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Charged particle beam transport in a flying focus pulse with orbital angular momentum
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We demonstrate the capability of flying focus (FF) laser pulses with � = 1 orbital angular momentum (OAM)
to transversely confine ultrarelativistic charged particle bunches over macroscopic distances while maintaining
a tight bunch radius. A FF pulse with � = 1 OAM creates a radial ponderomotive barrier that constrains the
transverse motion of particles and travels with the bunch over extended distances. As compared with freely
propagating bunches, which quickly diverge due to their initial momentum spread, the particles cotraveling with
the ponderomotive barrier slowly oscillate around the laser pulse axis within the spot size of the pulse. This can
be achieved at FF pulse energies that are orders of magnitude lower than required by Gaussian or Bessel pulses
with OAM. The ponderomotive trapping is further enhanced by radiative cooling of the bunch resulting from
rapid oscillations of the charged particles in the laser field. This cooling decreases the mean-square radius and
emittance of the bunch during propagation.

DOI: 10.1103/PhysRevE.107.055213

I. INTRODUCTION

Charged particle beams are ubiquitous in physics exper-
iments and applications. Their transport over macroscopic
distances is necessary not only for devices such as acceler-
ators and electron microscopes, but also for compact radiation
sources. The magnetic optics currently used for transport [1,2]
become progressively more expensive as the particle energy
increases due to the need for higher magnetic field gradients,
which must be generated, for example, by superconducting
currents. Furthermore, the achievable focal lengths of these
optics may be too large for modern electron beam applica-
tions, such as inverse Compton scattering sources [3]. More
specifically, the characteristic focusing lengths of magnetic
optics range from tens of centimeters to meters and are limited
by the physical size of the magnets. While permanent magnets
designed for ∼100 MeV electron energies can be relatively
compact (millimeter scale) allowing for ∼10 cm focal lengths
[3], at higher electron energies, focusing at such short dis-
tances becomes technologically challenging.

All-optical setups for transporting charged particle beams
have been proposed as an alternative that would circumvent
the need for magnets [4]. In these schemes, the trans-
verse intensity profile of a laser pulse that counterpropagates
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with respect to the beam is shaped to provide a confining
ponderomotive potential. Such schemes can be especially ad-
vantageous when employed at high-intensity laser facilities,
where laser pulses can be used both for creating ultrarela-
tivistic particle beams and for their transport. Nevertheless,
these schemes require large laser pulse energies, whether they
employ conventional or axicon-focused Bessel pulses [5–7].

In this paper, we introduce an all-optical setup for charged
particle beam guiding that uses a flying focus (FF) to greatly
reduce the required laser pulse energy. The FF refers to a
class of optical techniques that provide spatiotemporal control
over the trajectory of a focal point [8,9]. The intensity peak
formed by the moving focal point can travel at any arbitrary
velocity independent of the laser group velocity over distances
much longer than a Rayleigh range. The first experimental
demonstration of a FF used chromatic focusing of a chirped
laser pulse [9]. Alternate techniques employing space-time
light sheets [10,11], axiparabola-echelon mirrors [12], and
nonlinear media [13,14] have also been proposed. The spa-
tiotemporal control enabled by FF pulses has presented a
unique opportunity to revisit established schemes and inves-
tigate regimes in which FF pulses provide an advantage over
traditional fixed-focus Gaussian pulses [12,15–21].

Here we show that FF pulses with � = 1 orbital angular
momentum (OAM) and a focus that moves in the opposite
direction of the phase fronts at the vacuum speed of light can
transport charged particles over macroscopic distances. The
ring-shaped transverse intensity profile of the � = 1 mode pro-
vides a ponderomotive potential barrier that confines charged
particles in the transverse direction. Figure 1 illustrates the
concept and problem geometry (the units h̄ = ε0 = c = 1 are
used throughout). The ponderomotive confinement allows for
transport of an electron bunch with a tight radius, smaller
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FIG. 1. Schematic of electron confinement in the ponderomotive
potential of an � = 1 OAM flying focus (FF) pulse. The off-axis
intensity peak of the FF pulse (yellow toroids) travels at the vacuum
speed of light (vF = −1) in the opposite direction of its phase fronts
(vφ = 1). Ultrarelativistic electrons (blue lines) travel in the same
direction as the intensity peak. Electrons with low transverse mo-
mentum inside the intensity peak are confined and slowly oscillate in
the radial direction, whereas electrons outside the peak are deflected.
[The solid (dashed) blue lines represent the past (future) trajectory of
the electrons with respect to the snapshot shown in the figure.]

than the focal spot size of the pulse, with feasible laser pulse
energies. As an example, a 10-pC, 500-MeV electron beam
can be transported over 6 mm using a 200-J, 5-TW FF pulse,
compared with the 2 MJ that would be needed in a con-
ventional pulse. Axicon-focused Bessel pulses require even
larger energies [7,22]. The energy requirements to confine the
electron beam are much less for a FF pulse because the peak
intensity moves with the electron beam, which decouples the
interaction length from the Rayleigh range. Confinement of
the charged particles is aided by radiative cooling (radiation
reaction [23–26]), which decreases the emittance and mean-
square radius of the beam at the cost of its average energy.

The remainder of this paper is organized as follows:
Sec. II presents the four-potential of the � = 1 OAM FF
beam and its properties. Section III describes the analytical
model for charged particle motion in the � = 1 FF pulse.
In Sec. III A, oscillations in the ponderomotive potential are
discussed, and constraints on the transverse phase space of
the trapped particles are derived. Section III B describes the
evolution of the particle bunch radius. Longitudinal motion
of the particles, including radiation energy loss, is addressed
in Sec. III C. The importance of space-charge repulsion on
particle bunches is discussed in Sec. III D. Section IV com-
pares the energy required in � = 1 FF pulses and conventional
Laguerre-Gaussian pulses. Section V describes the simulation
results. Electron confinement, radiation energy loss, oscilla-
tions in the ponderomotive potential, and transverse emittance
behavior are covered in Sec. V C, and the longitudinal delay
of the electron bunch behind the FF intensity peak is covered
in Sec. V D. Technical details and explicit calculations are
contained in six Appendixes.

II. FF BEAMS AND PULSES WITH � = 1 OAM

A FF field with � = 1 OAM forms a transverse pondero-
motive potential barrier that is capable of confining charged

particles close to the propagation axis. Here, a FF pulse with
an intensity peak that moves at the vacuum speed of light
against the laser phase velocity in the negative z direction (see
Fig. 1) is considered. This special case admits simple, but ex-
act, closed-form analytical expressions for the four-potential
and the fields. This section presents the exact expressions of
the four-potential, its cycle-averaged magnitude, and the ex-
tension to pulses with finite energy. A scheme for generating
FF pulses with � = 1 OAM is described in Ref. [14].

An exact beam solution to the vacuum wave equation can
be written in terms of the light-cone coordinates η = t + z and
φ = t − z. The light-cone coordinate η describes the displace-
ment from the moving focus (η = 0) of the FF pulse, while
φ tracks the fast phase oscillations. The transverse part of
the vector potential for the � = 1 Laguerre-Gaussian (LG10)
mode reads [21]

A⊥(η, r, θ, φ) = A0

√
2σ0r

σ 2
η

e−r2/σ 2
η cos �1(0, 0), (1)

where

�1(a, b) = ω0φ − r2

σ 2
η

η

η0
+ (1 − a)θ

+ (2 + b) arctan

(
η

η0

)
(2)

is the phase, r = |x⊥| =
√

x2 + y2 is the radial distance from
the z axis, θ = arctan(y/x) is the azimuthal angle in cylindri-
cal coordinates, ω0 = 2π/λ0 is the laser angular frequency,
and λ0 is its wavelength. The spot size ση and Rayleigh range
η0 equivalents for the FF beam are

ση = σ0

√
1 + η2

η2
0

, η0 = ω0σ
2
0 . (3)

The effective duration of the moving intensity peak is equal
to the Rayleigh range η0. More generally, the Rayleigh range
and effective duration depend on the velocity of the focus βF .
In the paraxial approximation, η0 = (1 − βF )ω0σ

2
0 /2, which

reduces to Eq. (3) when βF = −1 and the stationary focus
result η0 = ω0σ

2
0 /2 when βF = 0 [14,27].

