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Particle-based mesoscopic model for phase separation in a binary fluid mixture
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A mesoscopic simulation model to study the phase separation in a binary fluid mixture in three dimensions
(3D) is presented here by augmenting the existing particle-based multiparticle collision dynamics (MPCD)
algorithm. The approach describes the nonideal equation of the fluid state by incorporating the excluded-volume
interaction between the two components within the framework of stochastic collision, which depends on the
local fluid composition and velocity. Calculating the nonideal contribution to the pressure both from simulation
and analytics shows the model to be thermodynamically consistent. A phase diagram to explore the range of
parameters that give rise to phase separation in the model is investigated. The interfacial width and phase growth
obtained from the model agree with the literature for a wide range of temperatures and parameters.
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I. INTRODUCTION

Phase separation is ubiquitous at various lengths and time
scales in nature. For example, the biomolecular condensates
in cell biology where the process of phase separation forms
the membrane-less organelles to regulate different biological
activities [1,2], protein solutions where a network structure of
the protein-rich phase is formed, giving rise to the viscoelastic
effect [3,4], colloidal systems [5,6], oil-water mixture [7],
etc. The phase separation process strongly depends on the
surrounding ambience and is a complex procedure. To under-
stand the associated phenomena, many theoretical [8,9] and
experimental [10,11] avenues have been established. These
studies have many practical applications like waste water
treatment, protein purification, polymer films, chemical anal-
ysis, etc. [11–13].

Because of the complexity of the process, simulations have
played an essential role in understanding many of the experi-
mental observations on the phase-separating systems [14,15].
The fact that phase separation involves multiphase flow and is
observed at varied lengths and time scales demands the need
for coarse-grained mesoscale simulation techniques having
the ability to incorporate thermal fluctuations and hydrody-
namics. A few popular techniques in this regard are the lattice
Boltzmann method (LBM) [16,17], dissipative particle dy-
namics (DPD) [18,19], and multiparticle collision dynamics
(MPCD) [20,21]. The initial LBM methods to incorporate
multicomponent flow had the limitation on the interactions
between the particles to achieve thermodynamic consisten-
cies [21,22], which was then addressed by Yeomans in the
case of binary fluid mixtures [17]. The implementation of
multicomponent fluid in the framework of DPD is rather
straightforward [23], however, it is computationally more
expensive than its counterparts. Among all the existing coarse-
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grained simulation methods, multiparticle collision dynamics
(MPCD) has proven to be one of the most popular methods
due to its simplicity and versatility. This has led to its ap-
plication in systems ranging from colloids [24,25], polymers
[26,27], proteins [28], and vesicles [29,30] to viscoelastic
fluids [31]. The self-propulsion and active matter field has also
been extensively explored using MPCD [32,33]. Researchers
are trying to build different forms of MPCD to model multi-
phase flows [20,21,34–37], which can then be applied to a
variety of problems consisting of colloids and polymers in
phase separating medium [38–40].

It is important to note that the MPCD simulation scheme
was initially designed using the ideal gas equation [41],
therefore, the original form of MPCD is not appropriate for
simulating the phase separation in the binary or ternary fluids.
Two major approaches have been identified in the literature
to overcome this challenge and to introduce the nonideal
equation of state. In one, a free-energy-based MPCD method
has been developed in line with LBM [21]. While the second
approach consists of modifying the MPCD algorithm to model
excluded volume effects so that the nonideal equation of state
can be achieved [20,34,35]. The second approach is however
limited to mostly the two-dimensional binary and ternary
systems. In this work, we have developed a coarse-grained
simulation model by modifying MPCD for a phase separating
binary fluid mixture in three dimensions (3D). We consider
the repulsive interactions among the different species to incor-
porate the nonideal equation of state, which is similar to the
approach taken by Ihle et al. in two dimensions (2D) [20,35].
The model developed here preserves the average phase-space
volume and the local mass, momentum, and energy of the
system. Further, it achieves phase separation even at higher
temperatures, which was the limitation of the previous work
[20]. We have witnessed a percolating or connected morphol-
ogy for the critical mixture and droplet morphology for the
off-critical mixture. The phase diagram explores the range
of model parameters and temperature to obtain the phase
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separation for our model. Further, we identify the parameter
values suitable for the model to be thermodynamically consis-
tent by comparing the pressure from simulation and analytic
calculation. The phase separation and phase growth are char-
acterized by calculating the interfacial width and domain size
coarsening.

