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We consider a class of Hubbard-Stratonovich transformations suitable for treating Hubbard interactions in
the context of quantum Monte Carlo simulations. A tunable parameter p allows us to continuously vary from a
discrete Ising auxiliary field (p = ∞) to a compact auxiliary field that couples to electrons sinusoidally (p = 0).
In tests on the single-band square and triangular Hubbard models, we find that the severity of the sign problem
decreases systematically with increasing p. Selecting p finite, however, enables continuous sampling methods
such as the Langevin or Hamiltonian Monte Carlo methods. We explore the tradeoffs between various simulation
methods through numerical benchmarks.

DOI: 10.1103/PhysRevE.107.055301

I. INTRODUCTION

This paper develops a class of Hubbard-Stratonovich (HS)
transformations that can be used to handle on-site Hubbard
interactions, Ĥint = Un̂↑n̂↓, in the context of determinant
quantum Monte Carlo (DQMC) and related simulation meth-
ods [1–3]. Our starting point is the operator ansatz,

e−�τU (n̂↑− 1
2 )(n̂↓− 1

2 ) =
∫

ea(s)Ô(s)b(s) ds, (1)

with functions a(s) and b(s) as yet to be determined. The right-
hand side introduces a real auxiliary field s that couples to
electron charge or spin magnetic moment,

Ô(s) =
{

n̂↑ + n̂↓ − 1 (U < 0)
n̂↑ − n̂↓ (U > 0), (2)

corresponding to attractive or repulsive Hubbard U , respec-
tively. The electron number operators n̂↑ and n̂↓ for a single
site have eigenvalues 0 or 1. The discretization in imaginary
time, �τ = β/Nτ , is a tunable parameter and originates from
a Suzuki-Trotter expansion of the partition function, whereby
the inverse temperature β is subdivided into Nτ parts [1].

Special cases of Eq. (1) include the Gaussian transforma-
tion, a(s) ∼ s and b(s) ∼ exp(−s2), as originally considered
by Hubbard and Stratonovich [4,5], and the discrete trans-
formation proposed by Hirsch, for which the choice b(s) ∼
[δ(s + 1) + δ(s − 1)] effectively introduces Ising auxiliary
spins, s = ±1 [6]. There is also extensive literature introduc-
ing other types of HS transformations and providing general
rules for formulating new ones [7–10].

DQMC simulations are frequently limited by the appear-
ance of a sign problem [3,11]. The severity of the sign
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problem depends partly on the choice of the HS transfor-
mation, with discrete auxiliary variables frequently being
favorable. If the sign problem is not severe, an advantage
of working with continuous HS fields is that they enable
powerful sampling methods such as Langevin dynamics and
Hamiltonian Monte Carlo (HMC) [12,13]. These sampling
methods can be helpful for reducing long autocorrelation
times, especially near critical points. For example, continuous
variables make possible the application of powerful Fourier
acceleration techniques, whereby the dynamical relaxation
rate is adjusted according to imaginary-time frequency [14].
As another example, the fictitious momentum in HMC yields
inertial dynamics that can reduce the dynamical critical expo-
nent z [15]. Such sampling methods were originally developed
in the context of lattice gauge theory, and have more recently
proved to be highly effective for the simulation of electron-
phonon models [16–19].

A continuous but compact HS transformation has been
proposed by Lee [20]; it blends some of the trade-offs of
the discrete and continuous HS transformations discussed
above. In this approach, auxiliary variables in the domain
s ∈ [−π, π ] are coupled sinusoidally to the electrons. This
compact HS transformation was found to be the most efficient
strategy for simulating a dilute gas of attractive fermions in
the unitary limit. The auxiliary field, as continuous variables,
could be sampled using the powerful HMC method. Further-
more, due to their compact range, this HS transformation
yielded the best conditioning of the associated fermion ma-
trices.

