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Structure formation by electrostatic interactions in strongly coupled medium
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The formation of correlated structures is of importance in many diverse contexts such as strongly coupled
plasmas, soft matter, and even biological mediums. In all these contexts the dynamics are mainly governed
by electrostatic interactions and result in the formation of a variety of structures. In this study, the process of
formation of structures is investigated with the help of molecular dynamics (MD) simulations in two and three
dimensions. The overall medium has been modeled with an equal number of positive and negatively charged
particles interacting via long-range pair Coulomb potential. A repulsive short-range Lennard-Jones (LJ) potential
is added to take care of the blowing up of attractive Coulomb interaction between unlike charges. In the strongly
coupled regime, a variety of classical bound states form. However, complete crystallization of the system, as
typically observed in the context of one-component strongly coupled plasmas, does not occur. The influence of
localized perturbation in the system has also been studied. The formation of a crystalline pattern of shielding
clouds around this disturbance is observed. The spatial properties of the shielding structure have been analyzed
using the radial distribution function and Voronoi diagram. The process of accumulation of oppositely charged
particles around the disturbance triggers a lot of dynamic activity in the bulk of the medium. As a result of
this, close encounters are possible even between those particles/clusters which were initially and/or at some
point of time widely separated. This leads to the formation of a larger number of bigger clusters. There are,
however, also instances when bound pairs break up and the electrons from bound pairs contribute to the shielding
cloud, whereas ions bounce back into the bulk. A detailed discussion of these features has been provided in the
manuscript.
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I. INTRODUCTION

Electrostatic interactions play an overwhelmingly impor-
tant role and form the basis of many processes, involving
plasmas [1–3], soft matter [4], biological medium [5,6], etc.
In these cases, the system is often modeled by variants of
Langevin and Fokker Planck equations involving electrostatic
interactions (e.g., the Poisson-Nernst-Planck equations [7,8]).
Formations of colloidal suspensions, polymers, and clusters in
these contexts have always attracted attention and often have
significant technological and scientific relevance. Our attempt
here is to understand the process of structure formation with
the help of molecular dynamics (MD) simulations in the sim-
plest scenario of a collection of uniformly distributed charged
particles of both signs, interacting via long-range Coulomb
force along with Lennard-Jones (LJ) interaction. The LJ
potential helps in switching off the attractive Coulomb inter-
action amidst oppositely charged particles at short distances
preventing their collapse. One is thus seeking the formation
of clusters in this medium, wherein two or more particles join
together to form a stable bound configuration. It is clear that
the thermal effects will let the particles fly away inhibiting the
survival of any such binding configuration. However, if the
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medium is in a strongly coupled state for which the mutual
interaction energy exceeds the thermal energy, the possibility
of the formation of such a bound state exists. We, therefore,
explore the dynamics in the strongly coupled regime for this
medium.

We have chosen a collection of equal and oppositely
charged particles interacting with electrostatic Coulomb and
LJ potential in the strongly coupled regime for our model.
This is essentially like a quasineutral strongly coupled plasma
state of matter [9,10]. Preparation of a strongly coupled
plasma medium is usually a challenge as it is typically created
by doing violence to matter and hence is seething with thermal
energy. The strongly coupled state requires that the parameter
� = Q2/aKbT > 1, where Q is the charge state of the particle,
a is the inter-particle separation and T is the temperature
and Kb is the Boltzmann constant. Thus, the strong coupling
condition can be achieved by (i) enhancing the charge Q, (ii)
reducing the inter-particle distance a, and (iii) decreasing the
temperature T .

Working with high Q particles has led to the observa-
tion of strong coupling effects even at room temperatures
in dusty plasmas [11,12] in the form of crystallization of
highly charged micron-sized dust particles against a back-
ground of normal electron-ion plasma. The strongly coupled
dusty plasma medium has garnered a lot of attention in the
plasma community for a couple of decades now. The strong
coupling effects playing a distinct role in the collective modes
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have been studied extensively both theoretically [13] and
experimentally [14]. For the strongly coupled dusty plasma
medium properties like collective structures [15–17], linear
and nonlinear waves [18–20], instabilities [21–24], and phase
transitions [25,26] have been observed. The interplay of sin-
gle particle and collective dusty plasma dynamics has also
been studied [27]. The dynamics of small dust clusters have
illustrated dynamical equilibrium states with chaotic motion
[28,29].