Upon imposing the Lorenz gauge condition ∂μAμ = 0 and
the constraint A+ = A0 + Az = 0 (so that two photon degrees
of freedom remain), one can evaluate A− = A0 − Az as

A−(η, r, θ, φ) = −
∫

dφ∇⊥ · A⊥(η, r, θ, φ). (4)

For a laser beam polarized along the y axis A0 = A0ŷ,

A−(η, r, θ, φ) = A0

√
2σ0r

ω0σ 2
η

e−r2/σ 2
η

×
[

2y

σ0ση

sin �1(0, 1) − 1

r
cos �1(1, 0)

]
,

(5)

where the initial condition at t = 0 was chosen so that the
potential vanishes as |z| → ∞. The remaining Cartesian com-
ponents can be evaluated as

A0 = −Az = 1
2 A−. (6)
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FIG. 2. Cycle-averaged invariant |AμAμ| at the position of the
focus (η = 0).

In this gauge, the Lorentz-invariant square of the four-
potential is given by

AμAμ = (A0)2 − (Ay)2 − (Az )2 = −A2
⊥, (7)

where the Minkowski metric tensor is chosen as ημν =
diag(+1,−1,−1,−1). As a result, the square of the trans-
verse component |A⊥|2 = −AμAμ is also Lorentz invariant.
Components of the electric and magnetic fields corresponding
to this four-potential are presented in Appendix A.

The cycle average of the invariant |AμAμ| at focus (η = 0)
is proportional to intensity and equal to

|AμAμ||η=0 = A2
⊥|η=0 = A2

0r2

σ 2
0

e−2r2/σ 2
0 , (8)

where the overbar denotes a cycle average. The cycle-
averaging procedure is defined in Appendix B. Figure 2
displays Eq. (8) and demonstrates that the peak intensity
forms a ring surrounding the beam axis.

From the analytical beam solution, laser pulses with finite
total energy can be approximately constructed by applying the
pulse envelope function g(φ) as a multiplicative factor on the
electromagnetic fields. For the approximation to be accurate,
the up and down ramps of g(φ) should be much longer than
λ0. For details of the implementation, see Refs. [19,21].

The average power Pav of the FF pulse is given by (see
Appendix B)

Pav ≈ π

4
A2

0ω
2
0σ

2
0 . (9)

To ensure that the FF pulse interacts with the particles for a
time tint, or equivalently a length Lint, the total pulse energy
must be

Etot ≈ 2Pavtint. (10)

A comparison with the energy required in a conventional
LG10 pulse is presented in Sec. IV.

III. CHARGED PARTICLE MOTION IN AN � = 1
OAM FF PULSE

The evolution of a charged particle (mass m and charge
q, respectively) interacting with an external electromagnetic
field, including radiation reaction in the classical regime, is
described by the Landau-Lifshitz equation of motion [28]:

u̇μ = q

m
Fμνuν + 2q

3m
rq

[
d

dτ
(Fμν )uν + q

m
Pμ

ν F ναFαβuβ

]
,

(11)

where rq = q2/(4πm) is the classical particle radius, u̇μ de-
notes the proper-time derivative of the four-velocity uμ =
(γ , u) = (γ , γβ), Pμ

ν = δμ
ν − uμuν is the projection tensor,

and Fμν = ∂μAν − ∂νAμ is the electromagnetic field tensor
in terms of the vector four-potential.

For the analytic considerations in this section, radiation
reaction is assumed to be negligible, allowing the term propor-
tional to rq to be omitted. This term has an effect of lowering
the particle energy during the propagation and will be revis-
ited in the context of the longitudinal motion (Sec. III C) and
simulation results (Sec. V).

In the absence of radiation reaction, the motion of a
charged particle in the FF pulse can be described by the
ponderomotive guiding center equation of motion [29]

du
dt

= − q2

2m2γ
∇A2

⊥, (12)

where γ = (1 + u2
z + u2

⊥ + q2A2
⊥/m2)1/2 is the cycle-

averaged gamma factor and t is laboratory time. Equation (12)
was derived in the Coulomb gauge and requires that the
particle experiences many phases of the field over the
duration of the pulse, i.e., η0ω0(1 − βz ) � 2π , which is
the case considered here. While there is no consensus
on a covariant and gauge-independent formulation of the
ponderomotive force [30,31], Eq. (12) accurately predicts the
motion independent of gauge as long as the cycle-averaging
procedure remains valid. In Appendix C, the transverse
component of the ponderomotive force is derived in the
Lorenz gauge for ultrarelativistic particles moving with the
intensity peak (η ≈ 0) and against the phase fronts of a FF
pulse. The particles have an initial relativistic factor γ0 � 1
and a small transverse velocity ξ0 	 γ0, such that γ ≈ γ0,
which further simplifies the expression for γ in Eq. (12).
Applying these conditions to Eq. (12) yields the same result
as Eq. (C10):

du⊥
dt

≈ − q2

2m2γ0
∇⊥A2

⊥|η=0. (13)

For the remainder of this paper, the velocity components
and spatial coordinates will be understood to represent cycle-
averaged quantities, and the overbar will be dropped.

Near the focus (η ≈ 0), A2
⊥ is only a function of the radial

coordinate [see Eq. (8)]. As a result, the motion in the trans-
verse plane is approximately described by

r′′ − r(θ ′)2 = − q2

2m2γ 2
0

d

dr
A2

⊥|η=0, (14)

(γ0r2θ ′)′ = 0, (15)
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where the prime denotes a derivative with respect to time in
the laboratory frame. The first equation describes the radial
motion, and the second equation implies the conservation of
relativistic angular momentum

Lz = mγ0r2θ ′ = const. (16)

Using this constant of motion in Eq. (14) provides

r′′ − L2
z

m2γ 2
0 r3

= − q2

2m2γ 2
0

d

dr
A2

⊥|η=0. (17)

Equation (17) can be reexpressed in the form of Newton’s
law for a particle with a mass mγ0 moving in a potential that
depends only on the radial coordinate:

mγ0r′′ = − d

dr
Veff(r), (18)

where the effective potential

Veff(r) = VP(r) + VC (r)

= q2

2mγ0
A2

⊥|η=0 + L2
z

2mγ0r2
(19)

includes both the ponderomotive and centrifugal contribu-
tions.

A. Transverse motion

To illustrate the approximate harmonic motion of charged
particles in the FF pulse, Eq. (13) can be rewritten using the
potential from Eq. (8) as

d2x⊥
dt2

= −�2

(
1 − 2

r2

σ 2
0

)
e−2r2/σ 2

0 x⊥, (20)

where ξ0 = |q|A0/m is the normalized field amplitude and

� = 2π

T
= ξ0

γ0σ0
(21)

is the angular frequency of oscillations in the harmonic
approximation, i.e., when r 	 σ0. The actual oscillation
frequency of confined particles is smaller due to the anhar-
monicity of the potential.

Multiplying Eq. (18) by the radial velocity r′ = βr and
integrating over time provides a conservation relation for the
energy E⊥ associated with the transverse motion:

1
2 mγ0β

2
r + Veff(r) = 1

2 mγ0β
2
⊥ + VP(r) = E⊥, (22)

where

β⊥ =
√

(r′)2 + r2(θ ′)2 =
√

β2
x + β2

y (23)

is the magnitude of the transverse velocity. In terms of the
Cartesian velocities and positions, r′ = (xβx + yβy)/r.

