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Method and computer library for calculation of the Boltzmann collision integrals
on discrete momentum lattice
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We present a general and numerically efficient method for calculation of collision integrals for interacting
quantum gases on a discrete momentum lattice. Here we employ the original analytical approach based on
Fourier transform covering a wide spectrum of solid-state problems with various particle statistics and arbitrary
interaction models, including the case of momentum-dependent interaction. The comprehensive set of the
transformation principles is given in detail and realized as a computer Fortran 90 library FLBE (Fast Library
for Boltzmann Equation).
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I. INTRODUCTION

Recent advances of experimental physics in generation of
ultrashort laser pulses, including attosecond duration [1,2],
present the possibility to obtain and study nonequilibrium
states of matter with femtosecond [3–5] and even attosec-
ond [6] resolution. The details of relaxation processes in the
excited state allows us to clarify the material characteristics
[3] or interaction models [4], and help to develop unique
optoelectronic devices [7,8].

There exist many theoretical approaches, such as Liou-
ville equation [9], nonequilibrium Green’s function method
[10–14], real-time density functional theory [15], and others
[16], developed to describe nonequilibrium phenomena in
various physical models.

In the case of the solid state, the excited state quickly
becomes near equilibrium due to high collision rate in the
condensed state. As a result, the system behavior can be effi-
ciently described by the kinetic Boltzmann equation [17,18] in
the whole time range of consideration, including femtosecond
scale [19–22]. On the other side, in the case of shorter times,
higher excitation levels or significant correlations between
particles, accurate consideration can require the application
of more advanced approaches [23] listed above.

Overall, the kinetic Boltzmann equation provides a simple
and clear description for the behavior of statistical systems
in the language of the time-dependent particle distribution
function. Interparticle interaction enters the equation in the
form of collision integrals which are based on the interaction
type and particle statistics. In calculation of collision integrals,
various simplifications are often used, e.g., averaging the dis-
tribution over the direction of momentum [19]. Reformulation
of the equation to the integral features of the distribution
function, such as particle density, temperature, or total energy,
resulted in many useful and practical models, such as the
relaxation-time approximation [5], Rothwarf-Taylor [24–26],
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and the two-temperature [15,21] or three-temperature model
[27]. Still, the original form of the Boltzmann equation,
taking into account actual momentum distribution, gives more
information and research possibilities [22].

In this paper, we present the general and numerically effi-
cient method for calculation of collision integrals for a wide
spectrum of solid-state problems with various particle statis-
tics and arbitrary interaction models.

The paper is organized as follows. First, we show the main
idea of the approach on the example of a Hubbard-like model
using the convolution structure of the collision integrals,
allowing us to accelerate the calculation using the Fourier
transform (Sec. II). In Sec. III, the relations are generalized to
the case of an arbitrary nonequidistant energy spectrum with
introduction of the level broadening factor and appropriate
selection of energy axis discretization. Next, we make use of
the universal structure of the formula (Secs. IV–VI), allowing
us to apply the transformation to other interaction types, such
as electron-phonon, etc., including the case of momentum-
dependent matrix elements, and calculate the linear response
coefficients.

The comprehensive set of transformation rules for colli-
sion integrals and linear response coefficients was realized in
the form of a computer library. In Sec. VII, we present the
main facts and performance benchmarks for the library. In
Sec. VIII, we demonstrate the application of the approach to
the study of nonequilibrium state relaxation in three problems
of condensed matter physics.

II. FREE GAS WITH MOMENTUM-INDEPENDENT
INTERACTION

In this section, we start with the simplest case of
free gas with momentum-independent interaction constant
Uq = const = U0 to demonstrate the main principles of the
transformation.

The Hamiltonian of the system has the form

Ĥ = Ĥ0 + Ĥint, (1)
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where Ĥ0 and Ĥint are the single-particle Hamiltonian and
interaction part, correspondingly,

Ĥ0 =
∑

k

εkn̂k = ε1

∑
k

k2n̂k, (2)

where εk ∼ k2 is the kinetic energy of free particles and n̂k is
the operator of occupation number.

The interaction term is taken in the simplest form of the
Hubbard model for Fermi system, and Bose-Hubbard for Bose
system, respectively,

Ĥ (F )
int = U

∑
i

n̂i↑n̂i↓, (3)

Ĥ (B)
int = U

∑
i

n̂i(n̂i − 1), (4)

where the summation goes over the sites i of a finite atomic
cluster or nanocrystal containing L × L × L atoms with peri-
odic boundary conditions.

After conversion to momentum space, both Eqs. (3) and (4)
obtain the form

Ĥint = U0

∑
1234

â†
1â†

2â3â4δ1+2,3+4+G, (5)

where we introduced the parameter U0 ≡ U/L3. For the pur-
poses of the following discussion, we denote the momenta of
four particles involved in the interaction k, p, p + q, k − q as
1, 2, 3, 4, correspondingly, and the conservation law is shown
explicitly with Kronecker delta. Later, the reciprocal lattice
vector G is assumed and not shown for simplicity.

The discrete momentum lattice takes the form of a
Monkhorst-Pack grid with L × L × L points covering the first
Brillouin zone; the momentum step is �k = 2π/La, with a
the lattice constant. Similar discretization can be used for
larger volumes of the crystal provided that the particle dis-
tribution function is smooth enough in the momentum space.