The organisation of the work is as follows: Section II
elucidates our simulation model for phase separation of a bi-
nary mixture using a modified multiparticle collision method.
Section III describes the results in terms of the probability
distribution of order parameter, phase diagram, pressure cal-
culation, interfacial stability analysis, and domain coarsening.
Section IV concludes the work and provides the future direc-
tion.

II. SIMULATION MODEL

The multiparticle collision dynamics (MPCD) [41] is a
simplified coarse-grained mesoscopic model that retains all
the essential features of molecular dynamics [25]. Histor-
ically, it was developed for single-component solvents to
accomplish explicit solvent simulations costeffectively. Re-
cently, a few modifications in MPCD have been carried out
to model binary fluid mixtures [20,34]. As stated before, this
work tries to model a phase separating binary mixture in three
dimensions. Our model considers a binary fluid mixture of “A”
type particles with number density ρA and “B” type particles
with number density ρB in three dimensions. Phase separa-
tion in a binary mixture can be obtained by implementing
attraction among the same species of particle and/or repulsion
between two different species [42,43]. We introduce an effec-
tive repulsion between “A” and “B” particles to induce phase
separation. We have extended the technique adapted by Ihle
et al. [35,44,45] that was focused on two-dimensional systems
by considering the nonideal equation of state.

The MPCD consists of two steps: streaming and collision
steps. In the streaming step, the positions of all the solvent par-
ticles are updated by following Newton’s equation of motion
as

ri(t + τ ) = ri(t ) + vi(t )τ, (1)

where ri(t ) and vi(t ) are the position and velocity of the ith
particle at time t , respectively. For the regular MPCD, the
exchange of momentum (collision) is performed at a time
interval of τ within cubical cells of size a. The modifica-
tion in the regular MPCD is carried out to introduce phase
separation. Instead of performing the collision in a single
cell, we introduce a “supercell” of length 2a, which consists
of eight adjacent cubical cells. In every supercell, a pair of
cells is selected randomly to perform a collision. There are
13 possible directions [46] for selecting a cell pair from a
supercell, which are listed in Table I, and the representative
figure for few directions are shown in Fig 1. These are (i)
three 1D collision directions σ1 to σ3, (ii) six 2D collision
directions σ4 to σ9, and (iii) four 3D collision directions σ10

to σ13. The probability of choosing each of these collision
directions is considered to be equal (= 1

13 ), to ensure that
there is no biasing of collision or fluid flow in any direction,
hence the isotropy in the system.

TABLE I. Possible choices of directions for selecting a cell pair
from a supercell to perform collisions.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

x̂ ŷ ẑ x̂+ŷ√
2

x̂−ŷ√
2

x̂+ẑ√
2

x̂−ẑ√
2

ŷ+ẑ√
2

σ9 σ10 σ11 σ12 σ13

ŷ−ẑ√
2

x̂+ŷ+ẑ√
3

x̂−ŷ+ẑ√
3

x̂+ŷ−ẑ√
3

x̂−ŷ−ẑ√
3

The collision between two species can occur either by
all the A particles from the first cell undergoing a collision
with all the B particles in the second cell or vice versa.
Let us consider all the A particles in the first cell having
vA = (�NA

i=1vi )/NA as their mean velocity collide with all the
B particles in the second cell having vB = (�NB

i=1vi )/NB as the
mean velocity.

To find the collision probability we define a quantity
�vAB = σ j · (vA − vB), where �vAB is the projection of the
difference of the mean velocities of selected cell pairs on the
collision direction σ j . This collision rule is in accordance with
the hard-sphere collision, wherein, if �vAB > 0 then all A
particles in the first cell will collide with all B particles in the
second cell with the following acceptance probability [34,45]:

PA(NA, NB,�vAB) = min(1, αNANB�vAB�(�vAB)), (2)

where �(�vAB) is the unit step function and “α” is the
repulsive parameter. The above acceptance probability with
the appropriate choice of α (will be discussed later) en-
sures the thermodynamic consistency of the model [20,45].
If �vAB < 0, then there will not be any collision. As done
before, to reduce the compressibility effect and to get a high
speed of sound, we consider only the parallel or longitudinal