Equation (22) can be used to determine the initial con-
ditions of particles that will be bound in the FF potential.
To begin, note that Veff(r) → ∞ as r → 0 and Veff(r) → 0
as r → ∞. Because there cannot be bound trajectories in
regions of space where the potential is monotonically decreas-
ing, dVeff(r)/dr � 0 provides a necessary condition for the
existence of bound trajectories. Upon applying this inequality

to Eq. (19), one obtains

ρ2 � r4

σ 4
0

(
1 − 2

r2

σ 2
0

)
e−2r2/σ 2

0 � 0.02, (24)

where ρ = Lz/(mσ0ξ0) and 0.02 is a numerical upper bound
on the right-hand side. Physically, a particle with too large of
an angular momentum will not be bound in the ponderomotive
potential.

Equality in Eq. (24) determines the local extrema of Veff(r).
For ρ 	 1, the position rmax of the local maximum of Veff(r)
can be approximated to leading order as

rmax = σ0√
2
. (25)

The position rmin of the local minimum of Veff(r) is obtained
by assuming rmin 	 σ0. To leading order,

rmin = σ0
√

ρ. (26)

Consistent with the expression for the effective potential, a
nonzero initial angular momentum prevents the particle from
penetrating the potential all the way to r = 0.

Using these values of the extrema, bound trajectories in the
FF beam are determined by the constraints Veff(rmin) � E⊥ �
Veff(rmax), i.e.,

4eρ �
(

β⊥
β⊥,max

)2

+
(√

e
r

rmax
e−r2/σ 2

0

)2

� 1, (27)

where β⊥,max = ξ0/(
√

2eγ0) and e = 2.7183 · · · is Euler’s
number. Note that for this derivation to be consistent,

√
ρ 	 1

and 4eρ < 1.

B. Evolution of the particle bunch
in the harmonic approximation

The previous section described the radial dynamics of in-
dividual particles. In this section, the dynamics of a particle
bunch is described in terms of the bunch centroid in the trans-
verse plane 〈x⊥〉 and the root-mean-square (rms) radius of the
bunch R =

√
〈r2〉. Here the ensemble average of a quantity Q

is defined as 〈Q〉 = N−1 ∑N
i=1 Qi, where N is the number of

particles.
In the harmonic approximation, the centroid evolves ac-

cording to the harmonic part of Eq. (20) averaged over an
ensemble of particles

d2〈x⊥〉
dt2

= −�2〈x⊥〉. (28)

Equation (28) has the solution 〈x⊥(t )〉 = 〈x⊥(0)〉 cos(�t ).
Thus an electron bunch that is initially offset from the propa-
gation axis of the FF pulse will oscillate about the axis with a
period 2π/�.

An evolution equation for R can be derived by taking its
second derivative with respect to the laboratory time

R′′ = −〈rr′〉2

R3
+ 〈r′2〉

R
+ 〈rr′′〉

R
. (29)

Substituting the harmonic approximation of the force from
Eq. (20) in polar coordinates

r′′ = −�2r + rθ ′2 (30)
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into the expression for R′′ provides

R′′ +
(

�2 − ε2
⊥

γ 2R4

)
R = 0, (31)

where

ε⊥ = γ
√

〈r2〉〈r′2 + r2θ ′2〉 − 〈rr′〉2 (32)

is approximately the normalized transverse emittance of the
bunch (see Appendix D). In the absence of energy spread
and radiation reaction, ε⊥ is a constant of motion: In a con-
servative potential, the phase-space distribution maintains a
constant area despite deformations of its boundaries [32].
However, the initial ramp up and final ramp down of the
pulse render the ponderomotive potential nonconservative and
change the emittance (see discussion in Sec. V C).

Equation (31) has an exact analytical solution for the initial
condition R(0) = R0 and R′(0) = 0:

R(t ) = R0

√
1 +

(
ε2
⊥

γ 2R4
0�

2
− 1

)
sin2(�t ). (33)

In the absence of ponderomotive confinement, i.e., � → 0,
Eq. (33) demonstrates that the rms radius increases without
bound as R(t ) = R0

√
1 + (t/Ts)2, where Ts = γ R2

0/ε⊥. This
expression describes the evolution of the rms radius before
the FF ramps up and after it ramps down. With ponderomotive
confinement, the rms radius either oscillates with the angular
frequency � or remains constant. Setting the terms in the
round brackets to zero provides the condition for constant rms
radius

σ0ε⊥
ξ0R2

0

= 1, (34)

where Eq. (21) has been used. Note that the dependence on the
energy of the particles is still contained in the definition of the
emittance. Although this formula applies only in the harmonic
approximation, it provides a starting point for initializing the
particle bunches in the simulations described in Sec. V.

C. Longitudinal motion

Because the intensity peak of the FF pulse travels at the
vacuum speed of light, the particles will gradually fall behind
the peak intensity and experience weaker transverse confine-
ment. There are several effects that can contribute to the rate
at which the particles fall behind the peak. First, the initial
velocity of each particle is less than the vacuum speed of light.
This causes the light-cone variable η = t + z to grow lin-
early in time, but this growth is negligible for ultrarelativistic
particles.

Second, the FF pulse can accelerate (or decelerate) the par-
ticles in the longitudinal direction. Figure 3 displays a slice of
the |AμAμ| invariant in the polarization plane (yz plane). In the
focal region, this invariant varies weakly in the longitudinal
direction, so that the ponderomotive force can be neglected.
However, if the relativistic factor γ becomes comparable to
the field strength ξ0, the increase in the effective mass of
the particles due to transverse and longitudinal oscillations in
the fields of the FF pulse can significantly reduce the time-
averaged longitudinal velocity. This deceleration also causes

FIG. 3. Cycle-averaged invariant |AμAμ| for the � = 1 OAM FF
field in the plane of the field polarization. Note the different scales
for the axes.

the light-cone variable to grow linearly in time and can be
neglected as long as ξ0 	 γ0.

Finally, as was discussed in Ref. [21], a charged particle co-
moving with the FF intensity peak continuously loses energy
due to radiation reaction. The resulting deceleration becomes
dominant in regions of high field intensity. When ξ0 	 γ0, the
amplitude of the fast transverse oscillations is small compared
with the spot size of the pulse. As a result, each particle
locally experiences a plane-wave-like field. Because the ultra-
relativistic particles primarily move in the opposite direction
of the phase fronts, the approximations u− = γ − uz ≈ 2γ

and φ ≈ 2t can be employed. The electron energy loss due
to Landau-Lifshitz radiation reaction in plane wave fields is
then given by [33]

γ (t ) ≈ γ0

1 + κ (t )
, (35)

where

κ (t ) = 4

3
γ0rqω

2
0

∫ t

0
ξ 2(t ′)dt ′ (36)

is the deceleration factor after a time t . The integral is taken
over the normalized field amplitude ξ (t ′) along the particle
trajectory. This integral can be approximated by its average
value ξ 2

efft , where ξeff < ξ0 is the effective field strength along
the particle trajectory up to time t . The deceleration factor
increases with the initial gamma factor and with the field
strength along the particle trajectory. For the � = 1 OAM
pulses of interest here, the field intensity is lowest on axis and
rises with radial distance (up to rmax for confined particles).
As a result, the particles predominantly radiate in the regions
around the turning points.

For ultrarelativistic particles with small transverse velocity,
the delay behind the intensity peak can be approximately
evaluated as

ηd (t ) =
∫ t

0
[1 − βz (̃t )]dt̃

≈ 1

2

∫ t

0

(
1

γ 2 (̃t )
+ β2

⊥ (̃t )

)
dt̃ . (37)
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Substituting the expression for γ (t ) [Eq. (35)] and approxi-
mating β2

⊥(t ) ≈ β2
⊥(0) + ξ 2

eff/2γ 2(t ), where the second term
accounts for the transverse velocity of the rapid oscillations in
the field, one obtains

ηd (t ) ≈ 1 + ξ 2
eff/2

2

1

γ 2
0

+ 1

2
β2

⊥(0)t

+
(

1 + ξ 2
eff

2

)(
2

3

rqω
2
0ξ

2
eff

γ0
t2 + 8

27
r2

qω
4
0ξ

4
efft

3

)
.