Taking into account relatively small dimensions of the
system, we assume that the particle distribution function is
homogeneous in space and depends only on time and momen-
tum coordinates {nk(t )}. In this case, the kinetics of the system
is described by the Boltzmann equation without the diffusion
term [19],

dnk

dt
= Jk, (6)

where Jk are the collision integrals having the following form:

J1σ =U 2
0

∑
234

[(1 − n1σ )(1 − n2σ̄ )n3σ̄ n4σ

− n1σ n2σ̄ (1 − n3σ̄ )(1 − n4σ )]δ�ε,0δ1+2,3+4 (7)

for Fermi statistics and

J1 = 2U 2
0

∑
234

[(n1 + 1)(n2 + 1 + δ12)n3(n4 − δ34)

− n1(n2 − δ12)(n3 + 1)(n4 + 1 + δ34)]δ�ε,0δ1+2,3+4

(8)

for Bose statistics, respectively. Note the corrections using
δ12, δ34 in the terms with coinciding states. While they are
negligible in the continual case, for a finite system the exact

form is essential. For simplicity, we use the time units where
2π/h̄ = 1.

The application of the Boltzmann equation to continual
problems often comes down to performing integration with
energy-dependent functions [19,23]. This approach ignores
the details of momentum distribution which can be essential
for the nonequilibrium state. To take into account the actual
momentum distribution, the numerical summation of the orig-
inal expressions on a discrete momentum lattice is preferable.
On the other side, the number of terms in this case rapidly
grows with the lattice size L as ∼L9, motivating the appli-
cation of high-performance and supercomputing technologies
[28,29]. In this section, we demonstrate the main principles of
the transformation, allowing us to decrease the scaling index
and, respectively, expand the affordable system size range. Let
us expand the brackets in Eq. (8) and group the terms:

J1 = 2U 2
0

∑
234

{[n2n3n4 + n3n4 + n1

× (n3n4 − n2n3 − n2n4 − n2)]

− δ34[(n2n3 + n3) + n1(2n2n3 + n2 + n3)]

+ δ12[n3n4 + n1(2n3n4 + n3 + n4 + 1)]

+ δ12δ34(n1 − n3)}δε1+ε2,ε3+ε4δ1+2,3+4. (9)

First, we note that due to momentum conservation δ1+2,3+4,
all terms in (9) have the form of a discrete convolution of
periodic functions in k space,∑

k′
x(k′)y(k − k′) ≡ (x ∗ y)(k), (10)

which can be efficiently calculated using the convolution the-
orem,

(x ∗ y)(k) = F −1[X (r) · Y (r)](k), (11)

where symbols F , F −1 denote the forward and backward
Fourier transforms:

X (r) = F [x(k)] ≡
∑

k

x(k)e−ikr,

x(k) = F −1[X (r)] ≡ 1

L3

∑
r

X (r)eikr.

This allows us to calculate the sum (10) with ∼ L3 ln L
operations using the fast Fourier transform (FFT).

The same transformation can be performed on the en-
ergy axis [28,30], since the discrete particle energies in this
model are proportional to integer numbers: εn = nε1, where
n = 0 . . . Nε − 1. To use this scheme correctly for functions
without periodicity on the energy axis, the extended range
of values n = 0 . . . Nmax − 1 is employed, with the so-called
zero-padding [31] at n � Nε.

Finally, we introduce the functions in the extended 4D
space (k, ε) ≡ κ and (r, γ ) ≡ R:

nkε ≡ nkδε,εk , (12)

skε ≡ δε,εk , (13)

NR ≡ F (nκ ), (14)

SR ≡ F (sκ ). (15)
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Using Eqs. (12)–(15) in the expressions (7) and (8) and
replacing the respective Kronecker delta with sums δk,k′ =
1

L3

∑
r ei(k−k′ )r and δε,ε′ = 1

Nε

∑
γ ei(ε−ε′ )γ , we obtain the re-

sulting relation:

Jk = U 2
0

[(
pk,εk + p̃2k,2εk

) + nk
(
qk,εk + q̃2k,2εk

)]
. (16)

Here we introduced the following notations:

pκ ≡ F −1(PR ), (17)

qκ ≡ F −1(QR ),

p̃κ ≡ F −1(P̃R ),

q̃κ ≡ F −1(Q̃R ),

where

PR = 2
(
S−RN2

R + N−RN2
R − N−RN2R − S−RN2R

)
,

P̃R = 2N2
R − N2R,

QR = 2
(
S−Rn2

R − 2N−RNRSR − N−RS2
R − N−RS2R

− S−RN2R − 2N−RN2R
)
,

Q̃R =2
(
S2

R + 2NRSR + 2N2
R + S2R

)
(18)

in the case of Bose statistics, and

PR = S−RN2
R − N−RN2

R + N−RN2R − S−RN2R,

P̃R = −N2
R + N2R,

QR = −S−RN2
R + 2N−RNRSR − N−RS2

R

+ N−RS2R + S−RN2R − 2N−RN2R, (19)

Q̃R = S2
R − 2NRSR + 2N2

R − S2R

in the case of Fermi statistics (paying additional attention
to spin indexes). The detailed derivation is given in the
Appendix.

In conclusion, multiple sums in the expressions (7) and
(8) are converted to the chain of several Fourier transforms
which are more performance-efficient [10]. The amount of
calculations can be estimated as ∼L5 ln L due to Nε ∼ L2.
This makes it possible to increase the size of the system to a
relatively macroscopic L ∼ 16 ÷ 64, depending on the avail-
able computing resources, and approach the continual limit.
Several works dealing with similar grid sizes L ∼ 40 ÷ 50 for
the numerical solution of the Kadanoff-Baym equations use
similar FFT-based approaches [32–34].

