ∂αφ=
∑

k

φs�Sknkα. (60)

The macroscopic variables at the face in Eq. (60) are ob-
tained by a linearized interpolation:

φS = φL|xR − xs|
|xR − xs| + |xL − xs| + φR

(
1− |xR − xs|

|xR − xs| + |xL − xs|
)

.

(61)

(b) Predictor step. With the interpolated variables on lattice
nodes, the governing equations are solved on the unit lattice to
obtain the predicted variables at xS . The discretized equations
are

ρ∗ = ρn − ∂α (ρuα )nδt, (62)

(ρuα )∗ = (ρuα )n − δt∂β

(
ρuαuβ + ρc2

s δαβ

)n

+ μδt∂β (∂βuα + ∂αuβ )n. (63)

The partial derivatives in Eqs. (62) and (63) are discretized
by the least-squares finite-difference method. More details can
be seen in Ref. [19].

(c) Corrector step. The interface mass flux Pα and momen-
tum flux 
αβ are obtained by

Pα = (ρuα )∗, (64)


αβ = ∂β

(
ρuαuβ + ρc2

s δαβ

)∗ − μ∂β (∂βuα + ∂αuβ )n, (65)

where the first-order partial derivatives at time step n are
adopted to simplify computation. The variables are updated
by

∂ρ

∂t
= − 1

�V

∑
k

Pα�Sknkα, (66)

∂ (ρu)

∂t
= −1

�V

∑
k

∏
αβ

�Sknkβ. (67)

Substituting Eqs. (62) and (63) into Eqs. (66) and (67), the
macroscopic equations of GWCSIF can be given as

∂ρ

∂t
= − ∂α (ρuα ) + δt∂α∂β

(
ρuαuβ + ρc2

s δαβ

)
− δt∂α∂β[μ(∂αuβ + ∂βuα )], (68)

∂ (ρuα )

∂t
= − ∂β (ρuαuβ )∗ − ∂β

(
ρc2

s δαβ

)
+ c2

s δt∂α[∂β (ρuβ )] + ∂β[μ(∂βuα + ∂αuβ )]n.

(69)

It can be seen that by adopting the computational proce-
dures of LBFS, the mass diffusion and bulk viscosity terms are
introduced implicitly. It should be noted that the procedures
are based on the standard governing equations and thus can
be extended to construct other weakly compressible models.
The generality can be shown in the construction of GWCSTF
(see Sec. V).

FIG. 2. Schematic of 2D lid-driven cavity flow.

As to the boundary treatment, ghost cells are adopted.
Thus, the boundary fluxes can be computed using the above-
mentioned procedures.

B. Dissipative model

The dissipative model based on the least-squares-based
finite-difference method is proposed to validate the general
mechanisms that do not rely on discretization schemes. The
governing equations of the dissipative model are the govern-
ing equations with the two general dissipation terms:

∂ρ

∂t
= −∂α (ρuα ) + δt∂α∂β

(
ρc2

s δαβ

)
, (70)

∂ (ρuα )

∂t
= − ∂β (ρuαuβ ) − ∂β

(
ρc2

s δαβ

)
+ ρc2

s δt∂α (∂βuβ ) + ∂β[μ(∂βuα + ∂αuβ )]n. (71)

Here, the coefficients of the mass diffusion and bulk vis-
cosity terms refer to those of GWCSTF, Eqs. (68) and (69).
The partial derivatives of space are discretized by the least-
squares finite-difference method. More details can be seen in
Ref. [19].

C. Validation of the general mechanisms

To validate the general mechanisms for stabilizing com-
putation, the numerical stability of GWCSIF, the dissipative
model, and other weakly compressible models is investigated
by simulating the 2D lid-driven cavity flow at different mesh
sizes and Reynolds numbers. In the present paper, GWCSTF,
LBFS, and the dissipative model are discretized with the ex-
plicit first-order scheme to clarify the general mechanisms.

The physical model is depicted in Fig. 2. The cavity of size
L × L is filled with fluid. The lid has a constant horizontal
velocity u0 = 0.1, and the other three walls are stationary. The
problem is characterized by the Reynolds number defined as
Re = (u0L)/υ. The convergence criterion is∑

i, j

∣∣∣∣un+1
i, j

∣∣ − ∣∣un
i, j

∣∣∣∣
∑
i, j

∣∣un+1
i, j

∣∣ � 10−8. (72)

First, the weakly compressible models based on the finite-
difference scheme, LBM, SLBM, FSLBM, LWACM, and the
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FIG. 3. Numerical stability tests for LBM (a), SLBM (b), FSLBM (c), LWACM (d), and the dissipative model (e) at different mesh sizes
and Re, where N is the mesh number in length L. The blue circle represents convergence, the red cross represents divergence, and the black
square represents the results that do not converge but also cannot meet the convergence criteria.

dissipative model, are investigated. The LBM here adopts the
nonequilibrium extrapolation boundary condition [25] for all
boundaries owing to its generality and good numerical stabil-
ity. The predictor and corrector time steps of the dissipative
model are δt = 0.5 and �t = 1, respectively, and the time
steps for other models are 1.