FIG. 1. Schematic of supercell for selecting a cell pair in a given
direction for collision.
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component of the momentum transfer (component parallel to
σ j ) [44]. After the collision, the parallel components of mean
velocities of colliding particles in the two cells are given by
the equation

v||
i (t + τAB) − v||

AB = −(v||
i (t ) − v||

AB), (3)

where v||
AB = (v||

ANA+v||
BNB )

(NA+NB ) is the parallel component of the mean
velocities of colliding particles. This conserves momentum
and energy in the cell pairs. The perpendicular component will
be the same as before the collision. Similarly, the collision
between all B particles in the first cell with all the A particles
in the second cell can be performed.

In addition to the A-B collision, we perform the A-A and B-
B collisions to incorporate all possible interactions in the fluid,
hence, crucial for mixing the particle momenta. All the A-A
and B-B interactions are taken care of by the usual collision
rule of MPCD, wherein the velocity of all the solvent particles
in the single cell is rotated with respect to the center of mass
about a randomly selected axis [41]:

vi, β (t + τc) = vcm, β (t ) + ω(φ)(vi, β (t ) − vcm, β (t )), (4)

where ω(φ) is the rotation with an angle φ around the ran-
domly chosen axis and vcm, β (t ) is the center of mass velocity
of species β (A or B) at time t . The same random vector with
components in the range [−a, a] is used to shift every particle
prior to the collision, maintaining Galilean invariance [47].
Following the collision, all particles are moved back by the
same amount. Note that one may choose two different values
of τc for the A-A and B-B collision to model a binary fluid with
components having different viscosities.

Simulation Parameters: All the lengths are measured in
terms of a. We have chosen a = 1 and mass of solvent par-
ticles, m = 1. Unless otherwise specified, the length of the
simulation box is taken as Lx = Ly = Lz = 32 a. The density
of the bulk fluid is kept fixed as ρ = ρA + ρB = 10.0 with
ρA and ρB as the density of A and B particles, respectively.
The temperature has been varied between kBT = 0.006 to
0.09 and the repulsion parameter α is varied between 0.0
to 0.24. The MPCD simulation time steps and the rotation
angle are taken to be τ = 0.01, τAB = 10 × τ , τc = 50 × τ ,
and φ = π

2 , respectively. In principle, one can take τAB = τc,
then the values of the repulsion parameter α to attain phase
separation will be different from the values reported here.

III. RESULTS

Phase separation is not an instantaneous process; Instead,
it is a complex process that involves the influence of various
quantities like density, interparticle interaction, temperature,
external perturbations, etc. Here, our aim is to explore the
effects of temperature (kBT ) and repulsive parameters (α)
on the phase separation process by quantifying it through
order parameter, solvent density profile, interfacial width, and
domain growth in our proposed 3D mesoscopic model.

A. Order parameter and phase diagram

When a homogeneous binary mixture is quenched below
the critical temperature, the mixture becomes unstable with

t=2500 t=7500t=500t=0

t=4000t=0 t=1500 t=8000

(a)

(b)

FIG. 2. Snapshots captured during the phase evolution of a bi-
nary mixture from a homogeneous state to a phase-separated state.
A and B particles are shown in white and purple color, respectively.
Simulation times are mentioned below the snapshots. (a) A critical
(or symmetric) binary mixture (ρA = ρB = 5). (b) An off-critical (or
asymmetric) binary mixture (ρA = 1 and ρB = 9). Simulation box
size is 48a × 48a × 48a, kBT = 0.006 and α = 0.2.

respect to small perturbations and move toward a phase-
separated equilibrium state. Depending on the density of
different components and temperature, phase separation usu-
ally proceeds through spinodal decomposition or nucleation.
The domain formation and its growth along with its mor-
phology depends upon various factors including density,
hydrodynamics, and temperature of the system [9,48,49].