III. ENERGY LEVEL BROADENING
AND ARBITRARY SPECTRUM

To take into account the finite linewidth of the energy
levels, we replace δ�ε,0 with broadening factor f (�ε):∑

k2k3k4
ε2ε3ε4

(. . . )δ�ε,0 →
∑

k2k3k4
ε2ε3ε4

(. . . ) f (�ε). (20)

As a result, the expressions in (17) become

pkε ≡ F −1(Prγ F (γ )), (21)

qkε ≡ F −1(Qrγ F (γ )),

p̃kε ≡ F −1(P̃rγ F (γ )),

q̃kε ≡ F −1(Q̃rγ F (γ )),

where F (γ ) is the Fourier transform of the factor f (ε).
The same approach allows us to take into account arbitrary

energy levels εk, i.e., for systems with nonparabolic disper-
sion law (acoustic phonons, exciton polaritons, Bogoliubov
quasiparticles in superconductors, etc.).

In the case when the energy levels are not equidistant,
discrete Fourier transform on an energy axis involves round-
ing to the evenly distributed values, leading to the loss of
calculation precision. With a smaller step on the energy axis,
we can make the grid values closer to the actual single-particle
energy levels. Note that in the case of the problem with several
interaction terms in the Hamiltonian or particle sorts—e.g.,
electrons and holes—each term in the collision integral may
require different energy discretization steps.

The necessary accuracy of the approximation is determined
by the width of the levels in the physical problem, as well as
the broadening factor f (�ε), which can be taken in the form
of Lorentzian or Gaussian function, depending on the problem
under consideration [35].

The introduction of the broadening factor along with the
reasonable choice of smaller energy step allows us to consider
systems with arbitrary not equidistant single-particle spec-
trums.

IV. UNIVERSAL REPRESENTATION

Now we develop the demonstrated approach to the general
set of rules allowing effective calculation of collision integrals
for any interaction type.

Indeed, the terms in Eq. (9) can be represented in the
universal form not specific to the pair interaction, namely, the
first line can be written as

J (1)
k =

∑
ν

KνA(ν)
k w

(ν)
k , (22)

where Kν are the coefficients, ν denotes the terms from the set
(A3)–(A6),

w
(ν)
1 =

∑
234

B(ν)
2 C(ν)

3 D(ν)
4 δ1+2,3+4 f (�ε), (23)

the factors Ak, . . . Dk are equal to nk or unity for the corre-
sponding term, and �ε ≡ ε1 + ε2 − ε3 − ε4. Then, repeating
the conversion from the Appendix and paying attention to the
corresponding indexes, we arrive at

w
(ν)
k = F −1

k,εk

{
B(ν)

−RC(ν)
R D(ν)

R F (γ )
}
. (24)

Here the indexes of factors B,C, D have a sign which is
determined by the position of the respective momentum in
the conservation law, i.e., the type of the particle operator—
creation or annihilation—in the interaction term.
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Next we discuss the terms with Kronecker delta. The term
with δ34 gives the components (A14)–(A16),

x(ν)
1 =

∑
234

B(ν)
2 C(ν)

3 δ34δ1+2,3+4 f (�ε), (25)

which transform to

x(ν)
k = F −1

k,εk

{
B(ν)

−RC(ν)
2R F (γ )

}
, (26)

while the components (A21)—(A23) for δ12 transform to

y(ν)
k = F −1

2k,2εk

{
C(ν)

R D(ν)
R F (γ )

}
, (27)

and finally the term (A28) for δ12δ34 gives

z(ν)
k = F −1

2k,2εk

{
C(ν)

2R F (γ )
}
. (28)

As we see, the presence of the Kronecker delta results in
the multipliers at the corresponding indexes, namely, at κ ≡
(k, εk ) for δ12 and R ≡ (r, γ ) for δ34.

Such representation in A/B/C/D form is not limited to pair
interaction. For instance, the electron-phonon interaction

Ĥ (e−ph) = M0

∑
kqσ

â†
kσ âk−q,σ (b̂†

q + b̂−q) (29)

gives the collision integrals

J (a)
k1σ

= M2
0

∑
k2q

{[(
1 − n(a)

k1σ

)(
n(b)

q + 1
)
n(a)

k2σ
− n(a)

k1σ
n(b)

q

(
1 − n(a)

k2σ

)]
δk1+q,k2

f
(
ε

(a)
k1

+ ε(b)
q − ε

(a)
k2

)
+ [(

1 − n(a)
k1σ

)
n(b)

q n(a)
k2σ

− n(a)
k1σ

(
n(b)

q + 1
)(

1 − n(a)
k2σ

)]
δk1−q,k2

f
(
ε

(a)
k1

− ε(b)
q − ε

(a)
k2

)}
, (30)

J (b)
q = M2

0

∑
k1k2σ

[(
1 − n(a)

k1σ

)(
n(b)

q + 1
)
n(a)

k2σ
− n(a)

k1σ
n(b)

q

(
1 − n(a)

k2σ

)]
δk1+q,k2

f
(
ε

(a)
k1

+ ε(b)
q − ε

(a)
k2

)
, (31)

where the respective electron and phonon terms are indicated
by a and b. As we see, the expressions (30) and (31) have the
form (22) with the components

w
(ν)
k = F −1

k,εk

{
B(ν)