The results of numerical stability are summarized in Fig. 3.
It can be seen that the stable parameter ranges of SLBM,
FSLBM, and the dissipative model have the same character-
istic. Both of them show good numerical stability at small υ,
while there is instability at large υ. The result implies that
the general mechanisms can well explain the good numerical
stability of SLBM and FSLBM.

For LWACM, it shows instability at large υ, and also at
very small υ. It is due to the fact that LWACM adopts a
sound speed cs

√
(2τ−1). The general mechanisms indeed

contribute to stabilizing computation. However, at small υ

(τ approaches 0.5), the Mach number u0/
√

(2τ−1)cs ex-
ceeds the incompressible limit of 0.3 and makes the model
divergent.

As for LBM, it has intrinsic mechanisms beyond the
general mechanisms to stabilize computations at large υ.
However, its numerical stability at small υ is worse than the
dissipative model with the general mechanisms.

Second, the two weakly compressible models based on the
finite-volume scheme, LBFS, and GWCSIF, are investigated.
The predictor and corrector time steps of the two models
are δt = 0.5 and �t = 0.5, respectively. As shown in Fig. 4,
both GWCSIF and LBFS exhibit good numerical stability
for υ � 0.25. They can retain stability at Re = 5000 even
for a very coarse mesh 10 × 10. Also, the stable parameter
ranges of the two methods are similar. The result indicates
that GWCSIF can achieve good numerical stability for high
Reynolds number flows by adopting the general mechanisms
for stabilizing computation. The good numerical stability of
LBFS can be well explained by the general mechanisms. For
low Reynolds number flows, a smaller υ can be adopted to
ensure numerical stability.

IV. NUMERICAL TESTS FOR INCOMPRESSIBLE
ISOTHERMAL FLOW

Four numerical tests are conducted in this section to test
the accuracy and correctness of GWCSIF. The sound speed
cs = 1/

√
3 is adopted for all cases.

A. Taylor-Green vortex flow

To compare the accuracy of GWCSIF and LBFS, the
two-dimensional Taylor-Green vortex flows with an analytical
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FIG. 4. Numerical stability tests for GWCSIF (a) and LBFS (b) at different mesh sizes and Re, where N is the mesh number in length L.
The blue circle represents convergence, and the red cross represents divergence.

solution is simulated. The analytical solution is

u(x, y, t ) = −u0 cos (πx/L) sin (πy/L) exp

(
−2π2u0t

ReL

)
,

(73a)

v(x, y, t ) = u0 sin (πx/L) cos (πy/L) exp

(
−2π2u0t

ReL

)
,

(73b)

p(x, y, t ) = p0 − ρ0u2
0

4
[cos (2πx/L) + cos (2πy/L)]

× exp

(
−4π2u0t

ReL

)
, (73c)

where u0 is the reference velocity, ρ0 is the fluid density, p0 is
the reference pressure, and Re is the Reynolds number defined
as Re = (u0L)/υ. The computational area is −L � x � L and
−L � y � L, and the four boundaries are both periodic.

The numerical errors at different mesh sizes are investi-
gated to compare the accuracy of GWCSIF and LBFS. The
fixed parameters are �t = 0.5, �x = 1, cs=1/

√
3, υ = 0.05,

and Re = 20. The mesh has five different sizes, including
40 × 40, 60 × 60, 80 × 80, 100 × 100, and 120 × 120; δt has
three values, 0.6�t , 0.8�t , and �t . The numerical error is
calculated at t∗ = u0t/L = 1, and it is defined as

E2 =
√∑N×N

i=1 [(un − ua)/u0]2

N × N
, (74)

where un and ua are the numerical results and analytical solu-
tions, respectively.

Figure 5 implies that both GWCSIF and LBFS have
second-order spatial accuracy. The numerical errors of GWC-
SIF are always close to those of LBFS, which indicates that
GWCSIF and LBFS have similar numerical accuracy.

