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Spin Hall effect of radiofrequency waves in magnetized plasmas

Yichen Fu ,* I. Y. Dodin , and Hong Qin
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

and Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

(Received 28 November 2022; revised 1 March 2023; accepted 3 May 2023; published 19 May 2023)

In inhomogeneous media, electromagnetic-wave rays deviate from the trajectories predicted by the leading-
order geometrical optics. This effect, called the spin Hall effect of light, is typically neglected in ray-tracing
codes used for modeling waves in plasmas. Here, we demonstrate that the spin Hall effect can be significant
for radiofrequency waves in toroidal magnetized plasmas whose parameters are in the ballpark of those used in
fusion experiments. For example, an electron-cyclotron wave beam can deviate by as large as 10 wavelengths
(∼0.1 m) relative to the lowest-order ray trajectory in the poloidal direction. We calculate this displacement using
gauge-invariant ray equations of extended geometrical optics, and we also compare our theoretical predictions
with full-wave simulations.
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I. INTRODUCTION

Precise modeling of radiofrequency (RF) waves in
magnetic-fusion experiments is essential for many appli-
cations, including cyclotron heating, current drive [1–3],
and suppression of tearing modes [4,5]. Waves with short
wavelengths, particularly those in the electron-cyclotron and
lower-hybrid frequency range, are commonly modeled with
ray-tracing codes [6–11], which are based on geometrical
optics (GO) [12,13]. In the traditional, lowest-order GO, the
evolution of the ray coordinate x and momentum k (wave
vector) are governed by the Hamiltonian that equals the local
dispersion function and ignores the local gradients of the
medium parameters [14]. However, the evolution of the wave
polarization in an inhomogeneous medium produces correc-
tions that make rays deviate from the trajectories predicted by
this lowest-order Hamiltonian [15,16]. This effect, which is
similar to the spin-orbital interaction in quantum mechanics
and the spin-orbital-like coupling in atomic systems [17,18],
is known as the spin Hall effect (SHE) of light. It is being
actively studied as an important photonic effect in various
physical systems [19–28]. Plasma was recently identified as
a medium where the SHE manifests [29–31]. But the impor-
tance of the SHE for practical plasma applications has not
been explored, and the common ray-tracing codes used in
fusion research ignore the SHE entirely [32]. In this paper, we
show that the SHE can be significant for RF waves in magne-
tized plasmas whose parameters are in the ballpark of those
used in fusion experiments. The reported results enrich the
understanding of the SHE and demonstrate the importance of
an interdisciplinary approach to wave effects found in various
media.

We calculate the SHE using equations of “extended
GO” (XGO) as formulated in Refs. [29,31]. By comparing
XGO predictions with two-dimensional (2D) full-wave (FW)
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simulations, we show that the ray equations that account
for the SHE describe waves in fusion plasmas more accurately
than the traditional ray equations. For three-dimensional (3D)
toroidal plasmas, we show that electromagnetic waves in the
electron-cyclotron frequency range can deviate by as large
as 10 wavelengths in the poloidal plane relative to the GO
predictions. Displacements of this size can be important in
practice, for example, because processes such as collisionless
absorption and mode conversion can be very sensitive to the
spatial distribution of the wave energy.

Our paper is organized as follows. In Sec. II, we introduce
the basic theory. In Sec. III, we apply this theory to waves
in cold magnetized plasma, specifically, in a plasma slab
(Sec. III B) and toroidal plasma (Sec. III C). In Sec. IV, we
conclude our results. Auxiliary calculations are presented in
the appendices.

II. BASIC EQUATIONS

Let us start by briefly restating the derivation of the XGO
ray equations [30,31]. Consider a multicomponent wave field
� on a given space (or spacetime) xμ and suppose that this
wave is governed by an equation of the form D̂� = 0, where
D̂ is some linear dispersion operator generally of integro-
differential form. Assume that the wave has an eikonal form
�(xμ) = eiθ (xμ )ψ (xμ). Here, the scalar function θ is a fast real
phase and k̄μ

.= ∂μθ is the associated wave vector, which is
generally a field on xμ. (The symbol

.= denotes definitions,
∂μ

.= ∂/∂xμ, and ∂μ .= ∂/∂kμ.) The multicomponent function
ψ represents a slow complex envelope governed by D̂ψ = 0,
where D̂ .= e−iθ D̂eiθ . We assume that the least scale L of the
envelope dynamics is much smaller than the local wavelength
λ