−RC(ν)
R F (γ )

}
,

compatible with the general approach discussed above.
Similarly, this set of rules can be used when the perturba-

tion consists of more than four operators. For instance, the
hypothetical interaction with five operators

Ĥ5 = V
∑
12345

â†
1â†

2â3â4â5δ1+2,3+4+5 (32)

gives the following components of collision integrals:

w
(ν)
1 =

∑
2345

B(ν)
2 C(ν)

3 D(ν)
4 E (ν)

5 δ1+2,3+4+5 f (�ε), (33)

transforming to

w
(ν)
k = F −1

k,εk

{
B(ν)

−RC(ν)
R D(ν)

R E (ν)
R F (γ )

}
. (34)

The components with Kronecker delta, for example,
δ12δ34δ45, give

w
(ν)
1 =

∑
2345

δ12C
(ν)
3 δ34δ45δ1+2,3+4+5 f (�ε), (35)

which transforms to

w
(ν)
k = F −1

2k,2εk

{
C(ν)

3R F (γ )
}
, (36)

obeying the same principles.
As a conclusion, the general set of rules discussed in this

section allows us to use the FFT-accelerated approach to cal-
culate the collision integrals for a wide range of interaction
types.

We should mention, however, that this representation can
be suboptimal when the interaction is simple enough. Indeed,
in the case of electron-phonon interaction with three operators
(29), there are not many combinations of momenta {k1, q}
giving nonzero terms in the collision integrals. As a result,

all combinations can be determined and tabulated in advance,
giving a calculation complexity as low as ∼L3.

V. LINEAR RESPONSE COEFFICIENTS

The same approach can be used to calculate the linear
response coefficients which describe the change of collision
integrals due to small perturbations of the distribution func-
tion.

For the occupation numbers close to equilibrium dis-
tribution where J (0)

k = 0, Boltzmann equation can be lin-
earized to give the so-called relaxation-time approximation
[17,18,36,37]:

nk = n(0)
k + δnk → Jk = J (0)

k + δJk, (37)

dnk

dt
= δJk 	 −nk − n(0)

k

τk
. (38)

Note that the linearization of relations (7) and (8) keeps the
general form shown in Sec. IV which allows us to apply the
transformation. Indeed, let us differentiate Eq. (7) by n1σ :

∂J1

∂n1σ

= U 2
0

∑
234

{(−1)(1 − n2σ̄ )n3σ̄ n4σ − n2σ̄ (1 − n3σ̄ )

× (1 − n4σ ) + δ14[(1 − n1σ )(1 − n2σ̄ )n3σ̄

− n1σ n2σ̄ (1 − n3σ̄ )(−1)]}δ�ε,0δ1+2,3+4. (39)

Here we kept the initial form of the equation and used the
second half with δ14 to show explicitly the additional term
generated in the case of coinciding momenta 1 and 4. As
we see, Eq. (39) obeys the A/B/C/D form discussed in the
previous section.

We can conclude that the rules presented till now
allow us to calculate both collision integrals and linear
response coefficients for the interactions with any number of
secondary-quantization operators, using the FFT-accelerated
approach. While the matrix elements were assumed
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independent of momentum, we get rid of this restriction
in the next section.

VI. GENERALIZATION TO MOMENTUM-DEPENDENT
MATRIX ELEMENTS

Now we generalize the approach to the case of nonconstant
matrix element.

Let us consider the pair interaction in the form

Ĥint =
∑
kpq

Uqâ†
kâ†

pâp+qâk−q. (40)

The components w
(ν)
1 in Eq. (22) are written as

w
(ν)
1 =

∑
234

|U2−3|2B(ν)
2 C(ν)

3 D(ν)
4 δ1+2,3+4 f (�ε), (41)

and after conversion to variables (r, γ ) become

W (ν)
rγ =

[∑
r′

ur′B(ν)
−r−r′,−γC(ν)

r+r′,γ

]
D(ν)

r,γ F (γ ), (42)

with

w
(ν)
k = F −1

k,εk

{
W (ν)

rγ

}
,

where ur′ denotes the Fourier transform of (Uq)2.
As we see, the expression inside square brackets is the

discrete convolution of the array ur and the combination

M (ν)
rγ ≡ B(ν)

r,−γC(ν)
−r,γ

in 3D r space and therefore can be calculated using an addi-
tional Fourier transform:

W (ν)
rγ = (

u ∗ M (ν)
γ

)
−r

D(ν)
r,γ F (γ )

= {
F q→r

[
(Uq)2 · M (ν)

qγ

]}
−r

D(ν)
r,γ F (γ ).

The other terms containing Kronecker delta for coinciding
momenta, unfortunately, do not have the same convolution
structure and cannot be calculated with the Fourier approach
discussed till now. Still, we can use the fact that the number
of summation terms here is lower than in the first case. For
instance, consider the terms with δ12:

y(ν)
k =

∑
q

|Uq|2C(ν)
k+qD(ν)

k−q f (2εk − εk+q − εk−q). (43)

While the full number of calculations in (43) can be es-
timated as {k × q} ∼ L6, the restriction for energy 2εk 	
εk+q + εk−q limits the number of matching terms in each sum
to N (terms)

k � N (terms)
max 
 L3. The relevant terms can be counted

and tabulated in advance, making the number of calculations
not exceed N (terms)

max L3 
 L6.
The rest of the Kronecker-limited terms are handled with

the same reasoning. As a result, the ultimate calculation com-
plexity does not exceed ∼L5 ln L, which allows us to build the
universal calculation-efficient scheme.