Here, we further develop this compact HS transforma-
tion approach in two ways. First, we derive a general set of
constraints on a(s) and b(s) such that the HS transforma-
tion in Eq. (1) is exact at all orders in �τ , and use these
constraints to derive systematic corrections to previous re-
sults. Second, following the suggestion of Lee, we introduce
a class of HS transformations that continuously interpolates
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from the compact, sinusoidal HS transformation to the dis-
crete HS transformation of Hirsch. A final contribution of
this paper is to benchmark the new class of HS transfor-
mations using DQMC simulations of the two-dimensional
single-band square and triangular Hubbard models in the
strong-coupling limit.

II. A GENERAL CLASS OF HS TRANSFORMATIONS

For notational convenience, we introduce the operator

m̂σ = 2n̂σ − 1, (3)

and represent the sign of U as

η = U/|U | = ±1. (4)

The ansatz of Eqs. (1) and (2) may now be written in the
compact form

e− 1
4 �τUm↑m↓ =

∫
e

a(s)
2 (m̂↑−ηm̂↓ )b(s) ds. (5)

Unless otherwise stated, the integration domain extends over
the entire real line, s ∈ R.

The operators m̂↑ and m̂↓ commute and each has two
eigenvalues, ±1. The local Hilbert space is spanned by the
four eigenstates that simultaneously diagonalize m↑ and m↓.
Equation (5) is valid if and only if the operators on both
sides have an identical action when applied to each of these
four eigenstates. To achieve this, we may effectively replace
the operators (m̂↑, m̂↓) with all possible combinations of
eigenvalues. The two cases (+1,−η) and (−1,+η) yield the
constraints

e− 1
4 �τ |U | =

∫
e+a(s)b(s) ds, (6)

e− 1
4 �τ |U | =

∫
e−a(s)b(s) ds. (7)

The cases (+1,+η) and (−1,−η) yield an additional con-
straint,

e
1
4 �τ |U | =

∫
b(s) ds. (8)

Averaging Eqs. (6) and (7), we find

e− 1
4 �τ |U | =

∫
cosh [a(s)]b(s) ds. (9)

Subtracting them yields

0 =
∫

sinh [a(s)]b(s) ds. (10)

Equations (8)–(10) are necessary and sufficient conditions for
the correctness of the ansatz, Eq. (5), or, equivalently, Eq. (1).
Typically, we will select a(s) as an odd function and b(s) as
an even function, such that Eq. (10) is immediately satisfied.

Constraints analogous to Eqs. (8)–(10) were previously
derived in Appendix A2 of Ref. [21].

III. REVIEW OF KNOWN HS TRANSFORMATIONS

Let us now review how some existing HS transformations
fit into the form of Eq. (5).

A. Gaussian auxiliary field

For illustrative purposes, we will derive the Gaussian HS
transformation using a more standard procedure. The operator
identity ∫

e− 1
2 (s−Â)2

ds =
∫

e− 1
2 s2

ds (11)

is valid for any Hermitian Â. To see this, one may work in the
eigenbasis, such that Â is effectively replaced by an arbitrary
eigenvalue λ. The integral is invariant to the constant shift
s → s + λ, establishing the desired equality.

Expanding the square on the left and performing the Gaus-
sian integral on the right, we find

e− 1
2 Â2

∫
e− 1

2 s2+sÂ ds =
√

2π. (12)

To make contact with Eq. (5), select

Â = 1
2

√
�t |U | (m̂↑ − ηm̂↓). (13)

The commutativity of m̂↑ and m̂↓, the identity m̂2
σ = 1, and

the identity η|U | = U together yield

Â2 = �t |U |
2

− �tU

2
m̂↑m̂↓. (14)

Inserting these results into Eq. (12) and rearranging terms, we
recover the ansatz of Eq. (5), where

a(s) =
√

�τ |U | s, (15)

b(s) = 1√
2π

e− 1
2 s2− 1

4 �t |U |. (16)

One may verify that these functions satisfy the integral con-
straints of Eqs. (8) and (9), as expected.