B. Viscous flow around a cylinder

To show the flexibility of GWCSIF for the curved bound-
ary, viscous flow past a cylinder is simulated in this section.
The schematic of the O-type mesh used in GWCSIF is shown
in Fig. 6. The free-stream density and velocity are ρ∞ and u∞,
respectively. The problem is characterized by the Reynolds
number defined as Re = (u∞D)/υ, where D is the diameter
of the cylinder.

First, steady flows at Re = 20 and 40 are simulated. The
corresponding ρ∞ and u∞ are 1 and 0.05cs, respectively. The
computational domain is 0.5D � r � 25.5D. The mesh size
is 300 × 200, and the distance from the nearest computational
node to the cylinder surface is 0.008D. Initially, the pressure
and velocity are set as the free-stream properties. For steady
flow, the convergence criterion is∑ ||u|n+1 − |u|n|∑ |u|n+1 � 10−9. (75)

FIG. 5. Numerical errors of GWCSIF and LBFS at different
mesh sizes and δt .
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FIG. 6. Schematic of O-type mesh used in GWCSIF.

Four dimensionless parameters (the pressure coefficient
Cp, drag coefficient Cd , lift coefficient Cl , and Strouhal num-
ber St) are used to quantify the results. Their definitions are

Cp = pw − p(ρ∞)
1
2ρ∞u2∞

, (76)

Cd = Fx
1
2 Dρ∞u2∞

, (77)

Cl = Fy
1
2 Dρ∞u2∞

, (78)

St = fsD/u∞, (79)

where pw is the pressure on the cylinder surface, fs is the
vortex shedding frequency, and Fx and Fy are the components
of the total force acting on the cylinder. The total force is

FIG. 7. Streamlines of viscid flow across a cylinder at Re = 20
(a) and 40 (b) obtained by GWCSIF.

FIG. 8. Cp distribution on the cylinder surface at Re = 40, to-
gether with those given by He and Doolen [26], Shu et al. [16], and
Yang et al. [27]. The orientation angle θ is measured from the leading
stagnation point along the clockwise direction.

calculated by

Fα =
∫

A
[−pδαβ + μ(∂βuα + ∂αuβ )]nβdS. (80)

Figure 7 shows the steady flow fields around the cylinder
at Re = 20 and 40. It can be seen that the two vortices behind
the cylinder are symmetric, and their length extends with Re
increasing from 20 to 40. To validate the results, Fig. 8 depicts
the Cp profile at Re = 40 along the cylinder surface, together
with those given by He and Doolen [26], Shu et al. [16], and
Yang et al. [27]. It can be seen that the result obtained by
GWCSIF is in good accordance with the reference results.

Furthermore, Table I compares drag coefficients Cd , re-
circulation lengths Ls, and separation angles θs obtained
by GWCSIF with reference data. Good agreement can be
observed.

For Re = 100 and 200, the flow is unsteady and finally
becomes periodic. The corresponding ρ∞ and u∞ used in

TABLE I. Comparison of drag coefficients Cd , recirculation
lengths Ls, and separation angles θs at Re = 20 and 40.

Re References Cd Ls/D θs

20 Dennis and Chang [28] 2.05 0.94 43.7
Nieuwstadt and Keller [29] 2.053 0.893 43.37
He and Doolen [26] 2.15 0.921 42.96
Shu et al. [16] 2.062 0.935 42.94
GWCSIF 2.062 0.913 43.70

40 Dennis and Chang [28] 1.52 2.35 53.8
Nieuwstadt and Keller [29] 1.550 2.179 53.34
He and Doolen [26] 1.499 2.245 52.84
Shu et al. [16] 1.53 2.240 52.69
GWCSIF 1.537 2.218 53.68
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FIG. 9. Transient streamlines at Re = 100 (a) and 200 (b) given
by GWCSIF.

simulations are 1 and 0.1cs, respectively. Figure 9 shows the
transient flow fields around the cylinder. The vortices become
asymmetric, and the Kármán vortex street can be observed.
Figure 10 depicts the transient drag and lift coefficients. It
can be seen that both drag and lift coefficients finally become
periodic. To validate GWCSIF, Cd , Cl , and St at Re = 100
and 200 obtained by GWCSIF are compared with reference
results. As shown in Table II, the results obtained by GWCSIF
show good agreement with the reference results.

C. Inviscid flow across a cylinder

To show the good numerical stability of GWCSIF for high
Reynolds number flows, an extreme case with an infinite
Reynolds number, the inviscid flow across a cylinder, is simu-
lated. The physical model is similar to that depicted in Sec. IV
B. The cylinder surface is set as the nonpenetration boundary
condition, while the free-stream properties are imposed on the
outer boundary. The mesh size is 300 × 200, the computa-
tional domain is 0.5D � r � 25.5D, and the distance from the

TABLE II. Comparisons of Cd , Cl , and St at Re = 100 and 200
obtained by GWCSIF with reference results.