Using our simulation approach, we observe the phase sep-
aration process in both critical (or symmetric) and off-critical
(or asymmetric) binary fluid mixtures, quenched at a tempera-
ture much below the critical temperature. The evolution from
an unstable critical mixture (ρA = ρB = 5) toward a stable
phase separated state, owing to the minimization of energy
is quite clear from Fig. 2(a). Typically, when the system is
quenched from the metastable region, the phase separation
proceeds through nucleation. For off-critical binary fluid, we
consider the fluid density of different species as ρA = 1 and
ρB = 9. Formation of small droplets at early time and their
growth mostly through diffusion can be seen from Fig. 2(b).
At the late times, we observe the droplets of A rich particles
in the background of the B rich phase, as ρA < ρB. Hence,
the model effectively proves that it can produce the connected
and droplet morphologies for critical and off-critical binary
mixtures, respectively.

To check the transport properties of our model we calcu-
lated the self-diffusion coefficient of β (A or B) species by
calculating the mean-square displacement. The self-diffusion
coefficient of species β is defined as

Dβ = lim
t→∞

〈[rβ (t ) − rβ (0)]2〉
2dt

, (5)

where d = 3 is the dimension of the system and rβ is the
position of particles with species β. The average is being done
over all the particles of the species. Figure 3 represents the
values of the self-diffusion coefficient (Dβ ) with respect to
temperature calculated from simulations. This suggests that
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FIG. 3. Self-diffusion coefficient of species β with respect to
temperature for α = 0.2.

the self-diffusion coefficient is following a linear response
with respect to temperature. We have also calculated the vis-
cosity of the system from simulation which is defined as the
correlation of the xy component of the stress tensor given as
[35,50]

η = τc

(NA + NB)kBT

∞∑
q=0

〈Txy(0)Txy(qτc)〉, (6)

where Txy(0) is the stress tensor at time t = 0 and Txy =
T kin

xy + T col
xy , where T kin

xy and T col
xy are the kinetic and collisional

contributions to the viscosity respectively. They are defined as
[50]

T kin
xy (qτc) = −

∑
i

vix(qτc)viy(qτc), (7)

T col
xy (qτc) = − 1

τc

∑
i

Siy(qτc)vix(qτc), (8)

where Siy(qτc) = ζ s
iy((q + 1)τc) − ζ s

iy(qτc) − τviy(qτc). Here
ζ s

iy(qτc) is the y cell coordinate of the ith particle at time (qτc)
after shifting the grid, where q is an integer. With the above,
the kinematic viscosity (η/ρ) for kBT = 0.01 is found to be
≈2.0.

Further, we investigate the effect of temperature on the
phase separation by calculating the probability distribution of
the normalized order parameter, which is defined in the jth
cell as

ψ
j
β =

(
ρ

j
β − ρ

j
β∗

)
ρ

, (9)

where β and β∗ represent the two different solvent species.
ρ

j
β is the density of species β (= A or B) in the jth cell,

and ρ is the bulk solvent density. If β = A and β∗ = B then
ψ

j
β > 0 in a cell represents A rich phase, ψ

j
β < 0 represents

B rich phase, and ψ
j
β = 0 represents a mixed state. Figure 4

shows the probability distribution of the normalized order
parameter ψ

j
β . The distribution has two peaks for temperature

kBT = 0.005, and for temperature kBT = 0.09, a single peak
is observed. Two peaks at lower temperatures represent two

FIG. 4. The probability distribution of the normalized order pa-
rameter ψ

j
A for two different temperatures kBT = 0.005 and 0.090

with α = 0.2.

coexisting A rich and B rich phases, whereas the single peak
at higher temperatures represents a mixed phase.

In addition to the fluid density and temperature, interac-
tion among fluid particles also plays a vital role in phase
separation. We explore a range of temperature and repulsive
parameters for the symmetric binary mixture to determine
the span of these parameters to observe phase separation. We
quantify the phase separation by absolute order parameter ψ̃ ,
defined as

ψ̃ = 1

Nχ

Nχ∑
j=1

〈∣∣ψ j
β

∣∣〉, (10)

where Nχ is the total number of cells. The symbol 〈..〉 is
meant for the time and ensemble average. Figure 5 plots the
ψ̃ , which decides the phase state. ψ̃ ≈ 0 identifies the range of
parameters that result in a mixed phase, and ψ̃ ≈ 1 provides
the set of parameters that represent a phase-separated state.
It is clear from Fig. 5 that for kBT � 0.06 and α � 0.12 the
equilibrium state of the system is a phase-separated state. For

FIG. 5. The phase diagram for the absolute order parameter with
respect to temperature kBT and the repulsive parameter α.
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higher temperatures, the system stays in a mixed state (the
black-colored region in the phase diagram), irrespective of the
repulsive parameter α. Therefore, the above phase diagram
suggests that the proposed model works for a large combina-
tion of temperature and repulsive parameters to yield phase
separation.