(38)

The terms on the first line are the contributions from the
particle moving at a subluminal velocity with nonzero trans-
verse component, while the terms on the second line are the
contributions from radiation energy loss. In order to keep the
particle close to the focus, ηd (t )/η0 	 1 needs to be satisfied
during the whole interaction.

D. Space-charge effects

To assess the impact of space-charge forces on the particle
motion, consider a particle bunch with the charge density [34]

ρ(r, z) = qN
1

2πσ 2
r

e
− r2

2σ2
r λL(z), (39)

where N is the number of particles and σr is the bunch width.
The longitudinal distribution

λL(z) = 1

2L

[
erf

(
L − 2z

2
√

2σr

)
+ erf

(
L + 2z

2
√

2σr

)]
(40)

is parametrized by the length scale L and was chosen because
it permits an analytical solution for the field [34]. Comparing
the strength of the ponderomotive force with the repulsive
fields of the particle bunch provides a condition for when
space-charge effects can be neglected (see Appendix E):

N 	 Nsc = 0.21
4πm

q2
e

Lσr

σ0
ξ 2

0

= (8 × 107 μm−1)
Lσr

σ0
ξ 2

0 , (41)

where the numerical value is given for electrons. As an exam-
ple, a typical electron bunch from laser wakefield acceleration
(LWFA) has approximately a pico-Coulomb of charge [35],
L = 7λ0, and σr = 3λ0/2

√
2 (the same parameters used in the

simulations presented below; see Secs. V A and V B). For a FF
pulse with ξ0 = 10 and σ0 = 3λ0, Nsc = 2 × 1010 � N ; thus
space-charge forces are negligible. Note that the space-charge
repulsion would be even less important in a mixed species
electron-positron bunch [36].

IV. REQUIRED PULSE ENERGY: FF PULSES VERSUS
OTHER SCHEMES

A FF laser pulse requires substantially less energy than a
conventional LG10 laser pulse to confine a relativistic particle
bunch. For a conventional laser pulse, the interaction time
is limited by the Rayleigh range. Extending the interaction
time requires increasing the Rayleigh range and the focal spot,
which, in turn, requires increasing the power to maintain the
strength of the ponderomotive force. In contrast, the intensity

peak of a FF pulse copropagates with the electron bunch,
which decouples the interaction time from the Rayleigh range
and the strength of the ponderomotive force.

Using Eq. (10), the energy required in a FF pulse for the
interaction time tint,F is given by

EF = 2Pavtint,F = π

2
A2

0,Fω
2
0σ

2
0,Ftint,F, (42)

where the subscript “F” denotes the parameters of the FF
pulse. Similarly, for a conventional LG10 pulse, denoted by
subscript “C,” the energy is

EC = π

2
A2

0,Cω2
0σ

2
0,Ctint,C. (43)

The interaction length in both cases is equal to the interaction
time Lint = tint. Confinement of the relativistic particles de-
pends on the strength of the ponderomotive force. For a fixed
ponderomotive force at a given distance from the axis [see
Eq. (20)],

A2
0,F

σ 2
0,F

= A2
0,C

σ 2
0,C

= K, (44)

where K is proportional to the strength of the ponderomotive
force. Substituting Eq. (44) into Eqs. (42) and (43) yields

EF = π

2
Kω2

0σ
4
0,Ftint,F, (45)

EC = π

2
Kω2

0σ
4
0,Ctint,C. (46)

To ensure that the particles interact with the focus of the
conventional pulse over the entire interaction time (or length),

tint,C = 2η0,C = ω0σ
2
0,C. (47)

Thus the energy in the conventional pulse grows as the cube
of the interaction time [Eq. (46)], while the energy in the FF
pulse scales linearly with the interaction time [Eq. (45)]. Now,
two comparisons can be made.

(a) For the same interaction time tint,F = tint,C = tint,

EC

EF
= σ 4

0,C

σ 4
0,F

= t2
int

ω2
0σ

4
0,F

=
(

tint

η0,F

)2

. (48)

As an example, to confine an electron bunch with a radius of
2 μm over an interaction distance Lint = 6 mm (tint = 20 ps),
EC/EF = 1.1 × 104, where η0,F = 18π μm was used. Setting
ξ0 = 5, EF = 200 J and EC ≈ 2 MJ.

(b) For the same energy EF = EC,

tint,F =
(

tint,C

η0,F

)2

tint,C. (49)

Thus a FF pulse is advantageous as long as the interaction
time tC is longer than the Rayleigh range of the FF pulse. An
electron bunch with a radius of 2 μm can be confined by a FF
laser pulse with η0,F = 18π μm for a distance Lint,F = 6 mm
(tint,F = 20 ps) compared with only Lint,C = 0.3 mm (tint,C =
0.9 ps) for a conventional pulse, where both pulses have 200 J
of energy.

Recently, an alternative scheme that employs a Bessel
beam to guide a relativistic electron bunch has been proposed
[7,22]. In this scheme, the electrons counterpropagate with re-
spect to a radially polarized Bessel beam created by an axicon
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lens. The axicon creates an extended longitudinal region of
high intensity. However, to create a ponderomotive barrier of
comparable strength [37] to the FF, the axicon must maintain
a high intensity across the entire region for the full interac-
tion time. Maintaining this high intensity requires very high
energies. In contrast, FF pulses concentrate the energy den-
sity along the the trajectory of the charged particles, greatly
reducing the required energy.

V. SIMULATIONS

The motion of charged particles in the FF pulse was
simulated using the classical Landau-Lifshitz equation of
motion, Eq. (11). This equation accounts for the radiative
energy losses from both the fast oscillations at the laser phase
and the slow oscillations in the ponderomotive potential. In-
spection of Eq. (11) shows that the derivative term in the
radiation-reaction force can be neglected [38] if the field in
the instantaneous rest frame of the electron does not vary
significantly over a classical electron radius. This is the case in
all of the simulations presented here, and this term is ignored.

The simulations were performed for electrons (mass m =
me, charge q = qe < 0, classical radius rq = re, and normal-
ized field strength ξ0 = |qe|A0/me). However, because the
ponderomotive force applies equally for positively and neg-
atively charged particles, all of the results also describe the
motion of positrons.

A. Simulation parameters

For the simulation results presented in this paper, the dis-
tances are measured in units of k−1

0 = 2π/λ0, and time is
measured in units of ω−1

0 = 2π/λ0. In these units, the clas-
sical electron radius re = 1.77 × 10−8 k−1

0 .
Numerical integration of the electron equations of mo-

tion was performed using a fourth-order Runge-Kutta scheme
with a time step dt = 0.05 ω−1

0 and a total integration time
tint = 4 × 104 ω−1

0 = 21.2 ps. A fifth-order polynomial was
employed to smoothly switch the fields on and off. The exact
analytical form of the field envelope g(φ) can be found in
the Supplemental Material of Ref. [21]. The ramp time of
the field was set to ∼0.4 ps, and the period of the laser pulse
was about 3.3 fs, corresponding to λ0 = 1 μm. Thus the time
scales were sufficiently disparate that the pulse envelope ap-
proximation and the expression for the laser power presented
in Appendix B were valid.

For all simulations the FF spot size was set to σ0 =
6π k−1

0 = 3λ0, which corresponds to the Rayleigh range η0 =
36π2 k−1

0 = 18πλ0. Therefore the characteristic length in the
longitudinal direction η0 is about 19 times longer than the
characteristic length in the transverse direction σ0 (see dis-
cussion in Sec. III C). The interaction length in terms of the
Rayleigh range is Lint = 112.6η0.