B. Ising auxiliary field

Hirsch introduced the HS transformation [6],

e− 1
4 �τUm↑m↓ = 1

2
e− 1

4 �τ |U | ∑
s=±1

e
αs
2 (m↑−ηm↓ ), (17)

where s = ±1 is now an Ising auxiliary field. The real con-
stant α is defined to satisfy

cosh α = e
1
2 �τ |U |. (18)

This takes the form of our ansatz, Eq. (5), upon defining

a(s) = αs, (19)

b(s) = 1
2 e− 1

4 �τ |U |[δ(s + 1) + δ(s − 1)]. (20)

Again, one may verify that the constraints of Eqs. (8) and (9)
are satisfied.

C. Compact auxiliary field with periodic coupling

Lee proposed a compact HS transformation [20], which
takes the form of Eq. (5) using the definitions

a(s) = √
c0 sin s, (21)

b(s) = 1

2π
e− 1

4 �τ |U | �(π − |s|). (22)
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The Heaviside step function �(·) constrains the integral of
Eq. (5) to the compact domain −π < s < π . Using the path
integral formalism, Lee derived an approximate coefficient,

c0 ≈ 2�τ |U |. (23)

Below, we will derive corrections to c0 by expanding in pow-
ers of the small parameter �τ . Such corrections are important
to maintain the overall O(�τ 2) accuracy of a DQMC code.

Observe that the function b(s) already satisfies the first
constraint, Eq. (8). The second constraint, Eq. (9), then de-
termines c0.

A general integral identity is

1

2π

∫ π

−π

cosh(
√

c0 sin s)ds = I0(
√

c0), (24)

where Iα (x) = i−αJα (i x) is the modified Bessel function
of the first kind. This integral matches that appearing in
Eq. (9) given the definitions of a(s) and b(s). The resulting
constraint is

I0(
√

c0) = e
1
2 �τ |U |. (25)

Taylor expansion on the left and substitution of

x = �τ |U |/2 (26)

on the right yields an implicit equation for c0,
∞∑

n=0

cn
0

n!24n
= ex. (27)

Note that x can be made arbitrarily small through an appropri-
ate choice of the discretization in imaginary time �τ . With
the help of a symbolic algebra package, we find the series
expansion,

c0 = 4x + x2 + 1
18 x3 − 1

72 x4 + 7
10800 x5 + · · · . (28)

Observe that the first order approximation, c0 ≈ 4x, re-
produces Eq. (23). Truncation at this level is not advisable,
however, as the corresponding approximation to Eq. (21) be-
comes fairly imprecise,

a(s) =
√

2�τ |U | sin s + O(�τ 3/2). (29)

This level of truncation error should be compared to the
discretization error already present in a DQMC simulation,
which is globally of second order in �τ . This error originates
from a Suzuki-Trotter expansion involving symmetric oper-
ator splitting, e�τ (Â+B̂) ≈ e�τ Â/2e�τ B̂e�τ Â/2, which is locally
accurate to third order in �τ [22]. It appears, then, that retain-
ing more terms in the expansion of Eq. (28) is important to the
overall accuracy of a DQMC code.

IV. INTERPOLATING BETWEEN ISING AND SINUSOIDAL
HS TRANSFORMATIONS

The constraints of Eqs. (8) and (9) are relatively easy to
satisfy and allow great flexibility in designing new HS trans-
formations with the form of Eq. (5). For example, it is possible
to continuously interpolate between the HS transformations of
Secs. III B and III C via

a(s) = √
cp

atan(p sin s)

atan p
, (30)

FIG. 1. A class of compact Hubbard-Stratonovich transforma-
tions defined by Eqs. (30) and (31). Each curve a(s) defines a
possible coupling between electrons and the auxiliary field s. The
square wave coupling (p → ∞) effectively corresponds to the usual
Ising auxiliary variables s = ±1 [6]. The sine wave coupling (p →
0) is the periodic HS transformation introduced by Lee [20].

b(s) = 1

2π
e− 1

4 �τ |U | �(π − |s|), (31)

where 0 < p < ∞ is the interpolation parameter. The coeffi-
cient cp controls the coupling strength between the auxiliary
field and fermions, and remains to be determined.