In superdense stars [30], the interior of planets, inertial
confinement plasmas, etc., the reduction of interparticle sep-
aration a can lead to strong coupling behavior. In some of
these contexts, however, the dynamics might involve electro-
magnetic effects. There has also been tremendous progress
in the creation of ultracold plasma experimentally using
laser-cooling techniques. For instance, xenon atoms via a
photo-ionization process are confined by a magneto-optical
trap [31–33] with typical density in the range of 105 cm−3 to
1010 cm−3 with either both or one of the species in a strongly
coupled state. Many properties of ultracold plasma have been
studied like the formation of Rydberg atoms [33]. Any heating
in such a system needs to be avoided to keep the system in a
strongly coupled state. For this, studies have been conducted
to identify and restrict the inherent heating mechanisms that
are prevalent in these systems. Mechanisms such as disorder-
induced heating [34,35] and three-body recombination (3BR)
[36] have been identified as some prominent factors causing
the heating of the medium. A study of thermodynamics and
transport properties such as pressure and internal energy [37],
etc., has also attracted attention. It is also interesting to note
that studies in magnetically confined plasma [38] have shown
ions in the strong coupling regime arranged in concentric
shells and demonstrate solid and liquidlike behavior. In an-
other work by Pohl et al. [39] the crystallized structure was
observed at the center of expanding laser-cooled ultracold
plasma in which short-range concentric ion shells are formed
with appropriate initial conditions.

Our objective here is to explore the possibility and nature
of structure formation in a neutral plasma. The study also
has relevance in other contexts of soft matter, and biological
systems in which structure formation is an important issue,
and electrostatic interactions are believed to be responsible for
the same. Here, one is seeking the formation of structures with
the most elementary coulomb interaction with Lennard Jones
potential at short distances to avoid the collapse of unlike
charged particles. We make use of the open-source molecular
dynamics code of LAMMPS for carrying out these studies
numerically.

This article has been organized as follows. In Sec. II, we
discuss the simulation setup and the choice of parameters.
In Sec. III, we investigate the formation of classical bound
states. In Secs. IV and V, we study the effect of an exter-
nal perturbation introduced in the two-dimensional (2D) and
three-dimensional (3D) simulation systems. The perturbation
is in the form of inserting a massive and heavily charged
particle into the medium. This could be equivalent to ap-
plying a biased probe in experiments. This inserted particle
remains fixed in space while the particles in the medium
respond to its potential. The charge in it is chosen to be
quite high, about two orders higher than the charge of other

particles in the system. The evolution of the system is studied
in both two and three dimensions. Oppositely charged parti-
cles assemble around the externally placed charge particle to
screen its potential. However, when the underlying plasma is
strongly coupled, the oppositely charged particles assemble in
a crystalline pattern around it. The behavior of the crystalline
pattern is understood with the help of the radial distribution
function and Voronoi diagrams. As expected the potential due
to this crystalline charge cloud typically resembles the Debye
shielding profile. However, there are some deviations, arising
due to the crystalline and discrete nature of the shielding
cloud. The value of σ , which typically defines the distance
where the LJ repulsive potential goes to zero, is also found
to play a role. The role of external perturbation on the for-
mation and existence of the seemingly fragile classical bound
state is studied. It is observed that the disturbance induced
by the insertion of the external highly charged particle leads
to the formation of higher numbers of bigger-sized bound
state clusters. This happens as the particles placed far apart
now get an opportunity for close encounters. However, in all
these simulations no three-dimensional bound state structure
formation was observed. In Sec. VI it is shown that when
some bound states are evolved in isolation (absence of other
plasma particles) they reorganize as three-dimensional bound
structures. In fact, it is shown that the 3D structures that form
are energetically favorable. Yet such structures do not form
in the backdrop of plasma medium. It clearly shows that the
plasma medium plays an important role in the formation of
the clusters. In Sec. VII we summarize and conclude our
studies.

II. MD SIMULATION DETAILS

We have carried out 2D and 3D molecular dynamics
simulations using an open-source classical MD simulation
software LAMMPS [40]. We have typically used the pa-
rameters associated with electron-ion plasma in an ultracold
regime. The particles in the simulation box is interacting with
each other through the long-range pair Coulomb potential
(VpC) and an additional short-range repulsive LJ potential (VLJ)
as given by

V (rkl ) = VpC + VLJ, (1)

where

VpC = Ql

4πε0rkl
, (2)

VLJ = 4ε

[(
σ

rkl

)12

−
(

σ

rkl

)6
]
. (3)

This short-range LJ potential avoids the recombination of
electrons and ions. Here Ql define the charge on any lth
particle. Also, rkl represents the distance between kth and lth
particles. Here, ε and σ are the usual Lennard-Jones potential
parameters where ε defines the strength of the LJ potential
well and σ describes the distance at which interparticle LJ
potential becomes zero. The PPPM (particle-particle particle-
mesh) method [41] is used for the calculation of long-range
Coulomb interactions. In our case, we have assumed both
electrons and ions to be in a strongly coupled regime which
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means the coulomb coupling parameter (�) for both species is
greater than unity. The equation of motion of any kth particle
can be expressed as

mk
d2rk

dt2
= −Qk∇

N−1∑
l=1

VpC − ∇
N−1∑
l=1

VLJ, (4)

where N is the total number of particles in the system.
In the two-dimensional (2D) study, we have chosen a rect-