Re References Cd Cl St

100 Braza et al. [30] 1.28 ± 0.02 ± 0.30 0.16
Liu et al. [31] 1.350 ± 0.012 ± 0.339 0.164
Ding et al. [32] 1.325 ± 0.008 ± 0.28 0.164
Shu et al. [16] 1.334 ± 0.009 ± 0.33 0.164
GWCSIF 1.331 ± 0.009 ± 0.325 0.1644

200 Braza et al. [30] 1.38 ± 0.07 ± 0.78 0.190
Liu et al. [31] 1.31 ± 0.049 ± 0.69 0.192
Ding et al. [32] 1.327 ± 0.045 ± 0.60 0.196
Shu et al. [16] 1.338 ± 0.045 ± 0.69 0.197
GWCSIF 1.333 ± 0.0446 ± 0.679 0.1957

nearest computational node to the cylinder surface is 0.008D.
The convergence criterion is∑ ||u|n+1 − |u|n|∑ |u|n+1 � 10−8. (81)

The pressure contours near the cylinder are shown in
Fig. 11. It can be seen that the pressure field is symmetric
about the line x = 0, which implies that the fluid does not
have a pressure drop induced by the viscosity after crossing
the cylinder. Figure 12 exhibits the streamlines around the
cylinder. The streamlines flow smoothly across the cylinder
and are symmetric about the line x = 0, which is a typical
feature of the inviscid flow.

Furthermore, the pressure coefficient profile on the cylin-
der surface obtained by GWCSIF is compared with the
theoretical result in Fig. 13. The theoretical pressure coeffi-
cient distribution is

Cp = 1 − 4(sin θ )2, (82)

where the orientation angle θ is measured from the upstream
stagnation point along the clockwise direction. It can be seen
that the pressure coefficient profiles given by GWCSIF agree
well with the theoretical solution. The successful simulation
of inviscid flow validates the good numerical stability of
GWCSIF at high Reynolds numbers.

FIG. 10. Transient Cd and Cl at Re = 100 (a) and 200 (b) given by GWCSIF.
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FIG. 11. Pressure contours of the inviscid flow past a circular
cylinder given by GWCSIF.

D. 3D lid-driven cavity flow

The 3D lid-driven cavity flow is simulated to show the
generality of GWCSIF for both 2D and 3D situations. The
physical model shown in Fig. 14 is a cubic cavity of size
L×L×L. The lid of the cavity has a constant velocity (u0, 0, 0)
while other walls are stationary. The problem is characterized
by the Reynolds number defined as Re = u0L/υ.

Three Reynolds numbers (Re = 100, 400, and 1000) are
considered in the present simulations. Nonuniform meshes are
adopted, and the mesh sizes for Re = 100, 400, and 1000 are

FIG. 12. Streamlines of the inviscid flow past a circular cylinder
given by GWCSIF.

FIG. 13. Comparison of pressure coefficient distribution on the
cylinder surface for inviscid flow across the cylinder.

50 × 50 × 50, 55 × 55 × 55, and 60 × 60 × 60, respectively.
For all cases, u0 = 0.1cs and cs = 1/

√
3 are fixed.

To validate the results in quantity, u profiles along the line
x = 0.5L, y = 0.5L, and w profiles along the line y = 0.5L,
z = 0.5L obtained by GWCSIF are compared with reference
data in Fig. 15. The present results are in good accordance
with reference results [33,34], which verifies the capability of
GWCSIF for 3D simulations.

V. CONSTRUCTION AND ANALYSIS OF GENERAL
WEAKLY COMPRESSIBLE SOLVERS

FOR THERMAL FLOWS

A general approach to constructing general weakly com-
pressible solvers has been proposed in Sec. III based on the
general mechanisms for stabilizing computation. To show the

FIG. 14. Physical model of 3D lid-driven cavity flow.
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FIG. 15. u profiles along x = 0.5L, y = 0.5L, and w profiles along y = 0.5L, z = 0.5L for 3D lid-driven cavity flow at Re = 100 (a1),
(a2), 400 (b1), (b2), and 1000 (c1), (c2), together with the reference results given by Ding et al. [34] and Wang et al. [33].

generality of the approach, the general weakly compressible
solver for incompressible thermal flows, labeled by GWCSTF,
is proposed to simulate incompressible thermal flows.