VII. COMPUTER LIBRARY

To verify the correctness of the transformation, the re-
sults of the calculation using the accelerated relations were

compared with the direct summation of the original expres-
sions for several small systems with L = 4, 6, 8, with various
interaction types and particle statistics. The resulting numbers
were equal with the precision of 10 ÷ 13 digits for each prob-
lem parameters, proving the validity of the presented approach
and completeness of the rule set.

The calculation scheme described in this paper was real-
ized in the form of computer Fortran 90 library FLBE (Fast
Library for Boltzmann Equation) [29], applicable to a wide
spectrum of condensed matter physics problems. It allows to
obtain both collision integrals and linear response coefficients,
and perform numerical simulation of kinetics with universal
estimation of calculation complexity ∼L5 ln L, regardless of
the interaction type.

The system under consideration can consist of several sub-
systems with Fermi and Bose statistics—electrons, phonons,
excitons, photons, etc.—with various energy spectrum εk, and
arbitrary interaction terms. The corresponding single-particle
Hamiltonian is

Ĥ0 =
∑
α,k

εα,kn̂α,k,

where α denotes the sort of particles, i.e., subsystem.
The interaction terms

Ĥint =
∑

j

V̂ ( j) (44)

are written in the form of ordered chain of secondary-
quantization operators,

V̂ ( j) =
∑

{k},{p}
U ( j)(. . . )â†

k1
b̂†

k2
. . . ĉp2 d̂p1 ,

such as pair interaction (5), (40), or electron-phonon in-
teraction (29). Generally, any combination of operators is
supported, with two restrictions: (i) we assume the momentum
conservation ∑

ki =
∑

pi,

and (ii) the matrix element can either be constant, like U0

in (5), or depend only on the momentum change, like Uq
in (40). More complicated interaction types with matrix el-
ements depending on several momenta, e.g., U (k1, k2, . . . ),
are not supported currently due to limitations of the analytic
transformation described in this paper.

The problem parameters are assumed dimensionless and
the scale of time is determined by 2π/h̄ = 1.

The primitive approach with direct summation of terms
with calculation complexity ∼L9 is also realized in the library,
as well as the wide set of automatic tests, allowing us to check
the results of different approaches in case of doubt. Such
variety can be especially useful in the case of nonstandard
model.

The library performance and memory consumption is
shown in Figs. 1–3. The data was obtained on Intel i9-
10980XE 18-core CPU, 64 GB RAM, OS Linux (kernel
version 5.4.0-91), and gcc Fortran compiler (version 9.3.0).
We simulated the particle kinetics in lattice Bose gas with
Hubbard interaction described by Eqs. (1), (2), and (4).

The memory consumption is determined by the auxiliary
arrays in 4D [k, ε] space required for Fourier transforms
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FIG. 1. Memory consumption for the problem (1), depending on
the lattice size. Dotted horizontal lines mark popular RAM sizes
16 GB and 64 GB for easy estimation.

used in the accelerated approach. Due to real-valued input
data {nα,k}, the algorithm makes use of real-to-complex and
complex-to-real versions of FFT so the auxiliary arrays con-
sist of 8-byte double precision real values.

The dimensions of each array are Ld × 2Nε, where Nε

is determined by the maximal energy value in the particle
spectrum. For the Bose system with the parabolic disper-
sion law used in the benchmark, the spectrum is equidistant
εk = ε1k2, and the maximal value of energy is reached at
the momentum k at the edge of Brillouin zone with indexes
kα = −L/2, therefore Nε equals to 3L2/4 or L2/2 for 3D or
2D, correspondingly. As a result, the array volume is

V (3D)
a = 12L5, (45)

V (2D)
a = 8L4. (46)

For the case of NS subsystems in the problem, 2NS + 5 arrays
are needed.

As we see in Fig. 1, the systems with size more than
L = 128 for 2D and up to L = 64 for 3D can be simulated
with 64 GB RAM. Still, it could be recommended to use a
smaller size to save the computing resources: L = 64 ÷ 80
for 2D and L = 28 ÷ 36 for 3D are large enough to approach
the macroscopic behavior and still take no more than a few
seconds per calculation step (see Fig. 2). We see that the FFT-
accelerated approach v4 obeys approximately the expected
∼Ld+2 ln L scaling. The versions employing direct summation
of terms v1 and v0 demonstrate much higher times ∼Ld·3 =
V 3.

For the problems with nonequidistant spectrum, the ap-
propriate energy discretization step �εcalc should be used, as
discussed in Sec. III, increasing the memory consumption and
amount of calculations. This fact should be taken into account
when planning the research and choosing the system size.

The library benefits from multithreading, as the calcula-
tion is based on FFT, which allows complete parallelization.
In Fig. 3, we show the performance for different number
of OpenMP threads. The efficiency gain for eight threads is

FIG. 2. Time per step: Time to calculate the array of collision
integrals Jk depending on lattice size: (a) 3D and (b) 2D. Values
for several algorithm versions are presented: v4 is the accelerated
approach described in this paper, v1 employs direct summation of
terms, and v0 is the special highly optimized version of the direct
summation approach written explicitly for the 3D problem with
pair interaction term (5) of Sec. II. Solid lines show the theoretical
fitting indicated near to the line. Dotted horizontal line marks the
one-second cutoff to indicate the practically affordable system sizes.

usually 5x . . . 7x, depending on the specific system size under
study.