angular simulation box of length Lx = Ly = 1.4 × 10−3 m in
the x̂ and ŷ directions, respectively. Periodic boundary condi-
tions are considered in all directions. Initially, 104 electrons
and 104 ions with densities 1.0 × 1010 m−2 are distributed
randomly inside the simulation box. This ensures that there
exist no initial spatial pre-correlations between the charged
particles. The charge (Qi) and mass (mi) of the ion are taken
to be 1.6 × 10−19 C and 100me, respectively. Here, me is
the mass of an electron, i.e., me = 9.109 × 10−31 Kg. The
mass of the ion in simulation is chosen smaller compared
to even the proton mass, merely to reduce the simulation
time. In our simulations, the temperature of electrons and ions
are both considered to be equal and at Te = Ti = 0.1 K. All
the length scales are normalized by the average interparticle
distance a. In 2D, the average interparticle distance a and
the areal density n are related as a = (nπ )−1/2. Thus, for our
choice of n, the value of average interparticle distance turns
out to be a = 5.64 × 10−6 m. In our simulations, the time
scales are normalized by ω−1

pe , where ωpe = (ne2/meεo)1/2

is electron-plasma frequency. The dynamics of the lightest
species (i.e., electrons) are tracked by choosing the time step
3 × 10−8ω−1

pe .
In our 3D simulations, we have taken the length of the

simulation box to be Lx = Ly = Lz = 3.7 × 10−5 m, in x̂, ŷ,
and ẑ directions, respectively. We have chosen the periodic
boundary conditions in all directions. Again, 104 electrons
and 104 ions with densities 3.7 × 1017 m−3 are initially dis-
tributed randomly inside the simulation box. The relation
between density n and average interparticle distance is a =
[3/(4nπ )]1/3. The temperature of electrons and ions is chosen
to be Te = Ti = 1 K, which corresponds to the Coulomb cou-
pling parameter � = 20, i.e., in the strongly coupled regime.
The time step is chosen as 3 × 10−5ω−1

pe for this case. This
is also small enough to track the dynamics of the lightest
electron species.

As mentioned earlier, particles (both electrons and ions)
are interacting with long-range pair Coulomb potential. Ad-
ditionally, a short-range LJ pair potential is present in the
pair interactions between particles. The parameters associated
with these interaction potentials are as follows. The cutoff
distance for Coulomb pair potential is chosen to be rc = 20a.
The parameter σ associated with the LJ potential is chosen
to be 10−2a for most of the simulation studies. We have,
however, also varied the value of σ . The normalized param-
eter ε is chosen to be 558KBT and 75KBT for 2D and 3D,
respectively. In both 2D and 3D simulations, Nose-Hoover
thermostats [42,43] have been used to achieve the thermal
equilibrium associated with the desired value of Coulomb
coupling parameter �.

FIG. 1. Distinct variety of bound structures at equilibrium. Here,
the red and blue dots correspond to the electrons and ions, respec-
tively. This is for the case where mi = 100 me.

III. FORMATION OF BOUND STRUCTURES
FOR THE SYSTEM IN EQUILIBRIUM

Once the system achieves thermodynamic equilibrium with
the attached thermostat, its evolution shows the formation of
several distinct varieties of bound structures. In these struc-
tures, a few electrons and ions combine with each other and
form a stable configuration. Some such structures have been
displayed in Fig. 1. There are linear structures as shown in
Figs. 1(a) and 1(b). In fact, in Fig. 1(b) about nine particles
(four electrons and five ions) have joined together to form
a linear chain. Such linear chains have alternating particles
with opposite signs attached together. Figure 1(c) shows a 2D
structure in which two linear chains join adjacently to form
a 2D structure. In Fig. 1(d) we have shown the formation of
a square structure in which the diagonally opposite particles
are of the same sign. Two such square structures can join
together as shown in Fig. 1(e) or a square can have a linear
chain attached to itself as shown in Fig. 1(f) resembling a
kite. Figure 1(g) is again a square structure with nine particles,
each side of the square having three particles. The circular
ringed structure in Fig. 1(h) forms when the particles at the
end of the linear chain join together. Figure 1(i) is again a
kitelike structure like that shown in Fig. 1(f). It should be
noted that the bound structures that form do not necessarily
have an equal number of ions and electrons. A mismatch of
one unit charge (but not higher than this) has been observed.

The structures shown in Fig. 1 are not unique in terms of
the number of particles forming that particular shape. Linear
chains with a larger number of particles are also observed
to get formed. The kitelike structure shown in Fig. 1(f) may
have a longer linear chain attached to it. It is also interest-
ing to note that with the same number of particles different
kinds of structures have been observed to form. For instance,
the structures shown in Figs. 1(b), 1(e), and 1(g) all have
nine particles. However, the form of these structures is quite
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FIG. 2. Formation of bound structures at equilibrium when mi =
1836 me. Here, the red and blue dots correspond to the electrons and
ions, respectively.

different. In fact, some other kinds of structures can also
form with nine particles. These structures form during various
stages of evolution and seem to have small differences in
their bound state energy. We have captured one such transition
event taking place during the evolution where the linear struc-
ture of seven particles first joins with two particles to form a
nine-particle linear structure. This nine-particle linear struc-
ture eventually forms a kitelike structure. This subsequently
transforms to the square lattice structure of subplot(g). This
can be observed from a video “Transition.mp4” [44] attached
as Supplemental Material. The potential energies correspond-
ing to the nine particle configurations in Figs. 1(b), 1(e), and
1(g) have been obtained in Appendix. They have the values
of −0.47 × 10−21 J, −2.29 × 10−21 J, and −4.13 × 10−21 J,
respectively, for the chosen parameters of our simulation.
The binding energy of the square lattice being the highest is
observed to form ultimately in the movie also.