A. Construction of GWCSTF

Like GWCSIF, GWCSTF can be directly constructed ac-
cording to the governing equations. The governing equations
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FIG. 16. Schematic of 2D lid-driven cavity flow.

for thermal flows are

∂tρ + ∂α (ρuα ) = 0, (83)

∂t (ρuα ) + ∂β (ρuαuβ ) = −∂α p + μ∂β (∂αuβ + ∂βuα ) + Fα,

(84)

∂t (ρcpT ) + ∂α (ρcpT uα ) = ∂α (k∂αT ), (85)

where k is the thermal conductivity, and cp is the specific heat
capacity at constant pressure.

The computational procedures of GWCSTF are summa-
rized as follows:

(a) A unit lattice is constructed at the finite-volume cell
face, which is the same as that of GWCSIF.

(b) Predictor step. The governing equations are solved on
the unit lattice to obtain the predicted variables at the cell face.
The discretized equations are

ρ∗ = ρn − ∂α (ρuα )nδt, (86)

(ρuα )∗ = (ρuα )n − δt∂β

(
ρuαuβ + ρc2

s δαβ

)n

+ μδt∂β (∂βuα + ∂αuβ )n+F n
α δt, (87)

(ρcpT )∗ = (ρcpT )n − δt∂α (ρcpT uα )n + δt∂α (k∂αT )n. (88)

Corrector step. The interface density flux Pα , momentum
flux 
αβ , and heat flux are obtained by

Pα = (ρuα )∗, (89)


αβ = ∂β

(
ρuαuβ + ρc2

s δαβ

)∗ − μ∂β (∂βuα + ∂αuβ )n, (90)

Qα = (ρcpT uα )∗ − k(∂αT )n. (91)

The variables are updated by
∂ρ

∂t
= − 1

�V

∑
k

Pα�Sknkα, (92)

∂ (ρuα )

∂t
= −1

�V

∑
k


αβ�Sknkβ + Fαδt, (93)

∂ (ρcpT )

∂t
= −1

�V

∑
k

Qα�Sknkα. (94)

Similar to GWCSIF, the general numerical dissipation
terms are introduced to GWCSTF implicitly.

For natural convection, the Boussinesq approximation is
adopted, and the buoyancy is [35]

F = βgρ(T − Tref ), (95)

where Tref is the reference temperature that can be chosen as
the average temperature and g is the gravity acceleration.

B. Numerical stability test for GWCSTF

To test the numerical stability of GWCSTF, 2D natural
convection in a square cavity is simulated. As shown in
Fig. 16, the cavity of size L × L has four stationary walls.
The temperatures of the left and right walls are set as Th

and Tl (Th > Tl ), respectively, and the upper and lower walls

FIG. 17. Numerical stability of GWCSTF (a) and TLBFS (b) at different Ra and N. The blue circle represents convergence, while the red
cross represents divergence.
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are adiabatic. The problem is characterized by the Rayleigh
number Ra and the Prandtl number Pr defined as

Ra = βg(Th − Tl )L3

υχ
= V 2

c L2

χυ
, Pr = υ

χ
, (96)

where Vc = √
βg(Th − Tl )L is the characteristic velocity and

χ = k/(ρcp) is the thermal diffusivity. In present tests, Pr =
0.71 and Vc = 0.1 are chosen.

The numerical stability of GWCSTF and thermal lattice
Boltzmann flux solver [36] (TLBFS) at different Ra and N
are investigated, where N is the mesh number for length L,
and uniform meshes are used. TLBFS can be seen as the
combination of LBFS for fluid flow and another solver for
heat transfer. It also involves the general dissipation terms,
according to the analysis for LBFS.

Other parameters are set as δt = 0.5, �t = 0.5, and Vc =
0.1. As shown in Fig. 17, both GWCSTF and TLBFS have
good numerical stability at high Ra. For Ra = 108, their re-
sults are still stable even for a coarse mesh size of 10 × 10. In
addition, the stable parameter ranges of GWCSTF and TLBFS
show good agreement. The result indicates that by introducing
the general numerical dissipation terms, both GWCSTF and
TLBFS can achieve good numerical stability for high Ra
flows.

VI. NUMERICAL TESTS FOR INCOMPRESSIBLE
THERMAL FLOW

Three cases are simulated in this section to validate GWC-
STF further.