B. Pressure calculation

The model mimics phase separation with hard sphere col-
lisions and there is no explicit potential energy in the system.
Therefore, the nonideal contribution to the pressure is ex-
pected to behave linearly with temperature in order to verify
the model’s thermodynamic consistency [44,45]. To under-
stand the pressure behavior for α and kBT , we conduct the
analytical analysis and match this with the calculated pressure
from the simulation. Since the nonideal contribution in our
model comes from the A-B collision between the double cells,
we focus on the momentum transport through a fixed surface
during the A-B collision.

To find the analytical expression of pressure in a 3D binary
fluid system, we follow the analysis of 2D binary systems
[35,44]. Following the symmetry along any Cartesian axis in
our cubical simulation box, the pressure tensor’s x, y, and z
components will be identical. Therefore, we focus on the x
component of pressure tensor, i.e., Pxx. Out of the 13 possible
directions given in Table I, the double cells aligned along the
directions σ1, σ4, σ5, σ6, σ7, σ10, σ11, σ12, and σ13 will con-
tribute to Pxx.

As discussed in the model section, the collision is per-
formed in homogeneously shifted double cells. The distance
δx between the left most corner of a double cell and the di-
viding plane in x direction is distributed homogeneously from
x = 0 to x = 2a. Let gx be the momentum transfer through the
plane at δx = x. gx = gm is the momentum transfer through
the dividing plane which passes through the center of the
double cell, i.e., at δx = a and depends on the direction of col-
lision, i.e., σ j . The average momentum transfer through this
dividing plane is zero at δx = 0 and δx = 2a, and increases
linearly with a maximum at δx = a. So we can write gx = gm

a x
for 0 � x � a. Now doing the position average over the planes
at δx = x gives us the average momentum transfer ḡ as

ḡ =
∫ a

0

∫ a
0

∫ a
0 gxdxdydz∫ a

0

∫ a
0

∫ a
0 dxdydz

= gm

2
. (11)

To calculate Pxx, we start with the collision along the
horizontal double cells σ1 direction. Let the NA number of
A particles in the left cell collide with the NB number of B
particles in the right cell. Then the x component of the change
in momentum undergoing a collision in the left cell is given
as

�gx = m
NA∑
i=1

[vix(t + τAB) − vix(t )]

= −2 μm �vABx. (12)

Here vix(t + τAB) = 2vABx − vix(t ) is the x component of
the velocity of particles after the collision and vABx is the
x component of center of mass velocity of the double cell.
�vABx = vAB1x − vAB2x is the difference in the mean velocities

of particles in the left and right cell, and μm = m NANB
NA+NB

can be
considered as reduced mass.

Assuming the same number of particles in left and right
cells, the thermal average momentum transfer across the sur-
face is

〈gx〉 = w

2

∫ ∞

0
PA(NA, NB,�vABx ) p(�vABx ) �gx d (�vABx ).

(13)

The factor 1
2 comes from the position average of the divid-

ing planes as discussed in Eq. (11). PA(NA, NB,�vABx ) is the
acceptance probability of the collision and w is the probability
of having a collision in the σ1 direction. p(�vABx ) is the
probability of getting micro-state �vABx, and is assumed to
follow the Maxwell-Boltzmann distribution,

p(�vABx ) =
(

μm

2πkBT

) 1
2

exp

(
−μm(�vABx )2

2kBT

)
. (14)

Using Eqs. (2), (12), and (14) in Eq. (13), Pxx because of
horizontal collision in σ1 direction can be given as

P1 = 〈gx〉
τAB a2

= −w α NA NB kBT

2 τAB a2
, (15)

where a2 is the area of the plane, normal to the σ1 direction.
Following the similar strategy, next we calculate the con-

tribution to the pressure Pxx due to the collisions along the
face-diagonal directions (σ4, σ5, σ6, and σ7). The total mo-
mentum transfer due to these four collision directions is
�gx = −4 μm �vABx, and the pressure due to these collisions
is

P2 = 〈gx〉
τAB

√
2 a2

= −w f d α NA NB kBT

τAB

√
2 a2

, (16)

where w f d is the probability of collision in the face diagonal
direction and

√
2 a2 is the area normal to the plane.