.= 2π/k̄, yielding a small parameter ε
.= λ/L � 1 (the “GO

parameter”). Then, assuming Euclidean or pseudo-Euclidean
(e.g., Minkowski) coordinates for simplicity, one obtains [31]

D̂ ≈ D[xμ, k̄μ(xμ)] − iVμ∂μ − i(∂μVμ)/2. (1)
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Here, the “local dispersion tensor” D, which is a matrix func-
tion on the ray phase space (xμ, kμ), is the Weyl symbol
of D̂, and Vμ .= [∂μD(xμ, kμ)]|kμ=k̄μ(xμ ). We assume that the
Hermitian part of the dispersion tensor, DH

.= (D + D†)/2,
is O(1), while its anti-Hermitian part, DA

.= (D − D†)/(2i),
is O(ε), so one can use Vμ(xμ) ≈ [∂μDH(xμ, kμ)]|kμ=k̄μ(xμ ).
Then, DA determines local damping, while the wave propaga-
tion is determined entirely by DH, namely, as follows.

To the zeroth order in ε, Eq. (1) gives

DH[xμ, k̄μ(xμ)]ψ (xμ) = 0, (2)

so ψ is the eigenvector of DH corresponding to an eigenvalue
	 that is zero on the solution at ε → 0. To eliminate mode
conversion, which makes the analysis more complicated [31],
let us assume that DH(xμ, kμ) has only one eigenvalue that is
zero at kμ = k̄μ(xμ); we call it an active mode. Then, Eq. (2)
can be restated as follows. Consider the corresponding unit
eigenvector η,

DHη = 	η, η†η = 1, 	 = η†DHη, (3)

where all quantities are considered as functions of (xμ, kμ).
Then, 	[xμ, k̄μ(xμ)] = 0 serves as an approximate dispersion
relation and ψ (xμ) = η[xμ, k̄μ(xμ)]a(xμ), where a(xμ) is a
scalar amplitude. To separate the phase dynamics from the
amplitude dynamics completely, we attribute the whole phase
that the envelope may have to θ and η, so the function a is real
by definition. We note that η is defined only up to eiϕ , where
ϕ is real and slow but arbitrary otherwise. This constitutes
a U(1) gauge symmetry of XGO, with ϕ being the gauge
potential (see below).

To the first order in ε, Eq. (1) gives ψ (xμ) =
η[xμ, k̄μ(xμ)]a(xμ) + ψ⊥(xμ), where ψ⊥ = O(ε) is perpen-
dicular to η. Then, projecting Eq. (1) on η gives [31]

(	 − U )a − i[V μ∂μ + (∂μV μ)/2 − �]a = 0. (4)

Here, 	 is as in Eq. (3), �
.= η†DAη, U

.= Im[(∂μη†)Vμη],
and η = η[xμ, k̄μ(xμ)], so ∂μ applies to both of its argu-
ments. Since a is real by definition, the imaginary part of
Eq. (1) gives an amplitude equation [V μ∂μ + (∂μV μ)/2 −
�]a = 0, and the real part of Eq. (1) gives a dispersion relation
H[xμ, k̄μ(xμ)] = 0, where H .= 	 − U and [31]

U = U0 − A(x)
μ ∂μ	 + Aμ

(k) ∂μ	, (5)

U0
.= Im[(∂μη†)DH(∂μη)], (6)

A(x)
μ

.= Im(η†∂μη), Aμ

(k)
.= Im(η†∂μη). (7)

As usual [13], the corresponding ray equations are

ẋμ = ∂μH, k̇μ = −∂μH, (8)

where the dot denotes d/dτ , τ is a parameter along the
ray, and kμ represents k̄μ (the bar is omitted from now on
for brevity). These correspond to the canonical Lagrangian
L = kμẋμ − H. But note that ẋμ = ∂μ	 + O(ε), k̇μ =
−∂μ	 + O(ε), A(x)

μ = O(ε), and Aμ

(k) = O(ε), so U ≈ U0 −
ẋμA(x)

μ − k̇μAμ

(k) + O(ε2). Omitting O(ε2), which is negligible
within the assumed accuracy, one arrives at an equivalent

noncanonical Lagrangian,

L =
[

kμ

2
− A(x)