A. Convection diffusion of a Gaussian hill

To test the accuracy of GWCSTF, the convection diffusion
of a Gaussian hill is simulated. The computational domain is
[−2L, 2L] × [−2L, 2L] and has a constant uniform velocity
u = (u0, 0). Initially, the temperature field is

T (x, 0) = T0

2πσ 2
exp

[
−(x − x0)2

2σ 2

]
, (97)

where σ = 0.2L, T0 = 2πσ 2, and x0 = (−L, 0). The analyti-
cal solution is

T (x, t ) = T0

2π (2χt + σ 2)
exp

[
−(x − x0 − ut )2

2(2χt + σ 2)

]
. (98)

The periodic boundary condition is adopted for all bound-
aries, and the simulation time is short enough to avoid the
error induced by the finite computational domain.

The temperature field at the Fourier number Fo = tχ/L2 =
0.02 is outputted and compared with the corresponding an-
alytical solutions. A uniform mesh of size 200 × 200 is
adopted, and other parameters are δt = 0.5, �t = 0.5, the Pé-
clet number Pe = u0L/χ = 20, and the mesh Fourier number
Fo�x = �tχ/�x2 = 0.1. Figure 18 exhibits the transient tem-
perature fields given by GWCSTF and analytical solutions.
Good agreement can be observed.

To test the accuracy of GWCSTF, its numerical errors at
different mesh sizes are compared with those of TLBFS. Five
different mesh sizes (80 × 80, 120 × 120, 160 × 160, 200 ×

FIG. 18. Comparison of temperature contours at Fo = 0.02 be-
tween the results given by GWCSTF (white dashed line) and
analytical solution (solid black line).

200, and 240 × 240) are considered, and other parameters are
set the same as above. The numerical error quantified by the
L2 norm is defined as

E2 =
√∑N0

i=1 (Tn − Ta)2

N0
, (99)

where Ta and Tn are the analytical and numerical results,
respectively, and N0 is the grid amount. The numerical error is
calculated at Fo = tχ/L2 = 0.02.

Figure 19 shows that both GWCSTF and TLBFS have a
convergence order near 2, which is consistent with the accu-
racy of the discretization scheme. Additionally, the numerical
errors of GWCSIF are smaller than those of TLBFS.

FIG. 19. Numerical errors of TLBFS and GWCSTF for convec-
tion diffusion of a Gaussian hill.
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TABLE III. Comparison of characteristic parameters of natural
convection at different Ra.

Ra References 103 104 105 106

(ux=0.5LL/χ )max TLBM [39] 3.644 16.134 34.261 63.024
TLBFS [36] 3.640 16.14 34.87 64.838
DQ [40] 3.649 16.190 34.736 64.775
GWCSTF 3.647 16.167 34.724 64.860

y/L TLBM [39] 0.810 0.820 0.855 0.848
TLBFS [36] 0.815 0.825 0.855 0.850
DQ [40] 0.815 0.825 0.855 0.850
GWCSTF 0.8145 0.8234 0.8546 0.8501

(vy=0.5LL/χ )max TLBM [39] 3.691 19.552 67.799 215.26
TLBFS [36] 3.708 19.67 68.85 220.92
DQ [40] 3.698 19.638 68.640 220.64
GWCSTF 3.697 19.635 68.695 220.953

x/L TLBM [39] 0.180 0.120 0.065 0.040
TLBFS [36] 0.180 0.118 0.065 0.038
DQ [40] 0.180 0.120 0.065 0.035
GWCSTF 0.180 0.1190 0.0669 0.0379

Nua TLBM [39] 1.117 2.241 4.511 8.731
TLBFS [36] 1.115 2.232 4.491 8.711
DQ [40] 1.118 2.245 4.523 8.762
GWCSTF 1.118 2.245 4.523 8.835

B. 2D natural convection in a square cavity

The 2D natural convection in a square cavity is simulated
in the present subsection to validate GWCSTF for natural
convection in an extensive range of Ra. The physical model
is the same as that described in Sec. V B. The Prandtl number
and characteristic velocity are set as Pr = 0.71 and Vc = 0.1,
respectively; six Rayleigh numbers (103, 104, 105, 106, 107,
and 108) are chosen. According to Refs. [37,38], for Ra =
103, 104, 105, and 106, uniform meshes are adopted, the cor-
responding mesh sizes are 100 × 100, 150 × 150, 200 × 200,
and 250 × 250, respectively. For Ra = 107 and 108, very
fine meshes are needed in the area near walls to capture the

boundary layers. Therefore, nonuniform meshes are adopted,
the mesh sizes for Ra = 107 and 108 are 300 × 300 and
400 × 400, respectively, and the distances from the wall to
the nearest computational grid are 0.0004L and 0.0002L,
respectively.