The remaining contribution to the pressure Pxx comes from
the collision along the body diagonal (σ10, σ11, σ12, and σ13).
The total momentum transfer due to these collisions is �gx =
− 8

3 μm �vABx, and the pressure due to these is given as

P3 = 〈gx〉
τAB

(
3

√
3 a2

2

) = − 4

9
√

3

wbd α NA NB kBT

τAB a2
, (17)

where wbd is the probability of collision in the body diagonal
direction and the area of the plane crossed by the particles for
collision is 3

√
3 a2

2 .
From Eqs. (15)–(17), the final expression for the total pres-

sure Pxx (considering the magnitude) can be written as

P = P1+P2+P3

=
(

w +
√

2 w f d + 8

9
√

3
wbd

)
α NA NB kBT

2 τAB a2
.

(18)

Based on the selected directions, w = 1/13, w f d = 4/13,

and wbd = 4/13.
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FIG. 6. Figure shows the variation of nonideal pressure as a
function of α for different temperatures kBT = 0.001, 0.006, and
0.01 which are found by simulation using Eq. (19). The symbols
correspond to the simulations and the dotted lines are the linear fit
considering small α values.

To validate our model, we simulate the pressure from the
ensemble average of the diagonal components of the mi-
croscopic stress tensor and compare it with the analytical
expression derived in Eq. (18). The x component of the pres-
sure from the simulation is given as [35,44]

P = Pideal + Pnon ideal

= 1

τABV

〈 Nχ∑
j=1

∑
i∈ j

[
τABv2

ix − �vixzikx

2

]〉
, (19)

where Nχ represents total number of cells, �vix(t ) = vix(t +
τAB) − vix(t ). zikx represents the index of pair of cells involved
in the collision event at time τAB, and k represents the index
of the selected direction σk . zikx can have values −1, 0, and 1
depending on the cell coordinates [20,35]. The first term in
Eq. (19) represents the ideal contribution while the second
term represents the nonideal contribution to the pressure.

As stated before, for the model to be thermodynamically
consistent, the pressure varies linearly with temperature for
a given choice of repulsive parameter. Figure 6 shows our
simulation result for the variation of nonideal pressure with
respect to the repulsive parameter (α), and the dotted lines are
the linear fits to the simulation data points. The slope calcu-
lated from this linear fit is compared with the slope obtained
from our analytical result in Table II. The fact that these two
are in good agreement with each other substantiates our 3D
model for binary fluid phase separation for thermodynamical

TABLE II. Slope of pressure from simulation and analytical cal-
culations for different temperatures.

kBT Slope (simulation) Slope (analytic)

0.001 0.057 0.083
0.006 0.350 0.502
0.010 0.575 0.837

FIG. 7. Snapshots showing the variation of interfacial width
formed by phase separating fluids at various temperatures. (a) Ini-
tial state at time t=0; (b)–(d) are at time t = 30000 for kBT =
0.005, 0.01, and 0.08, respectively with α = 0.2.

consistency. Furthermore, as evident from Fig. 6, the range of
linearity of pressure with respect to α depends on the tempera-
ture. For higher temperature (kBT � 0.01) the deviation from
the linear behavior starts from α > 0.25. Therefore, in all our
subsequent results, we restrict our simulations to the values of
α that maintain thermodynamical consistency.

C. Interfacial width

To further establish our model, we study the stability of
the interface between the two-phase separating fluids. The two
halves of the simulation box are filled with the two different
fluid species at time t = 0 [A particles have coordinates from
(0,0,0) to (Lx/2, Ly, Lz ), and B particles have coordinates from
(Lx/2, Ly, Lz ) to (Lx, Ly, Lz )]. This creates an initial sharp
interface along the x direction, which completely divides the
two-phase domains [see Fig. 7(a)]. Periodic boundary condi-
tions are applied in both y and z directions, and a bounce-back
reflection condition is applied along the x direction at both
ends of the box. The interface then evolves with time, and
its advancement depends on the temperature and repulsive
parameters. Figures 7(b)–7(d) show the late time interface for
different temperatures.