μ

]
ẋμ −

[
xμ

2
+ Aμ

(k)

]
k̇μ − (	 − U0), (9)

where an insignificant full derivative d (kμxμ/2)/dτ has been
omitted. The functions A define the Berry connections [33].
They play the role of the Abelian vector potential in the
present context. The corresponding Euler-Lagrange equa-
tions are as follows:

ẋμ = +∂μ(	 − U0) + Fμ
ν ẋν + Fμν k̇ν, (10a)

k̇μ = −∂μ(	 − U0) − Fμ
ν k̇ν − Fμν ẋν, (10b)

where the functions F (with various indices) are understood
as the Berry curvatures,

Fμ
ν

.= 2Im[(∂μη†)∂νη], Fμν .= 2Im[(∂μη†)∂νη], (11a)

Fμ
ν .= 2Im[(∂μη†)∂νη], Fμν

.= 2Im[(∂μη†)∂νη]. (11b)

This result generalizes the corresponding equations in
Ref. [26] to arbitrary dispersive operators D̂. In particular, one
can show (see Appendix A) that Eqs. (10) are gauge invariant,
i.e., unaffected by a variable transformation η → eiϕη. Still,
Eqs. (6) and (11) can be inconvenient for numerical integra-
tion. Assuming that η is provided by a generic eigensolver,
having its phase arbitrary makes η(xμ, kμ) discontinuous,
resulting in large F. This undermines both the accuracy of
the perturbation model and the numerical stability of the in-
tegrator. A more practical form of U0 and F is derived in
Appendix B and we generalize the corresponding formulas
from Refs. [26,34]:

U0 = Im
∑

m

η†(∂μDH)ηmη†
m(∂μDH)η

	m
, (12a)

Fμν = 2Im
∑

m

η†(∂μDH)ηmη†
m(∂νDH)η

	2
m

. (12b)

Lowering the indices μ and ν on the right-hand side of
Eq. (12b) yields the corresponding components of F with
lower and mixed indices. Here, ηm and 	m are the unit
eigenvectors and the corresponding eigenvalues of DH that
correspond to modes with 	m �= 	; we call them passive
modes. These equations have the benefit of “numerical gauge
invariance” in that changing η → eiϕη leaves both U0 and F
intact. It is also seen from Eqs. (12) that the SHE is amplified
when one or more of the passive modes is in resonance with
the active mode, namely, 	m ≈ 0. In this regime, one can also
expect mode conversion, i.e., tunneling of the wave action
between separate dispersion surfaces. However, this tunneling
scales with 	m exponentially [13,35], while the SHE scales
with 	m algebraically, so it can be amplified at small 	m

while the mode conversion remains negligible.
The SHE in the present study originates from the internal

degree of freedom associated with vector components of the
photon field in plasmas. It is also similar to the spin-orbital-
like coupling that appears in the non-Abelian gauge field
theory for electron wave functions in atomic systems [17,18],
but the mechanism there is different. Another difference is that
the gauge potential in the present context is Abelian since we
only study here the propagation of one single mode away from
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the mode-conversion region, and the eigenmode is nondegen-
erate. For the plasma waves near the mode-conversion region,
the effects of eigenmode degeneracy are important [29]. Then,
a non-Abelian gauge theory similar to that in atomic systems
[17,18] is necessary.

III. WAVES IN COLD MAGNETIZED PLASMA

A. Basic equations

Let us apply the above results to a cold-plasma model,
which is commonly used for ray tracing in fusion devices [2].
For simplicity, let us neglect the ion response, plasma flows,
and dissipation, and let us also assume that the waves have
a fixed frequency ω, as usual. Then, the linear-wave equa-
tions can be written as D̂� = 0, where D = DH = H (x, k) −
ω,

Ĥ (x,−i∂x) =

⎛
⎜⎝

−i�(x)× iωp(x) 0

−iωp(x) 0 ic ∂x×
0 −ic ∂x× 0

⎞
⎟⎠, (13)

and �(t, x) = (v, E, B)ᵀ is a nine-dimensional column vector
(the symbol ᵀ denotes transposition) that includes the prop-
erly normalized velocity v, the wave electric field E, and
the wave magnetic field B [36]. Also, × denotes the vector
product, as usual; ωp(x) = [4πq2n̄(x)/m]1/2 is the plasma
frequency; q, m, and n̄(x) are the electron charge, mass, and
background density, correspondingly; �(x) = qB̄(x)/(mc) is
the gyrofrequency; B̄(x) is the background magnetic field; and
c is the speed of light. In fusion applications of the electron
waves governed by Eq. (13), one typically has ω ∼ ωp ∼ �,
so we attribute this range, loosely, as the electron-cyclotron
range. The eigenvectors of DH are the same as those of H , so
Hηm = (	m + ω)ηm.