The directions of the library development include the
creation of interfaces for other programming languages, ex-
pansion to MPI technology for use on computing clusters, and
incorporation of GPGPU calculations (CUDA or OpenCL),
as well as application to the wider set of physical problems
demanded by experiment.

VIII. EXAMPLE OF APPLICATION

Finally, to demonstrate the efficiency and reliability of the
approach, we simulate the relaxation of the excited state in
several relevant problems of condensed matter physics.

a. Electron gas in metal after absorption of ultrashort
laser pulse. This problem is related to pump-probe scanning
experiments and laser processing of metals using femtosecond
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FIG. 3. Time per step, depending on the number of CPU threads:
(a) 3D and (b) 2D. Dashed lines are to guide the eye.

pulses. In Fig. 4, we show the result of kinetics simulation in a
qualitative model of conduction electrons in metal after exci-
tation, demonstrating typical relaxation to thermal distribution
function [38].

The initial excitation was taken in the form [19]

δnk(t = 0) ∼ ξk exp [−(ξk/σ )2],

where ξk ≡ εk − EF , εk = ε1k2 is the electron dispersion law,
EF is the Fermi energy, and σ is the spectral width of the
source.

Due to high concentration of the current carriers in metal,
the electron-electron pair interaction is described by the
screened Coulomb interaction:

U (c)
q = U (c)

q2 + k2
0

, (47)

where k0 ≡ 1/λD and λD is the Debye screening length. As
the matrix elements (47) depend on the momentum change
q, the calculation of collision integrals was performed using
the formulas given in Sec. VI. The phonon subsystem was
excluded from the model due to very short times of electron
processes in metals [5,6], defining the main characteristics of
the relaxation process in the case under consideration.

FIG. 4. Result of simulation: Relaxation of electron distribu-
tion function in metal after excitation. Model parameters: Debye
screening wave number k0 = (1/8)π/a, Fermi wave number kF =
(3/4)π/a, Fermi energy EF = 3.0 eV, initial temperature T =
0.026 eV, spectral width of the source σ = 0.6 eV. The distribution
functions are presented at time points with step �t1 = 4 × 10−3 A.u.
Initial state before the excitation is shown with dashed line, the
distribution right after the pulse absorption and the final equilibrium
distribution are emphasized with bold. Momentum grid dimensions:
64 × 64×64, total size of work arrays 61.5 GB, time of calculation
107 s per step.

The parabolic dispersion law of electrons in the conduc-
tion band allowed us to employ the approach version for
equidistant energy levels described in Sec. II, resulting in
exact energy conservation. During the whole calculation, the
particle number and total energy in the system remained con-
stant with precision of 14 and 11 digits, correspondingly. This
shows the stability of the method, allowing us to study various
problems of a similar type.

b. Sympathetic cooling in the mixture of two species of
particles. It is used in the experiments on laser cooling and
Bose-Einstein condensation of atomic gases. Here, the initial
state of both subsystems is thermal but with different tem-
peratures. Particle collisions result in the energy exchange
between the hotter and colder subsystems and gradual temper-
ature equalization. This technique is especially useful for ef-
ficient cooling of Fermi atoms. There are known experiments
with Fermi-Bose mixtures [39], Fermi-Fermi [40], Bose-Bose
[41–44], and three-species Fermi-Fermi-Bose [45], as well
as the version with the same species in different atomic
states [46].

In Fig. 5, we show the result of simulations for the mixture
of two Bose gases (spin S = 0) with initially different temper-
atures. The subsystem temperatures T1, T2 show the behavior
similar to experiments [43,44].

The temperatures were determined using the auxiliary
function which has a linear form in the thermodynamic equi-
librium state ln[1/ni(ε) + 1] 	 (ε − μi )/Ti, where μi is the
chemical potential of the corresponding system.

Pair interaction inside each subsystem and between the
subsystems was taken momentum independent in the form (5)
with equal amplitudes:

U (1−1)
0 = U (2−2)

0 = U (1−2)
0 = 1.
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FIG. 5. Thermalization in the mixture of two species of Bose
atoms with different initial temperatures. Dimensionless problem pa-
rameters: Atom masses M1 = 87, M2 = 133 (model 87Rb and 133Cs
atoms), start temperatures T1 = 0.24, T2 = 0.16, particle numbers
N1 = 300, N2 = 200. Momentum grid dimensions: 32 × 32×32, the
level broadening width used in the calculation � = 10−3, resulting in
total size of work arrays 15.5 GB and calculation time 42 s per step.

Inequal atom masses result in the more complicated en-
ergy spectrum of the system under study. As we discussed in
Sec. III, to study the system with nonequidistant levels, the
finite level width should be introduced. This affects the total
energy conservation. The smaller the level width, the smaller
should be the energy discretization step, resulting in lower
calculation performance and higher RAM requirements due
to the increased size of work arrays. In Fig. 6, we show the
precision of total energy conservation during the simulation
with several values of level broadening width. We see that in

FIG. 6. Relative total energy change δE = E−E (t=0)
E (t=0) during the

calculation for several values of level broadening � (Gaussian line
shape). Energy discretization step equals broadening width �εcalc =
�. Particle number remained virtually constant with the precision of
12 and more digits.

this case, the sufficient precision is achieved with � � 10−3.
As a conclusion, the choice of the level broadening to use in
the simulation depends on the required precision and available
computation resources.

c. Relaxation of carriers in semiconductor after the injec-
tion of excess electrons with nonzero momentum. Contrary
to optical excitation, here the particle distribution is essen-
tially asymmetric. A correct description of this problem is
impossible without paying attention to the details of parti-
cle distribution in momentum space. The dispersion law of
electrons and holes was taken following the tight-binding
model [47]

ε
(e)
k = �

2
− [cos(kxa) + cos(kya) − 2], (48)

ε
(h)
k = −ε

(e)
k , (49)

where � is the energy gap, hopping amplitude equals 0.5, a
is the lattice constant, and indexes e, h denote electrons in
conduction band or holes in valence band, respectively. The
geometry is considered two-dimensional.