First, the cases Ra = 103, 104, 105, and 106 are investi-
gated. Table III compares several characteristic parameters,
including the maximum u along x = 0.5L and the correspond-
ing y coordinate, the maximum v along y = 0.5L and the
corresponding x coordinate, and the average Nusselt number
Nua of the computational domain. Nua is defined as

Nua = 1

χ�T L

∫∫
(uT − χ∂xT )dxdy (100)

It can be seen that these characteristic parameters at differ-
ent Ra obtained by GWCSTF agree well with the reference
results [36,39,40].

Second, the test cases of high Ra (107 and 108) are inves-
tigated. Isothermals and streamlines are given in Figs. 20 and
21, respectively. At such high Ra, the velocity and temperature
boundary layers near the hot and cold walls are much thinner.
However, GWCSTF shows good numerical stability at such
high Ra.

The u profiles along y = 0.5L and v profiles along x =
0.5L at Ra = 107 and 108 obtained by GWCSIF are compared
with the reference results [37,41]. As shown in Fig. 22, the
present results given by GWCSIF are in good accordance with
the reference results [37,41].

Furthermore, Tables IV and V provide detailed compar-
isons of several characteristic parameters, which include the
maximum dimensionless stream function and the correspond-
ing position, the average Nusselt number along x = 0.5L, the
maximum u along x = 0.5L and the corresponding location,
and the maximum v along y = 0.5L and the corresponding
location, at Ra = 107 and 108, respectively. It can be seen
that the present results given by GWCSIF compare well
with the results of Contrino et al. [42] using the multiple-
relaxation-times thermal lattice Boltzmann equation, Quéré
[43] applying the high-order pseudospectral method, Yang

FIG. 20. Isotherms for natural convection in a square cavity at (a) Ra = 107, (b) Ra = 108.
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FIG. 21. Streamlines for natural convection in a square cavity at (a) Ra = 107, (b) Ra = 108.

FIG. 22. The u profiles along x = 0.5L and v profiles along y = 0.5L at Ra = 107 (a1), (a2), Ra = 108 (b1), (b2), together with the data
given by Yang et al. [37] and Wang et al. [36].
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TABLE IV. Results of 2D natural convection in a square cavity at Ra = 107.

Parameters Contrino et al. [42] Quéré [43] Wang et al. [36] Yang et al. [37] GWCSTF

|ψ/χ |max 30.1760 30.165 30.164 30.192 30.138
x/L 0.0858 0.086 0.0857 0.0848 0.0850
y/L 0.5558 0.556 0.5559 0.5548 0.5546
Nu1/2 16.5231 16.52 16.543 16.518 16.514
(ux=0.5LL/χ )max 148.5852 148.59 148.84 148.86 148.05
y/L 0.8793 0.879 0.8789 0.8800 0.8801
(vy=0.5LL/χ )max 699.3166 699.18 699.91 699.20 699.63
x/L 0.0213 0.021 0.0216 0.0217 0.0213

et al. [37] adopting a developed gas kinetic scheme, and Wang
et al. [36] using TLBFS.

C. 3D natural convection in a concentric annulus

To validate the flexibility of GWCSTF for 3D curved
boundaries, 3D natural convection in a concentric annulus is
simulated. The schematic diagram is depicted in Fig. 23. The
radii of the inner and outer cylinders are Ri and Ro, respec-
tively, and the height of the annulus is H . The geometry of the
physical model is depicted by two aspect ratios, Ar = Ro/Ri

and η = H/(Ro − Ri ).
The inner and outer cylinder surfaces have constant tem-

peratures Ti = 1 and To = 0, respectively, and the top and
bottom walls are adiabatic. All walls are stationary, and the
nonslip boundary condition is adopted.

The problem is characterized by the Prandtl number Pr and
the Rayleigh number Ra. Their definitions are

Pr = υ/χ, Ra = βg(Ti − To)(Ro − Ri )3

υχ
= V 2

c (Ro − Ri )2

υχ
,

(101)

where Vc is the characteristic velocity defined as Vc =√
βg(Ti − To)(Ro − Ri ). In the present simulation, Ar = 2,

η = 2, Pr = 0.71, and Vc = 0.1 are fixed, and two Ra (104

and 105) are considered. Owing to the axisymmetric model,
only one mesh layer is needed in the azimuthal direction. The
mesh size used for simulations is 120 × 1 × 240.

Figures 24 and 25 show the steady streamlines at the
r−z plane. As the Rayleigh number increases from 104 to
105, more vortices arise in the flow field, and the ther-
mal boundary layers become thinner. These phenomena
imply enhanced heat transfer and more vigorous natural

convection. These observations are consistent with those re-
ported in Refs. [14,44].