Typically, Berry curvature arises from degeneracy points
in the dispersion relation that behave as magnetic monopoles
[34]. In the cold-plasma model considered here, there are four
degeneracy points known as Weyl points [37,38]. The spatial
locations where ωp and � are zero also serve as degeneracy
points. In addition, Berry curvature has a contribution from
infinite k [37] because the wave-vector space is not compact
in cold plasmas. Because ε � 1, the system changes slowly
on the scale of the wavelength. Thus, we can treat the evo-
lution of a single-mode wave packet as an adiabatic process
when mode conversion is absent.

B. SHE in a plasma slab

First, let us consider waves propagating perpendicular to
the magnetic field in a plasma slab, with coordinates denoted
x ≡ (x, y, z). There are three modes in this case: an O mode
with ω > ωp and two X modes, with ω < ωuh and ω > ωuh,
respectively, where ωuh is the upper-hybrid frequency, ωuh =
(�2 + ω2

p )1/2. We assume a homogeneous magnetic field
along the z axis, with magnitude |B̄| = 0.5 T, so � ≈ 8.8 ×
1010 s−1. We also adopt ωp(x) = ωp,0(1 + x/L0), with L0 =
1 m and n(x = 0) = 1019 m−3, so ωp,0 ≈ 1.8 × 1011 s−1. The
centers of the simulated wave beams pass through x0 =
(0, 0, 0), where the wave vector is k0 = (−200, 0, 0) m−1,
so ε ∼ 0.03. The ray-tracing simulations are performed,

FIG. 1. Simulations of an X wave with ω < ωuh in the (x, y)
plane. Shown are snapshots at t = 0 and t = 4 ns. (a) ReBz, (b) I,
(c) a zoom-in on the green rectangle from (b). The ray trajectories
from the GO (dashed blue curve), XGO (solid red curve), and FW
(green disks) simulations.

separately for O waves and X waves, using Eqs. (10) and
(12). Deviations of the ray trajectory from the x axis in this
geometry, if any, are entirely due to the SHE.

We also compare our XGO ray tracing with FW simu-
lations, which we perform using the finite-difference time-
domain method described in Ref. [39]. For simplicity, we
assume that the system is uniform along the z axis (∂z = 0),
so 2D modeling is enough. For the FW simulations, the initial
field is taken to be

� = η eik0·x exp[−(x − x0)2/(2σ 2)] + O(ε), (14)

with σ = 3.5 cm. The (non-negligible) term O(ε) is spec-
ified in Appendix C. For comparison with the ray-tracing
simulations, “the” wave coordinate x is defined as that of
the maximum of the beam action density I .= |�|2, and the
same applies to “the” wave vector k. The spatial grid sizes
are chosen to be �x = �y = 8.0 × 10−5 m ∼ 10−2λ so that
the FW simulation can capture the SHE accurately. The tem-
poral grid size is �t = 7.8 × 10−6 ns. Then, the phase-space
velocity of the wave is about 0.1(�x/�t ) < �x/�t , which
ensures numerical stability [40]. For a typical case where the
XGO equations can be calculated on a laptop within a few
minutes, the 2D FW simulation has to be carried out on a
cluster and consumes ∼104 CPU hours (and 3D simulations
would have been prohibitively expensive.)