Pair interaction inside each band and between the bands
was again taken momentum independent in the form (5) with
equal amplitudes:

U (e−e)
0 = U (h−h)

0 = U (e−h)
0 = 1.

The density of the injected excess electrons was taken
in the form of Gaussian function centered at the momen-
tum point kc = (0.6, 0.6)π/a with half width 0.1π/a and
maximal amplitude δn(max) = 0.2. The distribution of original
particles was calculated using inverse temperature 1/T = 6.0
and Fermi level in the middle of the band gap EF = 0.

The energy axis discretization step and level broaden-
ing were taken as the fraction of the first excitation energy
�εcalc = � = 0.2(1 − cos 2π

L ), giving the total energy conser-
vation precision as low as δE ∼ 10−7.

In Fig. 7, we show the calculated particle distributions at
several time points after injection. Note the features of the
momentum relaxation at the early stages. Two bright areas
with noticeable occupation at axes kx and ky can be explained
by the specific additive form of the dispersion law (48),

ε
(e)
k = f1(kx ) + f1(ky),

which enables efficient scattering of the injected electrons at
momentum point (kx, ky) with the original particles around the
point (0,0) to occupy the corresponding areas at axes kx and
ky due to the conservation of energy:

ε
(e)
(kx,ky ) + ε

(e)
(0,0) = ε

(e)
(kx,0) + ε

(e)
(0,ky ).

The analogous bright areas in the valence band are explained
similarly. In Fig. 8, we present the particle distribution along
direction kx = ky to show the area of noticeable occupation at
the momentum point −kc in the valence band, explained using
Eq. (49).

In the case of different effective masses in the bands, or
other form of dispersion law, the picture is expected to change
accordingly. This gives an example of the physical problem
benefiting from the detailed simulation of kinetics on fine
momentum grid.
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FIG. 7. Particle distributions (top: conduction band; bottom: valence band) in the first Brillouin zone at time points (a) t = 0, (b) 0.1,
(c) 0.2, (d) 1.0 A.u. The problem parameters are given in main text. Dimension of 2D momentum grid used in calculation is L = 128, size of
work arrays 29.1 GB, calculation time 97 s per step.

FIG. 8. Slices of distribution function n(e,h)
k at diagonal direc-

tion kx = ky during the relaxation, showing the temporary peak in
hole occupation. The graphs are shown for time points with step
�t1 = 0.05 A.u. Bold and dashed lines show the initial and final
distributions, respectively.

IX. CONCLUSION

We describe a general method for efficient calculation
of Boltzmann collision integrals on a discrete momentum
lattice, useful for a wide spectrum of solid-state problems.
The original analytical transformation allows us to work with
an arbitrary single-particle spectrum as well as momentum-
dependent interactions.

The universal set of transformation rules is presented in
detail and realized in the form of computer Fortran 90 library
[29]. Due to application of the FFT, the calculation complexity
is lowered from ∼L9 to ∼L5 ln L. As a result, the affordable
lattice size can be up to L = 64 for 3D and more than L = 128
for 2D on a desktop workstation, which allows us to study
continual systems using appropriate extrapolation.

The precision and flexibility of the presented approach is
demonstrated by simulation of nonequilibrium state relaxation
in three problems of condensed matter physics. Overall, it
can be applied to Bose and Fermi systems of various com-
plexities. This enables efficient numerical study of kinetics in
the problems of modern experiments, such as relaxation of
ultracold atomic gases in magneto-optical traps [48], evolu-
tion of optically excited carriers in semiconductors [49] and
metals [5], effects of ultrashort pulses, and transport current
on superconductivity [50], etc.
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APPENDIX: TRANSFORMATION

In this Appendix, we show how to convert Eqs. (7) and (8) to (16)–(19).
We start from Eq. (8) for Bose statistics in the form (A1) expanding the brackets and grouping the terms with similar

Kronecker delta:

Jk1 = 2U 2
0

∑
k2k3k4

{[
nk2 nk3 nk4 + nk3 nk4 + nk1

(
nk3 nk4 − nk2 nk3 − nk2 nk4 − nk2

)] − δ34
[(

nk2 nk3 + nk3

)+ nk1

(
2nk2 nk3 + nk2 + nk3

)]
+ δ12

[
nk3 nk4 + nk1

(
2nk3 nk4 + nk3 + nk4 + 1

)] + δ12δ34
(
nk1 − nk3

)}
δε1+ε2,ε3+ε4δk1+k2,k3+k4 . (A1)

a. The first square bracket. It can be conveniently written
as

J (1)
k1

= 2U 2
0

{
w

(234)
k1

+ w
(34)
k1

+ nk1

[
w

(34)
k1

− 2w
(23)
k1

− w
(2)
k1

]}
, (A2)

where

w
(234)
k1

≡
∑
k2...4

nk2 nk3 nk4δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A3)

w
(34)
k1

≡
∑

k2k3k4

nk3 nk4δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A4)

w
(23)
k1

≡
∑

k2k3k4

nk2 nk3δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A5)

w
(2)
k1

≡
∑

k2k3k4

nk2δε1+ε2,ε3+ε4δk1+k2,k3+k4 . (A6)