We also carried out 2D simulations with the realistic ion
mass mi = 1836 me. Even for this case, the evolution shows
the formation of a distinct variety of bound structures as
shown in Fig. 2. For this case, we observe the same phenom-
ena as in the earlier case, but we have to evolve simulations
for a longer time to observe the behavior. To save the compu-
tational cost we have considered mi = 100 me in most of our
simulations.

We illustrate the dynamical process of formation of some
of these structures in Fig. 3 by showing the snapshot of a

FIG. 3. The schematics for the time evolution of one kind of
bound structure. Blue dots and red dots represent the ions and elec-
trons, respectively. The normalized time is varying from tωpe 0.2034
to 0.45 and tωpe = 0 represents the distribution of electrons and ions
initially in the simulation box.

particular zoomed region from the entire simulation region
which has been shown in Fig. 3(a) of the figure at tωpe = 0,
where the randomly distributed particles have been shown.
From Figs. 3(b) to 3(t) we show the snapshots at various times
for a zoomed region from the simulation box containing six
particles. The entire dynamics is covered within a fraction
of the plasma period. During this period no other particle
entered this region hence the particle number remained at six.
From Fig. 3(b) to 3(f) one can observe the attachment of an
electron to an ion-electron pair placed at the top of the box. A
three-particle linear chain can be observed to be rotating at the
bottom right corner of the subplot. From Fig. 3(g) to 3(k) one
can observe how the two three-particle linear chains approach
each other and join together. After combining, they wiggle a
lot going through a variety of phases shown in Fig. 3(l) to
3(p). Finally, as they relax they form a ringed structure which
is found to be stable. A movie “Bound.mp4” [44] has been
prepared as Supplemental Material from tωpe 0.2034 to 0.45
to show the formation of bound structure in more detail.

We would like to emphasize here that, while the simula-
tions have been carried out both in 2D and 3D, we observe no
formation of three-dimensional clusters. In the next section,
we observe what happens to these structures when the medium
is perturbed by inserting a highly charged heavy particle hav-
ing no dynamics of its own. We also study how the plasma
particles accumulate around the external perturbation to shield
its potential.
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FIG. 4. Arrangements of electrons around external perturbation.
The green dot represents the external perturbation that is introduced
at the center of the simulation box and the red dots represents
electrons.

IV. STRUCTURE FORMATION IN A TWO-DIMENSIONAL
PERTURBED SYSTEM

When a weakly coupled plasma is disturbed by an external
potential, the plasma tries to shield this potential within a
distance of Debye length. It is, however, not clear how a
strongly coupled plasma would react to an externally applied
field. In this section, we try to explore this particular issue in a
two-dimensional simulation set-up. Once the system gets set-
tled in thermal equilibrium an external point charge is inserted
at the center of the simulation box. The mass (MP) and charge
(QP) of external perturbation are chosen to be large as 100mi

and 100Qi, respectively. Since the externally inserted charge
has a very high mass it remains stationary and is not allowed
to move. The electrons get attracted towards this externally
applied positive charge whilst the ions are repelled from it.
The insertion thus initiates a dynamical response from the
plasma. We investigate the behavior of the shielding cloud that
accumulates around this charge and also the influence of such
a dynamic response from the plasma on the classical bound
pairs. It is observed that the shielding occurs in the form
of an electron cloud arranged in a crystalline pattern due to
the strongly coupled nature. It is interesting to note that de-
spite the plasma getting perturbed, even bigger-sized bound
state clusters form in the bulk region. We discuss these two
effects in the subsequent subsections.