As an example, we present typical results of numerical
simulations for an X wave with ω < ωuh in Fig. 1. The
wave packet moves roughly along the −x axis with increasing
wave number kx. The trajectories from GO and XGO are very
close to each other, yet distinguishable at high resolution.
As seen in the zoomed-in plot [Fig. 1(c)], the separation
ς between them is about 3 mm, and FW simulations are
in better agreement with XGO than they are with GO. As
could be expected from Eqs. (10), this separation constitutes
about 1% of the ray path �, so ς/� ∼ ε. For all three modes,
the comparison between the XGO and FW simulations is
presented in Fig. 2. In GO, all three rays would travel along
y = 0, so the horizontal displacement of the X-wave rays is
entirely due to the SHE. The O wave does not exhibit the SHE
because its polarization vector η remains parallel to the z axis
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FIG. 2. The comparison between XGO (solid curves) and FW
(disks) simulation results for the O wave (blue, middle), X wave with
ω < ωuh (green, left), and X wave with ω > ωuh (red, right). In GO,
all three rays would travel along y = 0.

and has a fixed phase, so ∂μη ≡ 0 and Im[(∂μη†)∂νη] ≡ 0,
so U0 ≡ 0 by Eq. (6) and F ≡ 0 by Eqs. (11). Notably, this
difference between the SHE for X and O waves is consistent
with the fact that these modes have different Chern numbers
C, which are integrals of the Berry curvatures and represent
the waves’ topological invariants [38,41,42]. The O wave has
C = 0, the X wave with ω < ωuh has C = 2, and the X wave
with ω > ωuh has C = −1.

C. SHE in a toroidal plasma

The SHE, which accumulates over time, can result in more
significant ς/� when the group velocity is small. To illustrate
this, let us consider the propagation of electromagnetic waves
in a toroidal plasma. We assume

ωp(x) = ωp,0

[
exp

(
− (R − R0)2

2σ 2
R

− z2

2σ 2
z

)
+ d

]
, (15)

where R
.= (x2 + y2)1/2, σ 2

R = 0.1 m2, σ 2
z = 1 m2, d = 0.01,

and the density maximum is located at (R0, z0) = (1, 0) m,
where ωp = ωp,0 = 1.8 × 1011 s−1, which is the same as be-
fore. We also assume that the magnetic field is toroidal,
specifically, aligned with the unit-vector field (−y/R, x/R, 0),
and �(x) = �0R0/R(x), with �0 = 8.8 × 1010 s−1, which is
also the same as before.

Consider a wave starting at x0 = (0, 1.45, 0) m with the
initial wave vector k0 = (−330, 150,−250) m−1 and ω ≈
3.1 × 1010 s−1, which is the lowest-frequency mode in the
system. The numerical results are presented in Fig. 3 and show
that the separation between the XGO and GO trajectories is
as large as ς ∼ 0.1 m, which is about 10 wavelengths. FW
simulations for this case would have to be 3D, i.e., computa-
tionally expensive, so they are not reported. Instead, we have
calculated the parameters that determine XGO applicability.
We have found that ε � 0.06 � 1 [Fig. 4(a)] and the passive
mode closest to the active mode remains nonresonant on the
whole ray trajectory [Fig. 4(b)]. This means that breaking of
the XGO ordering and mode conversion that we have ignored
are indeed not to be expected. In other words, our simula-
tions are well within the XGO validity regime, and hence
the predicted large value of ς is not an artifact. Such a large

FIG. 3. The propagation of an RF wave in the electron-cyclotron
range in (a) the (x, y) plane and (b) the (R, z) plane. The gray scale
indicates the local density or ωp (a) in the plane z = 0 and (b) in
any toroidal cross section. The stars mark the initial position of the
rays. The GO and XGO rays are shown as dashed blue and solid red
curves, respectively.

deviation can significantly affect the resonant absorption of
radiofrequency waves in fusion applications [2]. Therefore,
typical ray-tracing codes that are based on GO instead of XGO
are at risk of missing important physics, even if usually the
SHE is less pronounced than in our example.

IV. CONCLUSIONS

Here, we present a systematic study of the SHE for magne-
tized plasmas. We start with the XGO formulation of the SHE
and derive a gauge-invariant form of the ray equations that
describe SHE for general waves [Eq. (10)]. We also express
the right-hand side in a form that is better suited for simu-
lations due to its “numerical gauge invariance” [Eqs. (12)].
Then, we perform ray-tracing simulations based on these
equations for electromagnetic waves in a cold magnetized
collisionless electron plasma slab and compare them with
2D FW simulations. We show that the FW simulations are
in better agreement with XGO, which retain the SHE, than

FIG. 4. (a) The local GO parameter ε along the GO and
XGO trajectories. The local length scale is calculated as L(x)