B. Electron bunch initialization

The electron bunches were initialized based on parameters
typical of LWFA with bunch lengths of ∼10λ0 and diver-
gences up to tens of milliradians [35,39]. The electrons move
predominantly in the negative z direction with the intensity

TABLE I. Initial parameters for the electron bunches and nor-
malized laser field amplitude ξ0. The parameter ξ0 was fixed so that
the initial bunch satisfies the matching condition from Eq. (34).

〈γ0〉 σβ⊥ (0) R2(0)/k−2
0 ε⊥(0)/ω−1

0 ξ0

1000 0.0021 44.4 13.9 5.9
200 0.0054 45.2 7.10 3.0
100 0.021 44.6 14.1 6.0

peak of the FF pulse and against the phase fronts (see Fig. 1).
The initial electron positions were randomly sampled from the
charge distribution given by Eqs. (39) and (40), with a width
and length representative of bunches produced in either laser
wakefield accelerators or proposed conventional accelerators
[40,41]. The electron bunch was aligned with the optical axis
of the FF pulse, such that 〈x⊥(0)〉 = 0. More generally, the
centroid of the bunch would also oscillate in the ponderomo-
tive potential [see Eq. (28)]. The initial variance in the radial
position was chosen to be

σr (0) = rmax

2
= σ0

2
√

2
= 3π√

2
k−1

0 = 3

2
√

2
λ0. (50)

The initial longitudinal spread of the bunch was set to

L(0) = 14π k−1
0 = 7λ0. (51)

With this choice, ∼99% of the simulated electrons are initial-
ized within a longitudinal distance of 5λ0 from the center of
the bunch. The length of the electron bunch is therefore much
shorter than the Rayleigh range 18πλ0. As a result, electrons
initialized within a longitudinal distance of 5λ0 from the focus
experience a ponderomotive force that is within 99% of the
maximum.

The initial longitudinal components of the four-velocity
were normally distributed with a standard deviation equal to
1% of the central value uz(0) = −

√
〈γ0〉2 − 1. The gamma

factors 〈γ0〉 used to generate the distribution were 1000, 200,
and 100 for the three simulated cases. The transverse veloci-
ties were also normally distributed but with zero mean. The
initial variance in the magnitude of perpendicular velocity
σβ⊥ (0) and the normalized field strength ξ0 were chosen such
that the condition in Eq. (34) was satisfied. See Table I for
details. To capture the effect of electrons escaping the FF
pulse, the initial values were also chosen to ensure that some
electrons were initialized with a transverse velocity and posi-
tion outside of the constraint in Eq. (27). As a result, the subset
of confined electrons were not normally distributed. With
the longitudinal and transverse velocities known, the initial
energy for each electron was fully determined. Each simulated
bunch was composed of 1000 independent electrons, which
was sufficient for calculating average quantities.

For the simulation parameters given in Table I, the max-
imum quantum nonlinearity parameter for electrons χe =
|qe|

√|(Fμνuν )2|/m2 (see Ref. [33]) is 0.03, 0.003, and 0.003,
respectively. In addition, the de Broglie wavelengths of the
simulated electrons were between 50 and 170 fm, which is
many orders of magnitude smaller than the 1 μm laser wave-
length. Thus the use of classical radiation reaction is justified.
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(a) (b)

FIG. 4. Time evolution of the rms radius for (a) freely traveling electrons with no external field and (b) electrons confined to the
ponderomotive potential of a FF pulse with σ0 = 6π k−1

0 = 3λ0. The dotted line denotes the case of 〈γ0〉 = 1000 with no radiation reaction
(no RR). For the parameters of the electron bunches, see Sec. V B.

C. Electron confinement in the FF pulse and radiation cooling

Figure 4(a) demonstrates the rapid expansion of an electron
bunch in the absence of external fields. Early in time the
expansion is slower as a subset of electrons move towards the
bunch axis. Quickly thereafter, the initial spread in transverse
momenta causes the rms radius to evolve as approximately
[see discussion below Eq. (33)]

R(t )|ξ0=0 ≈ R0
t

Ts
≈ σβ⊥ (0)t . (52)

The beam divergences without the fields of the FF pulse

� = 2 arctan

(
R(tint ) − R(0)

〈βz(0)〉tint

)
≈ 2 arctan

(
σβ⊥ (0)

〈βz(0)〉
)

(53)

were 4.2, 11, and 42 mrad, respectively. The electrons had a
high enough transverse momentum so that some escaped the
ponderomotive barrier of the FF pulse and also large enough
beam divergences, >1 mrad, to be relevant to LWFA-based
electron sources [39].

As shown in Fig. 4(b), this expansion is contained by
counterpropagating a flying focus pulse with the electron
bunch. Even though the matching condition for a constant
bunch radius, i.e., Eq. (34), was satisfied for the mean energy,
the energy spread in the bunch and the anharmonicity of
the ponderomotive potential result in oscillations of the rms
radius. Only confined electrons, defined as those chosen as
having r(t ) < 0.75σ0 during the entire interaction, were used
to calculate the rms radius in Fig. 4(b).

Radiation reaction gradually decreases the rms spot size
and increases the oscillation frequency of the bunch [cf.
〈γ0〉 = 1000 cases in Fig. 4(b)]. As the electrons radiate
and lose energy (Fig. 5), the ponderomotive force becomes
stronger [Eq. (20)], which increases the oscillation frequency
[Eq. (21)]. Consistent with Eq. (35), the radiative cooling of
the bunch occurs more rapidly for higher values of γ0 and ξ0

(Fig. 5). The reduction in the rms spot size of the bunch and
increase in its oscillation frequency due to radiation reaction
mitigate the effect of anharmonicity. Figure 6 displays the
oscillation periods of electrons as a function of initial radius

without [Fig. 6(a)] and with [Fig. 6(b)] radiation reaction.
The period of oscillations around an axis i (either x or y)
was determined numerically as an average period over the
interaction time

Ti = 2
(
t (ni )
i − t (1)

i

)
ni − 1

, (54)

where ni is the number of times the electron crosses the
ith axis. The first crossing happens at time t (1)

i , and the last
crossing happens at time t (ni )

i . The arithmetic mean of Tx and
Ty is plotted in Fig. 6.

Without radiation reaction [Fig. 6(a)], electrons initialized
at small radii oscillate with a period close to that predicted by
Eq. (21), marked by the horizontal dashed lines. In contrast,
electrons initialized at larger radii undergo oscillations with
a longer period due to the weakening of the ponderomotive
potential with increasing radius. Figure 6(b) and its inset
demonstrate the decrease in the oscillation period resulting
from radiation reaction as compared with Fig. 6(a). The de-
crease in period is most pronounced for electrons initialized
further from the z axis in regions of high intensity, where

FIG. 5. Average relativistic gamma factor of electrons confined
to the ponderomotive potential of the FF pulse with σ0 = 6π k−1

0 =
3λ0. The loosely dotted lines denote simulation runs with no radia-
tion reaction. The densely dotted lines denote analytical estimates
based on Eq. (35) with ξeff = 0.26ξ0. For the parameters of the
electron bunches, see Sec. V B.
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(a) (b)

FIG. 6. Oscillation period in the ponderomotive potential as a function of the initial distance from the z axis. The horizontal dashed lines
indicate the period in the harmonic approximation, Eq. (21). The vertical dotted line marks rmax = σ0/

√
2. (a) Radiation reaction is switched

off. The gray crosses show the equivalent simulation runs with zero energy and momentum spread. (b) Radiation reaction is included. The
inset displays the ratio of oscillation periods with and without radiation reaction. For the parameters of the electron bunches, see Sec. V B.

radiation reaction is strongest. The effect of radiation reac-
tion diminishes with decreasing γ0 and ξ0 as predicted by
Eq. (35). The increase in the strength of the ponderomotive
potential as electrons lose energy to radiation reaction results
in the confinement of more electrons. This is illustrated in
Fig. 7(a), which shows the initial phase-space distributions
of confined and unconfined electrons for 〈γ0〉 = 1000. The
trapping boundary predicted by Eq. (27) is also plotted as a
red dashed line. Consistent with the reduction in period shown
in Fig. 6, the increase in trapping is most pronounced for
electrons initialized in regions of high intensity [electrons well
outside of the red dashed line in Fig. 7(a) are still confined].