The limit p → 0 recovers Eqs. (21) and (22). The limit
p → ∞ is a bit more subtle. The domain of s may be restricted
to [−π, π ], for which

lim
p→∞ a(s) = √

cp
s

|s| . (32)

The integral ansatz of Eq. (5) becomes

lim
p→∞

∫
e

a(s)
2 (m̂↑−ηm̂↓ )b(s) ds = 1

2
e− �τ |U |

4 (I+ + I−), (33)

where

I± = e± 1
2
√

cp(m̂↑−ηm̂↓ )

(
1

π

∫
�±

ds

)
, (34)

and s is to be sampled from the two subdomains, �− =
[−π, 0] and �+ = [0, π ]. In the context of a DQMC code,
the sampling weight depends only on whether s ∈ �− or
s ∈ �+. That is, we could effectively replace each of these two
continuous sampling domains with just two allowed values,
s = ±1. As pointed out in Ref. [20], this limit recovers the
discrete Ising HS transformation, Eqs. (21) and (22), where√

c∞ = α, as defined in Eq. (18).
Figure 1 illustrates how varying p from 0 to ∞ interpolates

between previously known HS transformations. Here we se-
lected cp according to its �τ → 0 limit [Eq. (38)], which will
be derived below.

The constant cp is, in general, determined by the constraint
Eq. (9), which may be written

1

2π

∫ +π

−π

cosh

(√
cp

atan(p sin s)

atan p

)
ds = ex, (35)
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with x defined in Eq. (26). In applications, we will typically
have numerical values for p and x, and it is straightforward
to solve for cp numerically; a JULIA routine is provided in
Appendix A.

One can formally Taylor expand cp(x) in small x, gener-
alizing Eq. (28) to nonzero p. We will work out the leading
order approximation. Using

cosh a =
∞∑

n=0

a2n

(2n)!
, (36)

and x = �τ |U |/2, expand both sides of Eq. (35) in small cp ∼
�τ ,

cp

4π

∫ +π

−π

(
atan(p sin s)

atan p

)2

ds = �τ |U |
2

+ O(�τ 2). (37)

The limiting behavior for small �τ is

lim
�τ→0

cp

�τ |U | =
[

1

2π

∫ +π

−π

(
atan(p sin s)

atan p

)2

ds

]−1

. (38)

The right-hand side decreases monotonically as a function of
the interpolation parameter p. For example,

lim
�τ→0

cp

�τ |U | =

⎧⎪⎪⎨
⎪⎪⎩

2 (p = 0)
1.37546 . . . (p = 4)
1.11849 . . . (p = 20)
1 (p = ∞),

(39)

where the first and last cases should be understood as limits.
The p = 0 result is consistent with Eq. (28), and the p = ∞
result with Eq. (18), where α = √

c∞. Observe that increasing
p, i.e., moving toward the discrete Ising HS transformation,
effectively decreases the coupling strength

√
cp between the

auxiliary field and the fermions.

V. NUMERICAL BENCHMARKS

We explore the performance of the proposed compact HS
transformations in the context of the doped single-band Hub-
bard Hamiltonian,

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ − μ
∑
i,σ

ni,σ + U
∑

i

ni,↑ni,↓. (40)

Here, c†
i,σ (ci,σ ) is the creation (annihilation) operator for a

spin-σ (=↑,↓) electron on lattice site i, t is the hopping
integral for nearest-neighbor sites 〈i, j〉, μ is the chemical
potential, and U is the on-site Hubbard repulsion. We consider
the model defined on two-dimensional square and triangular
lattices with N = L × L sites and arbitrary in-plane lattice
constants. For all simulations, the discretization in imaginary
time is �τ = 0.1/t . The Monte Carlo sampling task is to gen-
erate auxiliary fields si,τ according to the weight exp(−S) =
| det M↑ det M↓|. Each Mσ is an N × N matrix function of the
fields si,τ , and this functional dependence varies according to
the choice of HS transformation [1–3].