A. The structure of shielding cloud

Figure 4 represents the arrangements of electrons around
the external perturbation at a time (tωpe = 15.93) after the
charge has been inserted. The central green dot represents
the externally inserted high positively charged perturbation,
and the red dots correspond to the electrons that accumulate
around it. The process of accumulation is slow as electrons
came one by one from bulk plasma and get arranged in a
hexagonal lattice structure of Fig. 4. After completing the
first shell electrons start arranging in the next shell and so on.
The addition of a single highly charged point particle attracts
particles of opposite sign near itself while repelling those of

0 2 4 6
0

0.5

1

1.5

2

FIG. 5. Radial distribution function as a function of distance
from external perturbation at time (tωpe) 15.93.

like sign. This accumulation of oppositely signed particles
now constitutes a one-component plasma/cluster of particles
acted upon by a strong radial confining force. It is well known
that a one-component plasma in 2D forms a hexagonal lattice
structure. The presence of radial confining force and a finite
extent/number of particles cause distortions to the hexagonal
structure as is evident from the figures. We have shown the
radial distribution function (RDF), measuring the probability
distribution of finding the electrons with the inserted exter-
nal particle as the reference in Fig. 5. The various peaks
in the structure corresponds to the various rings/shells that
are present in the crystalline structure formed by the elec-
trons around the reference particle that has been introduced.
Figure 6 represents the Voronoi diagram for the shielding
cloud which is shown in Fig. 4. This provides information
about the nearest neighbor of each particle in the cluster by
constructing polygons around each point. The boundary of the
polygon is constructed by bifurcating the distance between the
particle and its nearest neighbours. We illustrate the forma-
tion of hexagons and pentagons with yellow and cyan colors,
respectively. It is clear from the Voronoi diagram that the

-0.04 -0.02 0 0.02 0.04

-0.02

0

0.02

0.04

FIG. 6. Voronoi diagram of electrons around external pertur-
bation. Voronoi cells in yellow color represent the six nearest
neighbors, whereas cyan color denotes five neighbors.
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FIG. 7. Plot of potential profile as a function of normalized dis-
tance from external perturbation having charge 100Qi. Here, the blue
and red curve corresponds to potential in normal electron-ion plasma
and ultracold plasma, respectively.

shielding cloud arranges itself in the hexagonal lattice. The
pentagonal structure arises at the boundary of the cloud.

Once the shielding process gets completed and the plasma
becomes quiescent, we decide to study the potential profile of
the shielding cloud to determine whether it resembles the De-
bye shielding form encountered in the weakly coupled regime.
The value of Debye length as estimated from the choice of our
simulation parameters is λD = 1.7 × 10−4 m. The theoretical
Debye shielding profile using this particular value of λD along
with the one obtained from the simulation has been shown
in Fig. 7 by solid blue and red dashed lines, respectively.
The plot clearly shows that while there is an agreement in
both the plots at higher values of r/λD, at shorter distances
the simulation depicts a sharper screening. Here, the value of
σ = 5.64 × 10−8 m is chosen to be shorter than the Debye
length. In fact we observe that the value of σ plays a crucial
role in defining the screening now. In the next section, this is
discussed in the context of 3D simulations.

B. Impact on bound structures in bulk

We now study the effect this perturbation has on the
formation of bound structures in the bulk. The perturbed
system initiates a dynamical response by the plasma. While
the electrons get preferentially attracted to shield the charge
of the particle introduced in the medium, they even drag
along with them some of the bound structures to which
they are attached. In Fig. 8, we show through snapshots
of various times, how free electrons get attracted towards
the disturbance one by one and get attached to it forming a
lattice structure around it. It can be observed from Figs. 8(e)
to 8(l) that even bound states get dragged by the electrons
toward the structure. Upon reaching a very close distance the
bound cluster gets dissociated and leaves the electron in it to
contribute to the screening cloud, while the ion rebounds back
to the bulk. To understand this evolution of structure more
clearly the movie “Evolution.mp4” [44] has been prepared as
Supplemental Material. However, despite such disassociation
of the bound structures, it is interesting to note that the

FIG. 8. Evolution of structure around the external perturbation.
Here, red, blue, and green dots correspond to electrons, ions, and
externally introduced perturbation, respectively.

increased activity allows for more encounters amidst particles
in the bulk resulting in larger and more complex shaped
structure formation as has been depicted in Fig. 9. These
bigger structures were not observed in simulations when
no external perturbation was introduced. In fact, in Fig. 8
itself, it can be observed that a linear chain hovering around
the structure at the left-down corner gets converted into a
complex kitelike pattern in Fig. 8(j). However, subsequently,
it too being very close to perturbation donates all its electrons
to the shielding cloud and the two ions bounce back.

V. EXTERNAL PERTURBATION IN 3D SYSTEM

We have also carried out our simulation studies in three di-
mensions. We distribute 104 electrons and 104 ions randomly
in the simulation box and seek the attainment of thermody-
namic equilibrium at the desired temperature. Thereafter, we
perturb the system by inserting a massive particle having a
charge of 100Qi at the center of the simulation box. Since
the inserted particle has a positive charge again the electrons
in the system rush to shield its charge. This time, however,
the system is three-dimensional so the electrons form a three-
dimensional shielding cloud. We now investigate whether the
shielding cloud has a crystalline form and if so what kind of
arrangement takes place in the cloud. As the structure cannot
be visualized in 3D we have employed certain diagnostics to
perceive it in the best possible manner.
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FIG. 9. More complex bound structures formed in bulk of plasma
when the external perturbation is introduced.