In Figs. 7(b) and 7(c), 〈γ0〉 is lower, which reduces the
effect of radiation reaction on the electron trajectories. The
highest ξ0/γ0 ratio is presented in Fig. 7(c). In this case
the coupling between longitudinal and transverse motion be-
comes important, and Eq. (27) is no longer accurate, which
can be observed as the lack of confinement within the red
dashed boundary.

In addition to reducing the rms radius of the electron bunch
and improving the transverse confinement, radiation reaction
reduces the emittance of the electron beam (Fig. 8). However,
all of these improvements in the quality of the electron bunch
come at the expense of its average energy (Fig. 5). In fact,
comparing the 〈γ0〉 = 1000 cases in Figs. 5 and 8 shows
that the relative change in the emittance �ε⊥ = [ε⊥(0) −
ε⊥(tint )]/ε⊥(0) is nearly equal to the relative change in the
average energy �〈γ 〉 = [〈γ0〉 − 〈γ (tint )〉]/〈γ0〉:

�ε⊥ ≈ �〈γ 〉. (55)

For example, in the 〈γ0〉 = 1000 case, the average gamma
factor decreases by 65% from 1000 to 353 while the emittance
drops by 55% from 11.2 k−1

0 to 5.0 k−1
0 . Due to the oscillatory

nature of the emittance, an average value from 5η0 after the
field ramp up and from 5η0 before the field ramp down was
taken. The relative changes for the remaining two electron
bunches are shown in Table II.

In Fig. 8, the emittance was calculated using the elec-
trons that remained confined to the FF pulse, i.e., those with
r(t ) < 0.75σ0 during the entire interaction. The difference in
the initial emittances of the beams with and without radiation
in Fig. 8 was due to the different statistics of the confined
electrons in the two cases. The jump in emittance during the
ramp on and ramp off of the FF pulse results from the onset
of electron oscillations in the fields: The statistical definition
of emittance [Eq. (D1)] uses mechanical and not canonical
transverse momentum.

D. Longitudinal motion

Over the entire interaction length, the electron bunch re-
mains in the vicinity of the intensity peak to within a small
fraction of the Rayleigh range (Fig. 9). The longitudinal delay
of the bunch with respect to the FF intensity peak is in rea-
sonable agreement with the predictions of Eq. (38). In Fig. 9,
the average delays for the three simulated bunches are plotted
as thick lines, while Eq. (38) is plotted as thin lines. For
the purposes of Fig. 9, Eq. (38) was evaluated using average
quantities of the bunch, i.e., β2

⊥(0) → σ 2
β⊥ (0) and γ0 → 〈γ0〉,

and the effective field strength along the particle trajectory
was set to the fit value obtained from Fig. 5: ξeff = 0.26ξ0.

The increase in delay due to radiation reaction is only
significant for the 〈γ0〉 = 1000 case. For the 〈γ0〉 = 100 and
200 cases, the delay results almost entirely from the initial
subluminal velocity of the electrons. This is demonstrated by
the similarity of the thick lines and the dotted lines which
show the average delay in the absence of the fields of the FF
pulse.

Any predictable delay can be eliminated by using a FF
pulse with a focal velocity equal to that of the electrons.
Closed-form expressions for FF pulses with focal velocities
βF 
= −1 have been derived in the paraxial approximation
[20] and exactly [27]. However, this more general treatment
is not necessary here, because the average electron delay
〈η − η(0)〉 is much smaller than the Rayleigh range η0 over
the entire interaction length.
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(a)

(b)

(c)

FIG. 7. (a)–(c) Initial transverse phase space of electrons cotrav-
eling with the intensity peak of a FF pulse, with σ0 = 6π k−1

0 = 3λ0.
The analytical approximation for the boundary between confined and
not-confined electrons (red dashed line) is given by Eq. (27). Each
simulation evolved 1000 independent electron trajectories, and nc

indicates the percentage of confined electrons. For the parameters
of the electron bunches, see Sec. V B.

FIG. 8. Time evolution of the normalized transverse emittance of
confined electrons cotraveling with the intensity peak of a FF pulse,
with σ0 = 6π k−1

0 = 3λ0. The 〈γ0〉 = 1000 case with no radiation
reaction is shown as the dotted line. For the parameters of the electron
bunches, see Sec. V B.

VI. SUMMARY AND CONCLUSIONS

A flying focus pulse with � = 1 OAM can prevent the
spreading of relativistic particle bunches over macroscopic
distances, providing an alternative to magnetic optics at high-
power laser facilities. The peak intensity of the FF pulse
travels at the vacuum speed of light in the opposite direc-
tion of its phase fronts. Charged particles traveling with the
peak intensity experience a ponderomotive potential that con-
fines their transverse motion over distances far greater than a
Rayleigh range. Radiation reaction decreases the rms radius
and emittance of the particle bunch and improves the trans-
verse confinement at the cost of a reduction in the average
particle energy. Simulations demonstrated the confinement
of 50–500-MeV electron bunches with 40 to 4 mrad beam
divergences over 6 mm. The electron bunches maintained a
tight rms radius of ∼1 μm.

All-optical confinement of a charged particle bunch with a
FF could have utility in any situation where the bunch must
be transported from its source to its target with a small rms
radius. For instance, the transverse size of the particle bunch
determines the spatial resolution of probes based on secondary
radiation sources, such as bremsstrahlung x-ray imaging. The
bunch size also contributes to the Pierce parameter, which is
critical to the performance of free-electron lasers.

Flying focus pulses require much less energy to confine a
charged particle bunch than either LG10 Gaussian or axicon-
focused Bessel pulses. In contrast to these pulses, the peak

TABLE II. Relative changes in the average gamma factor from
Fig. 5 and in the normalized transverse emittance from Fig. 8 for the
three simulated cases.

〈γ0〉 �〈γ 〉 �ε⊥

1000 0.65 0.55
200 0.14 0.17
100 0.22 0.24
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FIG. 9. Average longitudinal displacement of confined electrons
from the focus of the FF pulse with σ0 = 6π k−1

0 = 3λ0 (thick lines).
Thin lines indicate the estimate of Eq. (38) for the longitudinal lag.
The dotted lines show the results from simulations without the fields
of the FF pulse. For the parameters of the electron bunches, see
Sec. V B.

intensity of the FF travels with the electron bunch, which
decouples the interaction length from the Rayleigh range. For
the simulated examples, the FF pulse had an energy and power
of 200 J and <5 TW, respectively, compared with the 2 MJ
required in a LG10 Gaussian pulse.

The distance over which a particle bunch remains confined
can be lengthened by using FF pulses with a peak intensity
that travels at a velocity equal to that of the particles. Such
pulses have been experimentally demonstrated and theoret-
ically analyzed [9,27]. The use of a velocity-matched FF
pulse would provide an additional advantage over Gaussian
or Bessel pulses.