The compact HS transformations of Sec. IV are tunable by
a parameter p. The limit p → ∞ gives rise to the usual dis-
crete Ising HS transformation (Sec. III B). Simulations in this
limit are efficiently performed using the traditional DQMC
approach [1,2]. The method sweeps over all imaginary time

slices, and within each, all lattice sites. At each space-time
point (i, τ ), a single spin flip si,τ → −si,τ is proposed and
then accepted with Metropolis probability min[1, exp(−�S)],
where �S denotes the associated change in action. After
a successful spin flip, local data structures [the equal-time
Green’s functions G(τ )] are updated at an amortized cost that
scales approximately like O(N2). The cost to fully sweep
over all Nτ imaginary times and N sites then scales like
O(N3Nτ ). Numerical errors can accumulate when sweeping
through time slices, and one must periodically recompute the
equal-time Green’s function using a numerical stabilization
procedure [2,3,23–25].

Alternatively, when p is finite, each auxiliary variable si,τ

can be viewed as a continuous degree of freedom in the
periodic domain [−π, π ]. The coupling strength cp between
the auxiliary field and electrons is determined by Eq. (38),
which can be solved using the JULIA code in Appendix A.
In our numerical implementation, we opted to sample the
field si,τ using the Langevin Monte Carlo method [26] (or,
equivalently, the Metropolis-adjusted Langevin method [27]).
This approach can be understood as a variant of HMC where
each dynamical trajectory consists of only a single time step
[13]. The method associates with each field component si,τ

a fictitious velocity vi,τ . A trial update of the auxiliary field
si,τ → s′

i,τ has two steps. First, one samples all velocities
vi,τ from the Gaussian equilibrium distribution. Second, one
performs Verlet integration for a single time step ε,

s′ = s − ε2

2
∇S + εv, (41)

v′ = v − ε

2
∇S − ε

2
∇S′. (42)

Here, S and S′ denote the action evaluated at fields s and s′,
respectively, and ∇ denotes the gradient with respect to si,τ

at every space-time index. The detailed balance condition is
achieved by accepting the proposed update with probability

Paccept = min[1, exp(−�S − �K )]. (43)

As before, �S = S′ − S represents the change in action. Ad-
ditionally, we must include a term �K = 1

2

∑
i,τ (v′2

i,τ − v2
i,τ )

representing the change in fictitious kinetic energy. The dom-
inant numerical cost in each Langevin step is the calculation
of the new action S′ and its derivative ∇S′. As with DQMC,
numerical stabilization is necessary, and the computational
cost for a full system update again scales like O(N3Nτ ).

Figure 2 presents the results from simulations of the square
lattice Hubbard model for various HS transformations as a
function of the parameter p and U = 8t . The x axis shows
the estimated mean electron number 〈n〉, which is indirectly
controlled by a varying chemical potential μ. For example,
the data at half filling, 〈n〉 = 1, were generated using μ = 0,
and the data at 〈n〉 ≈ 0.668 were generated using μ = −3.5t .
The y axis shows the expected value of

Sign = det M↑ det M↓
| det M↑ det M↓| . (44)

The deviation of 〈Sign〉 from one is a proxy for the dif-
ficulty of the so-called sign problem [11,28–31]. All HS
transformations yield the same qualitative behavior, which is
consistent with previous results obtained for the square lattice
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FIG. 2. The average sign of det M↑ det M↓ as a function of elec-
tron filling 〈n〉 for the two-dimensional single-band Hubbard model
on a square lattice with U = 8t , N = 8 × 8, and (a) β = 3/t or
(b) β = 4/t . Various HS transformations are compared, with the
Ising limit (p → ∞) generally producing the best sign.