A. Form of the shielding cloud

In Figs. 10(a) and 10(b) the projection of all electrons in
the x-y and x-z planes have been shown. The central point
represented by the green star is the reference point for the
highly charged particle introduced as an external perturba-
tion in the system. In both subplots, almost all positions
are enclosed within the dotted circles which signifies that
the cluster structure has isotropic spherical confinement. The
arrangement appears to be random and isotropic from this
perspective. However, the shell structure of the arrangement
is pretty evident when we choose to plot the locations of
the electrons involved in shielding in terms of cylindrical
coordinates ρ =

√
(x2 + y2) and z in Fig. 11. As z could be

any axis so it is evident that the arrangement is in the form of
spherical shells around the external perturbation introduced
in the medium. The radial distribution function plotted in
Fig. 12 having peaks confirms further the formation of the
shell structure. The Voronoi diagram in the 3D spherical shell

FIG. 10. The projection of all the electrons that are involved
in structure formation around external perturbation (green star) in
(a) horizontal plane (x − y plane) and (b) vertical plane (x − z plane).

FIG. 11. Shell structure by the projection of all the electrons into
the ρ-z plane. Most occupied Shells are represented by the black
dotted lines and the green dot corresponds to external perturbation.

has been shown in Fig. 13 at the radius of the various rings
determined from the plot of Fig. 11. The coordinate axes de-
picted in Fig. 13 is normalized by the radius of that particular
shell. The number of polygons appearing in various shells has
been counted and shown in Table I. The pentagons appear to
be the dominant form in the first two shells. However, the third
shell shows hexagons to be dominant. With different choices
of charges taken for the inserted particles, we observe the
same spherical arrangement of electrons. The innermost shell
has 12 electrons and the second and the last shell have 20 and
50 electrons, respectively.

B. Time evolution of structure in 3D

We also investigate how the shielding process progresses
in time. For this purpose, we track the number of electrons
as they collect around the externally introduced particle. In

1 2 3 4 5
0

1

2

3

4

FIG. 12. Radial distribution function as a function of distance
from the externally introduced perturbation at the time (tωpe) 218.7.
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FIG. 13. Voronoi diagram with two different orientations for
electrons in the First shell [shown in subplots (a), (b)], second shell
[shown in subplots (c), (d)] and in the third shell [shown in subplots
(e, f)] having 12, 20, and 50 electrons, respectively.

Fig. 14 we show the number of electrons (N) which have been
collected as a function of the time of their arrival in units of
ωpe. It is clear from the figure that it takes 100 s of plasma
period for the electrons to arrive and shield the charge almost
completely. While initially, the accumulation is relatively fast,
it slows down considerably at the later stage. There is no
change after about tωpe = 100 when about 96 electrons have
accumulated in the shielding cloud.

C. Comparison with Debye shielding

We now study the 3D radial potential profile obtained
numerically after the shielding process has taken place and
compare it with the Debye shielding profile. Such a com-
parison has been shown in Fig. 15. The blue line shows the
theoretical Debye shielding profile, whereas the red dotted
line is the potential profile that has been obtained from the
simulation. Here too like 2D, we observe that the numerically
obtained potential profile differs from the theoretical Debye

TABLE I. Number of polygons

Shell Octagon Heptagon Hexagons Pentagons Tetragons

First 0 0 1 9 0
Second 0 2 6 8 1
Third 1 4 27 17 0

FIG. 14. Plot of number of electrons (N), near the external per-
turbation, with normalized time. Subplot (a) corresponds to the
zoomed plot at initial time.

profile. In fact, due to the discrete arrangement of the electrons
in various spherical shells, a sudden fall is also noticed in
the profile. The zoomed-inset shows this more clearly in the
figure. The location of this fall does not seem to be of statis-
tical nature and occurs at the same location for the chosen
set of parameters in a particular simulation confirming the
uniqueness of the 3D pattern that forms.

We have also simulated the 2D and 3D ultracold electron-
ion plasma with different values of LJ parameters, i.e., epsilon
(ε) and sigma (σ ). We observed that even when ε and σ

are changed the shielding electrons still accumulate along
various spherical shells. However, the location of the sharp
dip in the potential profile does change when the value of σ

in the Lenard-Jones potential is varied. When we increase the
value of parameter σ to such an extent that it is greater than
the Debye length (λD) the shielding of the potential becomes
broader. This has been illustrated in Fig. 16.

0 0.5 1
0

50

100

150

0.15 0.2 0.25 0.3 0.35
0

5

10

15

FIG. 15. Plot of potential profile as a function of normalized
distance from external perturbation having charge 100Qi and value of
LJ parameter (σ ) is 8.64 × 10−9, i.e., smaller than the Debye length
(λD) 7.88 × 10−8. Here, the blue and red curve corresponds to the
potential in normal electron-ion plasma and ultracold plasma, respec-
tively, and subplot (a) represents the zoomed plot of the rectangular
region shown by dotted lines.
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FIG. 16. Plot of potential profile as a function of normalized
distance from external perturbation. Here, the value of LJ parameter
(σ ) is 8.64 × 10−8, i.e., larger than the Debye length (λD). The blue
and red curve corresponds to potential in normal electron-ion plasma
and ultracold plasma, respectively.