The electron bunches considered in this paper had pa-
rameters characteristic of the bunches created in LWFA. The
short lengths (∼10 μm) and high divergences (>1 mrad)
make these bunches ideal for confinement by a FF pulse.
The short length also ensures that the bunch sits in a re-
gion of near-constant peak intensity. The high divergences
ensure that the confinement afforded by the FF pulse has
an impact on the transport. At high-intensity laser facilities,
a laser pulse can be used for both LWFA and transport of
the resulting bunches, without the need for magnetic optics.
In contrast, conventional e−-e+ accelerators, such as those
produced at the SLAC National Accelerator Laboratory, have
much longer bunch lengths (∼1 mm) and smaller divergences
(<1 mrad). However, shorter bunch lengths are expected for
next-generation e−-e+ colliders, such as the International Lin-
ear Collider (ILC) or Compact Linear Collider (CLIC).

While the simulations were performed for electrons, the
results are equally applicable to positrons. In fact, mixed
electron-positron bunches [36] experience less Coulomb re-
pulsion due to their lower net charge and would be easier to
confine. This property could be exploited to guide the prod-
ucts of Breit-Wheeler pair production from the collision of a
high-intensity laser pulse with hard photons. Moreover, trans-
verse confinement in a FF pulse could provide an alternative to
injecting electron beams for mitigating alignment sensitivity
in wakefield and direct laser acceleration of positrons [42,43].
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APPENDIX A: ELECTROMAGNETIC FIELDS OF � = 1
OAM FF BEAM

Here, the electromagnetic field components of a FF beam
are derived for the special case where the focal velocity is
equal and opposite to the phase velocity at the vacuum speed
of light. The vector four-potential Aμ, linearly polarized along
the y direction, is fully determined by Eqs. (1), (5), and (6).
The electromagnetic field components can be calculated using
the standard formulas

E = −∂t A − ∇A0, B = ∇ × A, (A1)

which can be straightforwardly evaluated after a somewhat
lengthy calculation. For the sake of conciseness, the common
factor is taken out

E =
√

2
A0

ση

e−r2/σ 2
η E, B =

√
2
A0

ση

e−r2/σ 2
η B, (A2)

where the remaining dimensionless components of the electric
field are

Ex = r

ω0σ 2
η

[
2xy

σησ0
sin �1(0, 2) − cos �1(2, 1)

]
, (A3)

Ey = rσ0

ση

T1(2) + 1

ω0ση

T2, (A4)

Ez = σ0

ση

[
2ry

σησ0
cos �1(0, 1) + sin �1(1, 0)

]
. (A5)

The phases are defined in Eq. (2). Similarly, the dimensionless
components of the magnetic field are given by

Bx = rσ0

ση

T1(1) + 1

ω0ση

T2, (A6)

By = − r

ω0σ 2
η

[
2xy

σησ0
sin �1(0, 2) − cos �1(2, 1)

]
, (A7)

Bz = −σ0

ση

[
2rx

σησ0
cos �1(0, 1) − cos �1(1, 0)

]
, (A8)
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where

T1( j) =
[

(−1) jω0 − r2

η0σ 2
η

]
sin �1(0, 0)

+ σ0

η0ση

[
sin �1(0, 1) − 2r2η

σ 2
η η0

cos �(0, 1)

]
, (A9)

T2 = 2ry2

σ 2
η σ0

sin �1(0, 2) − 2y

ση

cos �1(1, 1). (A10)

In order to derive these expressions, the trigonometric an-
gle addition formulas and identities

sin

[
arctan

(
η

η0

)]
= σ0η

σηη0
, (A11)

cos

[
arctan

(
η

η0

)]
= σ0

ση

(A12)

were frequently used.

APPENDIX B: AVERAGE � = 1 OAM FF BEAM POWER

In this Appendix, a formula for the average beam power in
the � = 1 OAM FF beam is obtained. The cycle average for a
general function f (η, r, θ, φ) can be written as

f (η, r, θ ) = 1

2π

∫ 2π

0
f (η, r, θ, φ)dφ, (B1)

where the average is calculated over one cycle. In this paper,
the averages are performed for an ultrarelativistic observer
who is approximately comoving with the field focus η =
t + z ≈ 0. At focus, the phase defined in Eq. (2) can be written
as

�1(a)|η=0 = ω0φ + (1 − a)θ. (B2)

The cycle averages of the following expressions [see defini-
tion equation (B1)] are useful:

sin[�1(a1)] sin[�1(a2)]|η=0 = 1
2 cos[(a1 − a2)θ ], (B3)

cos[�1(a1)] cos[�1(a2)]|η=0 = 1
2 cos[(a1 − a2)θ ], (B4)

sin[�1(a1)] cos[�1(a2)]|η=0 = 1
2 sin[(a1 − a2)θ ]. (B5)

The average power transmitted through the xy plane at η =
0 is given by the cycle-averaged Poynting vector flux

Pav =
∫

dxdyExBy − EyBx|η=0. (B6)

In the simulations presented in Sec. V, ω0σ0 = 6π ; thus
only the leading-order terms ∝ (ω0σ0)n are considered. The
leading-order term has n = 2, there is no contribution with
n = 1, and any terms with n � 0 are neglected. Ultimately,
the leading contribution to the beam power comes from

T1(2)T1(1)|η=0 ≈ − 1
2ω2

0. (B7)

After performing the integration over the transverse coordi-
nates, the final expression for the average power reads

Pav = π

4
A2

0

[
ω2

0σ
2
0 + O(1)

]
≈ (21.5 GW)

(
ξ0

σ0

λ0

)2

(B8)

and is identical to the conventional LG10 beam. The numer-
ical value in the last expression is given for the field strength
ξ0 scaled to electron (positron) mass and charge. In the cases
considered here, σ0 = 3λ0, which means that the pulses with
tint = 20 ps and ξ0 = 5 have a power of about 5 TW and a total
energy of about 200 J; see Eq. (10).

APPENDIX C: TRANSVERSE PONDEROMOTIVE FORCE

A formula for the transverse ponderomotive force acting on
a charged particle in the FF pulse is derived in this Appendix.
Radiation reaction is neglected for this derivation. In terms of
the vector four-potential, the Lorentz equation is

d

dτ
(muμ) = q(∂μAν − ∂νAμ)uν . (C1)

Since uν∂
ν = d/dτ along the particle trajectory, the second

term on the right-hand side can be combined with the proper-
time derivative on the left-hand side. The remaining product
uνAν on the right-hand side can be expressed in light-cone
coordinates, yielding

d

dτ
(muμ + qAμ)

= q

2
(u−∂μA+ + u+∂μA−) − qu⊥ · ∂μA⊥. (C2)

In this expression the definition of the dot product of two four-
vectors aμ and bμ in the light-cone coordinates

aμbμ = 1
2 (a+b− + a−b+) − a⊥ · b⊥ (C3)

was used. Finally, the light-cone components a+ and a− are
defined as

a+ = a0 + az, a− = a0 − az. (C4)

In the gauge used here, A+ vanishes, and therefore the first
term on the right-hand side of Eq. (C2) does not contribute.
From the constraint u2 = 1 on the four-velocity, u+ can be
expressed as

u+ = 1 + u2
⊥

u−
≈ 1

2γ
(C5)

provided that the perpendicular velocity is small (ξ0 	 γ ),
and the particle moves with ultrarelativistic velocity in the
negative z direction (u− ≈ 2γ ). This allows the second term
on the right-hand side of Eq. (C2) to be neglected compared
with the third term. Employing this approximation, one finds

d

dτ
(muμ + qAμ) ≈ −qu⊥ · ∂μA⊥. (C6)

In the perpendicular direction, the ansatz

u⊥ = − q

m
A⊥ + δu⊥ (C7)
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can be made, where the first term is the exact solution of
perpendicular motion in a plane wave [28] and the second
term represents a deviation from this motion due to nontrivial
transverse structure of the field. Upon substituting this ansatz
into both sides of Eq. (C6), the leading-order correction to the
perpendicular component of the four-velocity reads

d

dτ
δu⊥ ≈ − q2

2m2
∇⊥A2

⊥, (C8)

where the identity A⊥ · ∇iA⊥ = ∇iA2
⊥/2 was used. In a plane

wave, A⊥ does not depend on the transverse coordinates, and
this correction vanishes as expected. Finally, the proper-time
derivative can be written in terms of the derivative with re-
spect to the laboratory time because d/dτ = γ d/dt along the
particle trajectory.