Hubbard model using Ising auxiliary fields [2,29]. Particle-
hole symmetry at half filling perfectly protects against the
sign problem. Upon reducing 〈n〉 from one, the average sign
rapidly decreases until it hits a broad minimum value around
〈n〉 ≈ 0.8. As the filling is reduced further, the average sign
begins to slowly recover before reaching one in the dilute
limit.

The discrete Hirsch HS transformation is reached in the
limit where p → ∞, and restricts each auxiliary variable si,τ

to two possible values, ±1. This limit is observed to be
the best at mitigating the sign problem (i.e., it produces the
largest average sign at all fillings). Conversely, the continuous
Gaussian transformation gives rise to the worst sign problem.
The sinusoidal coupling studied by Lee (p = 0) achieves an
average sign that is already quite close to the discrete case
(p = ∞). By increasing the interpolation parameter p, it is
possible to approach the discrete HS transformation arbitrarily
closely, while retaining the continuous nature of the HS field
s ∈ [−π, π ].

Figure 3(a) shows a closer view of the p dependence on
the average sign. Here, we fix μ = −3.5t , corresponding to a
particularly difficult filling fraction of 〈n〉 ≈ 0.668. (All other
simulation parameters are identical to those used in Fig. 2.)
The average sign increases monotonically with p.

Langevin or HMC sampling methods decorrelate fastest
when p is of the order of one. Because forces are proportional
to da/ds, they are either vanishing or divergent when p → ∞.
Figure 3(b) shows that for a fixed integration time step of

FIG. 3. (a) The average sign of det M↑ det M↓ and (b) the corre-
sponding acceptance rate for proposed Langevin updates, for varying
HS transformations as controlled by the parameter p. As in Fig. 2(a),
we consider a square lattice Hubbard model with U = 8t, β = 3/t ,
and N = 8 × 8, but here we focus on 〈n〉 ≈ 0.668, corresponding to
μ = −3.5t .

ε = 0.1, the acceptance rate for proposed Langevin updates
steadily decreases with increasing p. Furthermore, at large p,
each accepted update become less effective in decorrelating
the auxiliary field because the typical forces are very small.
In numerical practice, the optimal choice of p should balance
the benefits of increasing the average sign against the disad-
vantages of reducing autocorrelation time in the dynamical
sampling scheme.

Figure 4 shows results obtained for the triangular lattice
single-band Hubbard model. Since this generally exhibits a
more severe sign problem compared to the square lattice case
[29], we focus here on an N = 6 × 6 lattice with U = 6t

FIG. 4. The average sign of det M↑ det M↓ as a function of elec-
tron filling 〈n〉 for the triangular lattice Hubbard model with U = 6t ,
N = 6 × 6, and β = 3.5/t . Various HS transformations are com-
pared, with discrete Ising variables emerging when p → ∞. Dotted
curves show cubic spline interpolation as a guide to the eye.
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and β = 3.5/t . The overall trends are very similar to those
already discussed for the square lattice. The Gaussian field
produces the lowest average sign values at all carrier con-
centrations. The compact fields, on the other hand, produce
larger average sign values at all carrier concentrations, and
systematically approach the values obtained using Ising HS
fields as p increases. Interestingly, we also observe a small re-
gion 0.8 � 〈n〉 � 1, where the p = 0 compact field performs
slightly better than the Ising fields.