For further validation, the average Nusselt numbers of the
inner and outer cylinder surfaces obtained by GWCSTF are
compared with the reference data [14,44,45]. The average
Nusselt numbers of the inner and outer cylinder surfaces are
defined as

Nui,o = − Ri,o

H (Ti − To)

∫ H

0

∂T

∂r

∣∣∣∣
i,o

dz, (102)

where the subscripts i and o represent the variables of the
inner and outer surfaces, respectively. As shown in Table VI,
the Nusselt numbers of the inner and outer surfaces given by
GWCSTF agree well with the reference data [14,44,45]. The
comparison validates the ability of GWCSTF to tackle 3D
curved boundaries.

VII. CONCLUSIONS

From a macroscopic perspective, directly solving weakly
compressible models with the central difference schemes suf-
fers numerical instability. Adding numerical dissipation terms
is a popular approach to achieving good numerical stability.
Given the general numerical dissipation terms, many weakly
compressible models can be incorporated into a unified, sim-
ple framework. This idea is the motivation for the present
work.

In the present paper, several weakly compressible models
have been analyzed. It is found that all models contain a
mass diffusion term related to ∂α∂αρ and bulk viscosity terms
related to ∂α∂β (ρuβ ). In particular, the additional terms in
FSLBM include only the mass diffusion term and the bulk
viscosity term. These results indicate that the mass diffusion

TABLE V. Results of 2D natural convection in a square cavity at Ra = 108.

Parameters Contrino et al. [42] Quéré [43] Wang et al. [36] Yang et al. [37] GWCSTF

|ψ/χ |max 53.953 53.85 53.893 53.885 53.792
x/L 0.0480 0.048 0.0476 0.0476 0.0489
y/L 0.5533 0.553 0.5528 0.5532 0.5478
Nu1/2 30.227 30.225 30.301 30.227 30.191
(ux=0.5LL/χ )max 321.37 321.9 323.65 321.49 308.7
y/L 0.9276 0.928 0.9288 0.9284 0.9290
(vy=0.5LL/χ )max 2222.3 2222 2222.9 2221.7 2223.4
x/L 0.0120 0.012 0.0119 0.0122 0.0119
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FIG. 23. Schematic diagram of the 3D natural convection in a
concentric annulus.

FIG. 24. Streamlines on the r-z plane of the 3D natural con-
vection in a concentric annulus at different Ra. (a) Ra = 104, (b)
Ra = 105.

FIG. 25. Isotherms on the r-z plane of the 3D natural convection
in a concentric annulus at different Ra. (a) Ra = 104, (b) Ra = 105.

and the bulk viscosity terms provide general mechanisms for
stabilizing the computation of weakly compressible models.

Based on the general mechanisms and referring to com-
putational procedures of LBFS, a general approach, which
introduces numerical dissipation terms implicitly, has been
proposed to construct general weakly compressible solvers
using governing equations. GWCSIF was proposed first.
Numerical investigations for GWCSIF and other weakly com-
pressible models demonstrate that the general mechanisms
can ensure good numerical stability for high Reynolds number
flows. The general mechanisms can explain the good numer-
ical stability of those weakly compressible models, except
for LBM. LBM has intrinsic mechanisms beyond the general
ones to achieve good numerical stability at large kinematic
viscosities. However, its numerical stability at small kine-
matic viscosities is worse than the dissipative model with the
general mechanisms. More numerical simulations prove that
GWCSIF has similar numerical accuracy as LBFS and can
simulate both viscous and inviscid, transient and steady, and
2D and 3D incompressible flows, which validates the general
mechanisms further.

To show the generality of the approach of constructing
general weakly compressible solvers, GWCSTF has been pro-
posed to simulate incompressible thermal flows. Numerical
investigations also show that GWCSTF has good numerical
stability for high Rayleigh number flows and good accu-
racy. In summary, the good performances of GWCSIF and

TABLE VI. Comparison of average Nusselt numbers for the 3D natural convection in a concentric annulus.

Reference [44] Reference [14] Reference [45] Present

Ra Nui Nuo Nui Nuo Nui Nuo Nui Nuo

104 3.220 3.217 3.228 3.193 3.126 3.216 3.212 3.222
105 5.815 5.808 5.731 5.712 5.798 5.798 5.789 5.809
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GWCSTF validate the general mechanisms for stabilizing
computation and the general approach to constructing general
weakly compressible solvers.
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