VI. 3D BOUND STRUCTURES

In the simulations that we have carried out so far, we have
observed only 2D bound-state formation. The bound state
shows considerable stability and survives for a long time in
the plasma where it faces constant bombardments from other
particles. In this section, we explore the stability of a couple
of chosen bound structures in isolation by tracking their evo-
lution.

We first study the stability of the ring structure shown in
Fig. 17(a) as an initial configuration and track its evolution. It
quickly (within a fraction of the plasma period) attains the
form shown in Fig. 17(b). We also placed a pair of rings
on top of each other [Fig. 17(c)] and a linked pair of rings
[Fig. 17(e)]. Both these configurations relax immediately to a
cuboid form as shown in Figs. 17(d) and 17(f). It appears as a
puzzle that the ring structure, which was stable in the presence
of background plasma and survived for several plasma peri-
ods, is unstable and quickly relaxes to the cuboid structure in
the absence of background plasma. It should also be noted that
the final configuration is a 3D bound state which was never
observed in the plasma.

We now look at the energetics of the ringed and the cuboid
structure. The interparticle spacings of the two-ringed and the
cuboid structure are shown in Fig. 18. The total potential
energy of the ringed structure and the cuboid structure in
terms of the interparticle spacings shown in Fig. 18 has been
evaluated.

PEring
pC = 6

QiQj

4πε0

(−3

a
+ 2

b
− 1

c
+ 2

d
− 2

e
+ 1

f

)
, (5)

PEring
lj = 6[2Vlj(a) + 2Vlj(b) + Vlj(c) + 2Vlj(d ) + Vlj(e)

+Vlj( f )], (6)

Initial state Final state

(a)

(d)

(f)(e)

(b)

(c)

FIG. 17. Schematic representation of initial and final states of
bound structures in 3D (without background plasma). Here, red and
blue dots correspond to electrons and ions and subplots (a), (c), (e)
represents the initial states whereas, subplots (b), (d), (f) show the
final states.

whereas all the parameters in terms of a are

b = 2asin(60◦), c = 2a,

d =
√

2a, e = 2a, f =
√

5a.

The total potential energy of ringed structure is

PEring(a) = PEring
pC + PEring

lj ,

FIG. 18. Schematic representation of the ringed and cuboid
structure.
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FIG. 19. Plot of the total potential energy of ringed (green) and
cuboid structure (magenta) as a function of interparticle spacing
which is normalized with the LJ parameter σ . Here, the star repre-
sents the minima in the potential energy and zoomed view of minima
is shown in inset.

whereas

PEcuboid
pC = QiQj

4πε0

(−18

a
+ 22

b
− 8

c
− 8

d
+ 4

e

)
, (7)

PEcuboid
lj = 20Vlj(a) + 4Vlj(2a) + 22Vlj(b) + 8Vlj(c)

+8Vlj(d ) + 4Vlj(e), (8)

whereas all the parameters in terms of a are

b =
√

2a, c =
√

5a,

d =
√

6a, e =
√

3a.

The total potential energy for cuboid structure is

PEcuboid(a) = PEcuboid
pC + PEcuboid

lj .

We have then plotted the expression for the potential en-
ergy for the two cases as a function of a/σ as shown in
Fig. 19. The green and magenta curve corresponds to ringed
and cuboid structures, respectively. The potential energy of
the cuboid structure is found to be less than the overlapped
ring structure. We believe this is the reason for favoring their
formation in isolation. The presence of plasma clearly seems
to modify this. It is also observed that at large values of
interparticle distance the potential energy approaches zero,
whereas, for shorter distances, it has high values. But at a
certain separation, the potential energy is negative and has
a minimum value. At this separation, the bound clusters are
formed. Thus, the minima in the potential plot can in fact
be viewed as the bound state energy of the cluster. Thus, the
height of the blue dashed line shown in Fig. 19 represents the
bound state energy of the cluster.

2
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(I)

a'

a'

a'

FIG. 20. Schematic representation of bound structures of subplot
(b), (e), (g) of Fig. 1.

VII. SUMMARY

We have simulated an ultracold collection of an equal
number of negative and positively charged particles (e.g.,
like electrons and ions, albeit their mass ratio is chosen to
be different from the realistic case for ease of computation)
in 2D and 3D by MD simulation in which both species are
strongly coupled. The collapse between the unlike charge
particles has been avoided by choosing repulsive interaction
at short distances between these particles. Here we have
chosen the particles to be interacting with a short-range LJ
pair potential, whereas at large distances their interaction
is governed by the Coulomb potential. At equilibrium, we
have observed many types of bound structure formation. With
the introduction of external perturbation (highly charged and
massive point particle) we observe the expected phenomena
of shielding. The particles are in a strongly coupled regime,
therefore, the shielding cloud arranges in specific patterns.
The shielding potential profile unlike the weakly coupled
cases is determined by the choice of the LJ parameter of σ

defining the distance at which the interparticle potential is
minimum. In the crystalline pattern, the interparticle distance
gets determined by this parameter. Thus, when σ is larger than
the Debye length, the shielding is broader than expected from
the Debye screening process. However, when it is smaller
than the Debye length the screening is sharper. Thus, one
needs to be cautious while drawing inferences of certain
plasma properties while simulating the ultracold strongly cou-
pled plasma using the short-range repulsive form to overcome
the blowing up of the attractive potential amidst oppositely
charged particles.