Let us rewrite expression (A3) in the expanded space
(k, ε) ≡ κ , employ the notation from Eqs. (12)–(15), and
replace Kronecker delta with sums

w
(234)
k1ε1

= 1

L3Nε

∑
k2k3k4
ε2ε3ε4

nk2ε2 nk3ε3 nk4ε4

×
∑
rγ

ei(k1+k2−k3−k4 )r ei(ε1+ε2−ε3−ε4 )γ . (A7)

Using the relation nkε = ∑
rγ Nrγ ei(kr+εγ ), we can write

w
(234)
k1ε1

= 1

L3Nε

∑
k2k3k4
ε2ε3ε4

∑
r2r3r4
γ2γ3γ4

Nr2γ2 Nr3γ3 Nr4γ4

×
∑
rγ

ei(k2r2+k3r3+k4r4 )ei(ε2γ2+ε3γ3+ε4γ4 )

× ei(k1+k2−k3−k4 )rei(ε1+ε2−ε3−ε4 )γ

= 1

L3Nε

∑
rγ

N−r,−γ Nrγ Nrγ ei(k1r+ε1γ ), (A8)

which has the form of the inverse Fourier transform. After
that, the desired values w

(234)
k for the expression (A2) can be

obtained by putting the second index ε = εk:

w
(234)
k = F −1

kεk
{N−r,−γ (Nrγ )2}. (A9)

The expressions for w(34), w(23), w(2) can be converted in
the same way. As a result, we obtain

w
(34)
k = F −1

kεk
{S−r,−γ (Nrγ )2}, (A10)

w
(23)
k = F −1

kεk
{N−r,−γ Nrγ Srγ }, (A11)

w
(2)
k = F −1

kεk
{N−r,−γ (Srγ )2}, (A12)

where Srγ is the Fourier transform of the function skε ≡ δε,εk .
b. The second square bracket. It corresponds to the case

when k3 = k4. It can be written as

J (2)
k1

= −2U 2
0

{[
x(23)

k1
+ x(3)

k1

] + nk1

[
2x(23)

k1
+ x(3)

k1
+ x(2)

k1

]}
,

(A13)

where

x(23)
k1

≡
∑

k2k3k4

nk2 nk3δk3,k4δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A14)

x(3)
k1

≡
∑

k2k3k4

nk3δk3,k4δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A15)

x(2)
k1

≡
∑

k2k3k4

nk2δk3,k4δε1+ε2,ε3+ε4δk1+k2,k3+k4 . (A16)

The reasoning similar to the previous paragraph gives the
expressions

x(23)
k = F −1

kεk
{N−r,−γ N2r2γ }, (A17)

x(3)
k = F −1

kεk
{S−r,−γ N2r2γ }, (A18)

x(2)
k = F −1

kεk
{N−r,−γ S2r2γ }. (A19)

c. The third square bracket. It corresponds to the case
when k1 = k2. Taking into consideration the same role of k3

and k4 in the sums, we can write

J (3)
k1

= 2U 2
0

{
y(34)

k1
+ nk1

[
2y(34)

k1
+ 2y(3)

k1
+ y(0)

k1

]}
, (A20)

where

y(34)
k1

≡
∑

k2k3k4

nk3 nk4δk1,k2δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A21)

y(3)
k1

≡
∑

k2k3k4

nk3δk1,k2δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A22)

y(0)
k1

≡
∑

k2k3k4

δk1,k2δε1+ε2,ε3+ε4δk1+k2,k3+k4 . (A23)
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Repeating the transformation made in (A7), we convert
Eq. (A21) to the form

y(34)
k1ε1

= 1

L3Nε

∑
rγ

Nrγ Nrγ ei(2k1r+2ε1γ ), (A24)

i.e., the required values of y(34)
k1ε1

are calculated using inverse
Fourier transform with doubled indexes

y(34)
k = F −1

2k,2εk
{(Nrγ )2}. (A25)

The expressions for the remaining values are obtained sim-
ilarly:

y(3)
k = F −1

2k,2εk
{Nrγ Srγ }, (A26)

y(0)
k = F −1

2k,2εk
{(Srγ )2}. (A27)

d. The last term. It corresponds to the case when k1 = k2

and k3 = k4. It can be written as

J (4)
k1

= 2U 2
0

[−z(3)
k1

+ nk1 z(0)
k1

]
, (A28)

where

z(3)
k1

≡
∑

k2k3k4

nk3δk1,k2δk3,k4δε1+ε2,ε3+ε4δk1+k2,k3+k4 , (A29)

z(0)
k1

≡
∑

k2k3k4

δk1,k2δk3,k4δε1+ε2,ε3+ε4δk1+k2,k3+k4 . (A30)

Repeating the conversions made for the second and third
lines, we obtain the relations

z(3)
k = F −1

2k,2εk
(N2r,2γ ), (A31)

z(0)
k = F −1

2k,2εk
(S2r,2γ ). (A32)

Combining all the terms, we get the expressions (18) and
(19). The relations for Fermi statistics are derived using the
same reasoning.
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