In these simulations of the single-band repulsive Hub-
bard models, the DQMC method required only a few sweeps
to generate a decorrelated sample of the auxiliary field. In
contrast, Langevin required two orders of magnitude more
full-system updates to achieve comparable decorrelation. In
the presence of a sign problem, the Langevin approach
is at a fundamental disadvantage: The sampling weights
|det M↑ det M↓| vanish upon each reversal of the sign in
Eq. (2). This nodal surface corresponds to a logarithmi-
cally divergent action S which, in principle, should disallow
crossing by any continuous trajectory. In practice, the finite
Langevin integration time step ε makes crossing possible, but
rare. Previous work explored complexification of the auxiliary
to enable continuous paths around the nodal surface, thereby
avoiding ergodicity issues [16]. In future studies, it would be
interesting to explore whether such complexification might be
used in conjunction with the compact HS transformations of
Eqs. (30) and (31).

VI. CONCLUSIONS

This work studies a class of HS transformations that con-
tinuously interpolates between the discrete Ising auxiliary
variables introduced by Hirsch (p = ∞) [6] and the compact
variables with periodic coupling introduced by Lee (p = 0)
[20]. As a proof of principle, we compared DQMC simula-
tions (p = ∞) with Langevin simulations at various p, and
found that the average sign systematically increases with p.
Note, however, that these measurements are context depen-
dent; the average sign is known to depend sensitively on the
system’s dimensionality [29,32], its orbital basis [32–34], and
the presence of additional interactions [10,35].

Although the sign problem is best mitigated at infinite p,
selecting instead moderate p enables the use of continuous
sampling methods such as Langevin or HMC. In our study of

the single-band Hubbard model, we did not find benefit from
Langevin sampling; this is partly because DQMC is already
so effective at generating decorrelated samples and partly be-
cause continuous sampling methods do not do well in crossing
nodal surfaces. In other contexts, however, continuous sam-
pling methods are known to significantly reduce long decor-
relation times [14,15]. Previous studies of the attractive Hub-
bard model in the dilute limit found significant advantages
to using HMC in conjunction with the compact p = 0 HS
transformation [20], and future work may benefit by selecting
p > 0. The use of continuous sampling methods also presents
the possibility of using sparse iterative solvers to achieve
near linear scaling of computational cost with system
size [16,18,36]. Although linear-scaling simulations of the
Hubbard model in the strongly correlated limit are still not
practical, the present study represents progress towards this
direction.

Another context where a continuous HS transformation for
the Hubbard interaction may be beneficial is in simulations of
correlated systems with strong electron-phonon interactions.
Langevin and HMC are known to be highly effective in sam-
pling decorrelated phonon fields [16–18]. Future work could
perform simultaneous dynamical sampling of the phonon and
HS auxiliary fields. Such an approach could prove useful in
situations where the electron and phonon degrees of freedom
are strongly coupled, e.g., small polarons.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sci-
ences, under Award No. DE-SC0022311. This research used
resources of the Oak Ridge Leadership Computing Fa-
cility, which is a U.S. Department of Energy Office of
Science User Facility supported under Contract No. DE-
AC05-00OR22725.

APPENDIX A: NUMERICAL CALCULATION OF
COUPLING STRENGTH

The JULIA code below will solve Eq. (35) for the unknown
cp, taking as inputs x = �τ |U |/2 and finite interpolation
parameter p.
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Numerical issues will arise at small p due to the removable
singularity at p = 0,

lim
p→0

atan(p sin s)/atan(p) = sin s.

One solution is to expand the integrand powers of small p.
Alternatively, when p = 0 exactly, the coefficient c0 can be
calculated via the small-x expansion of Eq. (28).

APPENDIX B: ADDITIONAL RESULTS
FOR THE AVERAGE SIGN

Figure 5 shows additional results for the square lattice
Hubbard model on an N = 8 × 8 lattice with U = 4t and
β = 4/t . The results resemble those presented in Fig. 2 in
that the average sign for the Gaussian HS transformation
has the smallest value across the full range of sampled
densities.

FIG. 5. The average sign of det M↑ det M↓ as a function of elec-
tron filling 〈n〉 for the two-dimensional single-band Hubbard model
on a square lattice with U = 4t , N = 8 × 8, and β = 4/t .
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