In literature, a lot of other forms of potential have been
chosen to overcome the problem of the short-range Coulomb
attraction [37,45,46]. For instance, the choice of the potential
of the form −e2

r {1 − exp( −r2

(αa)2 )} in Ref. [37] also rescues the
collapse from the Coulomb interaction. Here the parameter
αa can be adjusted to appropriately define the repulsive core.
For both LJ and this form of potential the minima in the
potential profile occurs at a finite value of r. We observe
that this aids the formation of clusters where atoms get ar-
ranged at distances defined by the location of the minimum in

055214-10



STRUCTURE FORMATION BY ELECTROSTATIC … PHYSICAL REVIEW E 107, 055214 (2023)

potential. We, however, wish to point out that in the context of
dense plasmas, the interaction potential has often been chosen
as −e2

r {1 − exp−Cr} [45,46], where C defines as the inverse
De-Broglie wavelength. Our investigations for this interaction
potential do not yield any structure formation. This can be
understood by realizing that for this case the minimum of
the potential does not occur at a finite value of interparticle
separation r.
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APPENDIX: POTENTIAL ENERGIES FOR BOUND
STRUCTURES

The potential energies for the three configurations in
Figs. 1(b), 1(e), and 1(g) are calculated analytically in terms
of a′. Here a′ is the separation between the nearest-neighbor
particles in these configurations and is found to be the same
for all configurations. The potential energy for linear chain
structure [Fig. 20(I)] is

PEI
pC = QiQj

4πε0

(−8

a′ + 7

2a′ − 6

3a′ + 5

4a′ − 4

5a′ + 3

6a′ − 2

7a′ + 1

8a′

)
, (A1)

PEI
lj = 8Vlj(a

′) + 7Vlj(2a′) + 6Vlj(3a′) + 5Vlj(4a′) + 4Vlj(5a′) + 3Vlj(6a′) + 2Vlj(7a′) + Vlj(8a′). (A2)

The total potential energy of linear chain structure is

PEI(a′) = PEI
pC + PEI

lj.

After using the value of a′, the total potential energy of linear chain structure is −0.47 × 10−21 J, whereas

PEII
pC = QiQj

4πε0

(−10

r12
+ 1

r46
+ 4

r14
− 2

r15
+ 4

r16
− 4

r17
+ 1

r18
+ 4

r25
− 4

r26
+ 2

r29

)
, (A3)

PEII
lj = 10Vlj(r12) + Vlj(r46) + 4Vlj(r14) + 2Vlj(r15) + 4Vlj(r16) + 4Vlj(r17) + Vlj(r18) + 4Vlj(r25) + 4Vlj(r26) + 2Vlj(r29), (A4)

where, ri j is the distance between ith and jth particle, whereas all the parameters in terms of a′ are

r12 = a′, r46 = 2a′, r14 =
√

2a′, r15 = (1 +
√

2)a′, r16 = (2 +
√

2)a′, r17 = (

√
9 + 6

√
2)a′,

r18 = (2 + 2
√

2)a′, r25 = (

√
2 +

√
2)a′, r26 = (

√
5 + 2

√
2)a′, r29 = (

√
8 + 4

√
2)a′.

The total potential energy for dumbbell structure [subplot (II) of Fig. 20] is

PEII(a′) = PEII
pC + PEII

lj .

After using the value of a′, the total potential energy of dumbbell structure is −2.29 × 10−21 J, whereas

PEIII
pC = QiQj

4πε0

(−12

r12
+ 8

r15
+ 2

r19
− 8

r18
+ 6

r17

)
, (A5)

PEIII
lj = 12Vlj(r12) + 8Vlj(r15) + 2Vlj(r19) + 8Vlj(r18) + 6Vlj(r17), (A6)

whereas all the parameters in terms of a′ are

r15 =
√

2a′, r19 = 2
√

2a′, r18 =
√

5a′, r17 = 2a′

The total potential energy for the square structure [subplot (III) of Fig. 20] is

PEIII(a′) = PEIII
pC + PEIII

lj .

After using the value of a′, the total potential energy of a square structure is −4.13 × 10−21 J. It is thus clear that a square
lattice has the maximum binding energy and hence is the most stable structure. However, a linear chain has the least binding
energy, whereas the dumbbell structure has an intermediate binding energy.
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