Upon applying the cycle-averaging procedure [defined in
Eq. (B1)] at focus (η = 0) to Eq. (C7), the oscillatory plane
wave term vanishes [see its prescription in Eq. (1)], and one
obtains

u⊥ = δu⊥. (C9)

In order to carry out the cycle-averaging integration, the func-
tions r(t ) and θ (t ), corresponding to the polar coordinates of
the charge at the time t on the xy plane, are considered to
be changing on a much slower scale and effectively constant
in the averaging over one cycle. This result implies that the
cycle-averaged perpendicular velocity is solely given by the
term describing the deviation from the plane wave motion.
Therefore performing a cycle average of Eq. (C8) yields

du⊥
dt

≈ − q2

2m2γ0
∇⊥A2

⊥|η=0, (C10)

where it was assumed that the relativistic gamma factor of the
particle remains approximately unchanged and can be taken
out of the average, which is correct up to terms on the order
of O(1/γ0) [44].

APPENDIX D: NORMALIZED TRANSVERSE EMITTANCE

The transverse emittance is defined as a quantity propor-
tional to the phase-space area of a bunch in the transverse
direction. For computational purposes, the statistical defini-
tion of normalized transverse emittance is more useful [45].
By generalizing the standard definition of the emittance to
two-dimensional vectors, one obtains

ε⊥ = 1

m

√
σ 2

r σ 2
p⊥

− σ 4
r,p⊥

. (D1)

The variance σ 2
r of the transverse position vector r = (x, y) is

defined as

σ 2
r = 〈r · r〉 − 〈r〉 · 〈r〉, (D2)

where, in polar coordinates,

〈r · r〉 = 〈r2〉. (D3)

The relativistic transverse momentum is p⊥ = mγ (βx, βy). Its
variance σ 2

p⊥
is

σ 2
p⊥

= 〈p⊥ · p⊥〉 − 〈p⊥〉 · 〈p⊥〉, (D4)

where

p⊥ · p⊥ = m2γ 2(r′2 + r2θ ′2). (D5)

Finally, the cross variance σr,p⊥ is given by

σ 2
r,p⊥

= 〈r · p⊥〉 − 〈r〉 · 〈p⊥〉, (D6)

where

〈r · p⊥〉 = m〈γ xβx + γ yβy〉 = m〈γ rr′〉. (D7)

Now, since the average transverse position 〈r〉 and average
transverse momentum 〈p⊥〉 are approximately zero through-
out the evolution of the bunch due to cylindrical symmetry,
the normalized emittance can be rewritten as

ε⊥ = 1

m

√
〈r · r〉〈p⊥ · p⊥〉 − 〈r · p⊥〉2. (D8)

After substitution from Eqs. (D3), (D5), and (D7) one finds

ε⊥ =
√

〈r2〉〈γ 2r′2 + γ 2r2θ ′2〉 − 〈γ rr′〉2. (D9)

Finally, the approximations that the motion is ultrarelativis-
tic, that radiation reaction is neglected, and that the fields
are relatively weak, i.e., ξ0 	 γ0, can be made. With these
approximations, the relativistic Lorentz factor γ is approxi-
mately constant, has very little spread, and can be taken out of
the ensemble averages. This gives the normalized transverse
emittance

ε⊥ ≈ γ
√

〈r2〉〈r′2 + r2θ ′2〉 − 〈rr′〉2, (D10)

which appears in Eq. (31) for the evolution of the rms radius.

APPENDIX E: COULOMB REPULSION
AMONG PARTICLES

In this Appendix, an estimate of the Coulomb repulsion
force is presented, and the conditions for which this force
can be neglected compared with the ponderomotive force are
established. The charged particle bunches are modeled ana-
lytically by the charge distribution in Eqs. (39) and (40). As
was shown in Ref. [34], the electric field generated in the rest
frame of this distribution can be computed exactly.

At z = 0 (in the middle of the bunch), only a purely radial
field remains:

E(r, θ, 0) = Er r̂ = 1

4π

qN

Lr
f (r)r̂, (E1)

where f (r) is given by

f (r) = L√
L2/4 + r2

erf

(√
L2/4 + r2

√
2σr

)

− 2e−r2/2σ 2
r erf

(
L

2
√

2σr

)
. (E2)

In the laboratory frame, this transverse electric field is
enhanced by a factor of γ0 because of the Lorentz transfor-
mation. A magnetic field in the azimuthal direction is also
induced due to the presence of a nonzero current in this frame.
Performing the Lorentz transformation explicitly [46], the
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Cartesian components of the fields are

E lab(x, y, 0) = γ0Er

(
x

r
x̂ + y

r
ŷ
)

, (E3)

Blab(x, y, 0) = γ0β0Er

(
− y

r
x̂ + x

r
ŷ
)

. (E4)

Using these fields, the laboratory frame four-force is given by

Fμ = qFμνuν = qγ0γ Er

×
[
βr,

x

r
(1 − β0βz ),

y

r
(1 − β0βz ), β0βr

]
. (E5)

Assuming that the particle deviates only slightly from the ul-
trarelativistic straight-line motion, i.e., β0 ≈ βz and γ ≈ γ0 =
(1 − β2

0 )−1/2, the components of the force in the laboratory
frame are

F0 = qγ 2
0 Erβr, F r = qEr,

F θ = 0, F z = qγ 2
0 Erβ0βr . (E6)

Under the same approximations (neglecting time derivatives
of γ = γ0), the equation for the radial motion in the absence
of the fields of the FF pulse is

r′′ − L2
z

m2γ 2
0 r3

= qEr

mγ 2
0

= 1

4π

q2N

mLrγ 2
0

f (r). (E7)

Notice that the dependence on the gamma factor γ0 is the same
as for the ponderomotive force equation (17).

Now, the acceleration arising from the ponderomotive
force [Eq. (17)] and the acceleration due to Coulomb repul-
sion (E7) can be compared. Since both of these forces are zero
on axis and increase with radius up to a certain point, it makes
sense to compare the accelerations at their respective maxima.

For the ponderomotive force, this is at the radius

rP,max =
√

5 − √
17

2
rmax, (E8)

which can be derived by taking the second derivative of the
ponderomotive potential in Eq. (19) and solving for the root in
the interval (0, rmax). The acceleration due to ponderomotive
force at its maximum reads

aP(r = rP,max) = 0.21
ξ 2

0

γ 2
0 σ0

. (E9)

The radius of the maximum Coulomb force rC,max must be
determined numerically. The electron bunch is typically much
longer than it is wide, L > σr , which allows the error functions
in Eq. (E2) to be approximated by 1. The remaining function
σr f (r)/r has an upper bound σr f (r)/r < 1 for any L > σr .
Substituting this into the expression for the acceleration in
Eq. (E7), one finds that the Coulomb acceleration is less than

aC (r = rC,max) <
1

4π

q2N

mγ 2
0 Lσr

. (E10)

Thus the ratio of the maximal accelerations is proportional to

aC (r = rC,max)

aP(r = rP,max)
= q2

4πm

σ0

Lσr

N

0.21ξ 2
0

= (1.3 × 10−8 μm)
σ0

Lσr

N

ξ 2
0

, (E11)

where the numerical factor is given for electrons. For the elec-
tron bunches considered here, σ0/[L(0)σr (0)] = 0.4 μm−1,
and the accelerations become comparable, for example, when
ξ0 = 10 and N = 2 × 1010, corresponding to a total bunch
charge of 3 nC.
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