Figure 7 depicts the broadening of the interface with in-
creasing temperature. To quantify this observation from the
snapshots, we calculate the density profile of different solvent
species and extract the value of the interfacial width. The
averaged normalized density is given as

〈ψβ (x)〉 = ρβ (x) − ρβ∗ (x)

ρ
, (20)

where β and β∗ represent the two different solvent species.
ρβ (x) is the average density of species β (= A or B) in a
cell-centered at x with dimension a × Ly × Lz. Figure 8 shows
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FIG. 8. Normalized density profile as a function of x for different
temperatures kBT = 0.005, 0.06, 0.07, and 0.08 with α = 0.2. The
dashed line is a fit following Eq. (21). The inset plot is the density of
A and B particles averaged over cells as a function of distance from
the interface at temperature kBT = 0.06 and α = 0.2.

the variation of 〈ψA(x)〉 for different temperatures kBT =
0.005, 0.06, 0.07, and 0.08. At lower temperature kBT =
0.005 we observe a sharp fall for 〈ψA(x)〉 indicating a very
narrow width of the interface. The width increases as we move
toward higher temperatures with the lowered saturation values
indicating the mixing of the A and B particles. The inset of
Fig. 8 further provides the complete picture of the average
density of both A and B species as a function of the distance
from the interface.

Within the framework of the Landau theory, the interfacial
width can be calculated by fitting the average normalized
density profile with the following function [21,34,51]:

〈ψβ (x)〉 = ψβ0 tanh

(
x

ξ

)
, (21)

where ξ is the interfacial width and ψβ0 is the normalized bulk
density. The dashed lines in Fig. 8 represent fitting curves
using Eq. (21) to evaluate the interfacial width, ξ . Figure 8
shows a good agreement between the density profile observed
in our simulation, and the Landau theory given in Eq. (21).

Further, the impact of temperature on the interfacial width
is shown in Fig. 9. Higher interfacial width with increasing
temperature can be attributed to the dominating entropic in-
teraction among the particles. For a two-fluid interface with a
fluctuating concentration, the influence of temperature on the
interface width can be roughly calculated using the classical
Ising model as follows:

ξ ∼ 1

(Tc − T )ν
, (22)

where Tc is the critical temperature for interface formation.
We fit Eq. (22) to our simulation data in Fig. 9. From the fitting
with our interfacial width calculation, we find our consolute
temperature Tc ≈ 0.08 and ν ≈ 0.58, which is close to the ex-
pected value of 0.5 suggested by the Ginzburg-Landau theory
[21]. However, when the interface is large, the finite size effect

FIG. 9. Variation of interfacial width ξ with respect to tempera-
ture for α = 0.2. The inset shows the variation of interfacial width
with respect to repulsive parameter α for temperatures kBT = 0.01
and 0.06.

may creep in and the exact value of the consolute temperature
may vary keeping the overall behavior the same. The inter-
facial width is also expected to show variation with respect to
the repulsive parameter α. For smaller values of α, the thermal
fluctuation wins over the repulsive interaction between A and
B particles forming a larger interfacial width. However, the
higher values of α tend to overcome the thermal fluctuation
giving rise to a sharp interface. In the inset of Fig. 9, the
saturation in the value of ξ at given kBT upon increasing α

indicates that there exists a limit in the repulsion parameter,
beyond which increasing α will not result in any significant
change in interface. Such correlation of our simulation data
with the theoretical predictions demonstrates the correctness
of our model.