.=
min(|ωp/∇ωp|, |�/∇�|). The GO and XGO results are shown as
dashed blue and solid red curves, respectively. (b) The frequency ωm

of the passive mode closest to the active mode evaluated on the XGO
trajectory [x(t ), k(t )], in units ω, as a function of the ray path. Since
ωm/ω − 1 ∼ 1, mode conversion is not to be expected.
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they are with GO simulations, which ignore the SHE. Finally,
we present an example of a large SHE in a toroidal plasma,
where a wave beam deviates from the GO trajectory by a
distance of roughly 10 wavelengths. In fusion devices, such a
large deviation can significantly affect the resonant absorption
of radiofrequency waves. Therefore, typical ray-tracing codes
that are based on GO instead of XGO are at risk of missing
important physics, even if usually the SHE is less pronounced
than in our example.
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APPENDIX A: GAUGE INVARIANCE
OF THE RAY LAGRANGIAN

In this section, we prove the gauge invariance of the ray
Lagrangian defined in Eq. (9),

L =
[

kμ

2
− A(x)

μ

]
ẋμ −

[
xμ

2
+ Aμ

(k)

]
k̇μ − (	 − U0),

where

U = U0 − A(x)
μ ∂μ	 + Aμ

(k) ∂μ	, (A1)

U0
.= Im[(∂μη†)DH(∂μη)], (A2)

A(x)
μ

.= Im(η†∂μη), Aμ

(k)
.= Im(η†∂μη). (A3)

As a reminder, we assume the notation ∂μ
.= ∂/∂xμ and ∂μ .=

∂/∂kμ, and η denotes a unit polarization vector of the active
eigenmode, which is also an eigenvector of DH,

DHη = 	η, η†η = 1, 	 = η†DHη, (A4)

and 	 is the corresponding eigenvalue.
Let us consider a gauge transformation η → eiϕη, where

ϕ(xμ, kμ) is a real function. This transformation does not
affect 	, while U0 is transformed as follows:

U0 → Im[(∂μη†)DH(∂μη) + (∂μϕ)(∂μϕ)	 + �], (A5)

� = i	[(∂μϕ)(∂μη†)η − (∂μϕ)η†(∂μη)]. (A6)

Since both ϕ and 	 are real, the term (∂μϕ)(∂μϕ)	 is real and
therefore does not contribute to U0. Also,

0 = ∂ (η†η) = (∂η†)η + η†(∂η), (A7)

so (∂η†)η is purely imaginary. Here and furthermore, ∂ de-
notes a derivative with respect to any coordinate in the ray
phase space (x, k). Hence, � is real and therefore does not
contribute to U0 either. Then, according to Eq. (A5), the gauge
transformation leaves U0 intact.

Now let us consider the Berry connections A. These func-
tions transform as follows:

A(x)
μ → Im(η†∂μη + i∂μϕ) = A(x)

μ + ∂μϕ, (A8)

A(x)
μ ẋμ + Aμ

(k)k̇μ → A(x)
μ ẋμ + Aμ

(k)k̇μ + (∂μϕ)ẋμ + (∂μϕ)k̇μ

= A(x)
μ ẋμ + Aμ

(k)k̇μ + ϕ̇. (A9)

The extra term ϕ̇ is a total time derivative and thus does
not contribute to the equation of motion. Therefore, up to
this insignificant full time derivative, the noncanonical La-
grangian (9) is gauge invariant and so are the corresponding
ray equations.

APPENDIX B: DERIVATION OF F AND U0

The formulas for F and U0 are well known in condensed
matter physics, but not so well known for general waves and
in plasma physics in particular, so it is instructive to present
their general derivation. Here, we do so by adapting the cor-
responding calculation from Ref. [34].

Because DH is a Hermitian matrix, one can choose its
orthonormal eigenvectors to form a complete orthonormal
basis. Let us consider any one of them, ηn, and decompose its
derivative (with respect to any given parameter) in this basis,

∂ηn = (η†
n∂ηn)ηn +

∑
s �=n

(η†
s ∂ηn)ηs. (B1)

To calculate the coefficients in the latter sum, let us differen-
tiate DHηn = 	nηn and multiply the result by η†

m with m �= n
from the left. This gives

η†
m∂ηn = η†

m(∂DH)ηn

	n − 	m
(m �= n), (B2)

assuming 	n �= 	m. Hence, one can rewrite Eq. (B1) as

∂ηn = (η†
n∂ηn)ηn +

∑
m �=n

η†
m(∂DH)ηn

	n − 	m
ηm. (B3)

Plugging this into Eq. (A2) yields

U0 = Im
∑
m �=n

η†
n(∂μDH)ηmη†

m(∂νDH)ηn

	m − 	n
. (B4)

Similarly, plugging Eq. (B3) into

Fμν .= 2Im[(∂μη†
n )∂νηn] (B5)

and making use of the fact that (∂η†
n )ηn is purely imaginary

[cf. Eq. (A7)] leads to

Fμν = 2Im
∑
m �=n

η†
n(∂μDH)ηmη†

m(∂νDH)ηn

(	n − 	m)2
. (B6)

Finally, let us choose ηn to be the polarization vector of the
active mode, ηn = η, so 	n = 	. By the dispersion relation,
one has 	 = O(ε), so within the assumed accuracy, Eqs. (B4)
and (B6) can as well be written as follows:

U0 = Im
∑
m �=n

η†
n(∂μDH)ηmη†

m(∂νDH)ηn

	m
, (B7)

Fμν = 2Im
∑
m �=n

η†
n(∂μDH)ηmη†

m(∂νDH)ηn

	2
m

. (B8)

Similar formulas for Fμ
ν , Fμ

ν , and Fμν are derived in the same
way.
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APPENDIX C: CONSTRUCTION OF WAVE PACKETS

Within XGO, terms O(ε) in expressions for the field are
not negligible [31]. In particular, they must be retained when
constructing the initial wave packets for full-wave simulations
if the spin Hall effect must be retained. In this section, we
derive an explicit approximation for these terms and apply it
to cold-plasma waves.

A slow complex envelope ψ (xμ) is governed by

D̂ψ = 0, (C1)

where D̂ is approximated by Eq. (1) up to insignificant
terms O(ε2). This operator can be represented as D̂ ≈
DH[xμ, k̄μ(xμ)] + D̂ , where DH = O(1) and D̂ = O(ε) un-
der the assumptions specified in the main text. Then, one
can expand ψ in the basis of orthonormal eigenvectors of
DH[xμ, k̄μ(xμ)] as

ψ (xμ) =
∑

m

ηm[xμ, k̄μ(xμ)]am(xμ), (C2)

where an are scalar amplitudes. Then, Eq. (C1) gives∑
m

	mηmam = O(ε), (C3)

where 	mam = O(ε) for each m. Consider the region where
DH has only one eigenvalue that is close to zero, say, 	n =
O(ε), i.e., only the nth mode is on-shell (propagating wave
that satisfies a dispersion relation). Such mode may have an =
O(1) and is called an active mode. The remaining modes, for
which 	m = O(1), have to have am = O(ε) and are called
passive modes [31].

Although small, the passive modes must be accounted
for in simulations that are intended to capture the SHE. In

particular, the initial wave envelope ψ (t = 0) must be con-
structed with accuracy not less than O(ε). To do this, let us
represent the envelope as ψ = ηnan + ψ⊥,

ψ⊥
.=

∑
m �=n

ηmam = O(ε). (C4)

Then,

(DH + D̂ )(ηnan + ψ⊥) = 0, (C5)

where an error O(ε2) in the approximation of D̂ has been
ignored. Since D̂ψ⊥ = O(ε2), this term can be ignored as
well. Then, multiplying the equation by η†

m with m �= n from
the left, one obtains

am = −η†
mD̂ (ηnan)

	m
+ O(ε2). (C6)

Therefore, up to O(ε), the total wave field � can be expressed
in the following form parameterized by a single function, an:

�(x) = eiθ

⎛
⎝anηn −

∑
m �=n

η†
mD̂ (ηnan)

	m

⎞
⎠. (C7)

For cold plasma, the dispersion operator is D̂ = Ĥ − i∂t ,
where Ĥ (x,−i∂x ) is defined in Eq. (12). Using θ = kμxμ and
DH = H (x, k) − ω, the operator D̂ = DH + D̂ can be calcu-
lated exactly,

D̂ =
⎛
⎝0 0 0

0 0 ic ∂x×
0 −ic ∂x× 0

⎞
⎠ − i∂t , (C8)

where ∂t = 0 for stationary waves.
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