D. Domain coarsening

The time evolution of the phase separation can be quanti-
fied by the growth dynamics of the domains upon quenching
the mixture at an appropriate temperature so that the two
components of the mixture separate out. Typically, the time
evolution of the domain radius R(t ) follows a power law
behavior as

R(t ) ∼ tγ , (23)

where γ is the growth exponent which depends on a variety
of parameters and constraints [9,34]. For percolating mor-
phology in three dimensions, the growth exponent γ varies
with time as the phase separation progresses through different
mechanisms [9,48]. It has been shown that, during the early
time, γ ∼ 1/3 as the domain growth mostly occurs due to the
diffusive transport of the mass flux. However, at late times, the
mass transport along the domain boundary happens rapidly
by advection which is known as the “viscous hydrodynamics
regime” where the interfacial free energy density balances the
viscous stress leading to γ ∼ 1. At sufficiently late times,
the growth exponent γ is found to be 2/3 by balancing the
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FIG. 10. (a) Correlation function as a function of r for tem-
perature kBT = 0.05 in different simulation times. (b) Variation of
average domain radius R(t ) with respect to time for kBT = 0.05 on
log-log scale. The inset plot shows the variation of instantaneous
growth exponent γ (t ) with the inverse of domain radius. Simulation
box size is 52a × 52a × 52a, and α = 0.2.

interfacial energy density with kinetic energy density which is
known as the “inertial hydrodynamic regime” [9,48].

In our simulation, we calculate the average domain ra-
dius R(t ) as the distance r at which the spatial correlation
function C̃(r, t ) becomes zero for the first time, i.e., R(t ) =
min[r ∀ C̃(r, t )] = 0. Here,

C̃(r, t ) = 〈
ψ

χ

β (t )ψχ ′
β (t )

〉
χ, χ ′, (24)

where r = |rχ − rχ ′| is the distance between the center of
cells χ and χ ′. 〈...〉χ,χ ′ is the spatial average taken over the
pair of cells represented by χ and χ ′ which are at r distance
apart. Figure 10(a) shows the correlation function C̃(r, t ) at
different times for the binary system with kBT = 0.05 and
α = 0.2. At a particular instant t , the distance r at which
C̃(r, t ) reaches zero for the first time (indicating the pres-
ence of phase boundary) tells us about the average domain
radius R(t ). The slower decay of C̃(r, t ) with increasing time
indicates the increase in the domain radius with time. In
Fig. 10(b), we show the time evolution of the average domain

radius R(t ) at a particular temperature. For t < 3000, R(t ) ∝
t1/3, i.e., γ ∼ 1/3 and beyond that R(t ) ∝ t, i.e., γ ∼ 1. The
exponent γ ∼ 1/3 can be interpreted as the domain growth
mediated by diffusion while γ ∼ 1 highlights the presence of
hydrodynamics.

To further substantiate this growth exponent, we calculate
the instantaneous growth exponent γ (t ) as [52]

γ (t ) = d ln(R(t ))

d ln(t )
. (25)

The inset of Fig. 10(b) shows the instantaneous exponent
as a function of the inverse of domain radius. For 1

R(t ) → 0,
γ (t ) → 1 before the finite size effect sets in. This shows that
at late times, 3000 < t < 9000, the growth exponent tends
to one, which is theoretically expected for the viscous hy-
drodynamic regime. Hence, our model successfully captures
the theoretical predictions of domain coarsening. Within the
range of temperatures where the phase separation is observed
(see the phase diagram in Fig. 5), the domain growth slows
down on decreasing the temperature and a similar trend is also
observed for α.

IV. CONCLUSIONS

In this study, we have developed a model for the phase
separation of the binary fluid mixture in three dimensions
by augmenting the rules of MPC dynamics. With appropriate
modification, the proposed model enables the MPCD tech-
nique (initially designed for ideal fluids) to simulate nonideal
fluids. The model is thermodynamically consistent within a
reasonably extensive range of temperature and model param-
eters. The model was further quantified by investigating the
stability of the interface and interfacial width during phase
separation. For the explored range of parameters, our results
match reasonably well with the theoretical predictions in the
literature. Because of its coarse-grained nature, the model is
suitable for studying relatively large lengths and time scales.
Further, the numerical implementation of the model is rela-
tively easier than the previously developed 3D MPCD model
for the phase separation [21,34], and our detailed analysis of
phase separation makes the model more approachable.

The developed model can be deployed to study a wide
range of phenomena in complex fluids. The approach is ad-
vantageous for studying the dynamics of a single or collection
of active or passive colloidal particles in a phase-separating
medium. This will also help us comprehend unanswered
questions in experiments that deal with colloidal motion in
phase-separating mixtures [38,39]. The model can be ex-
tended easily to explore the effect of wetting and walls during
phase separation process.
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