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Second-harmonic electron-cyclotron resonance heating:
A possible impact from mode coupling near the resonance
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The short-wavelength paraxial asymptotic technique, known as Gaussian beam tracing, is extended to the case
of two linearly coupled modes in plasmas with resonant dissipation. The system of amplitude evolution equations
is obtained. Apart from purely academic interest, this is exactly what happens near the second-harmonic electron-
cyclotron resonance if the microwave beam propagates almost perpendicularly to the magnetic field. Because of
non-Hermitian mode coupling, the strongly absorbed extraordinary mode may partly transform into the weakly
absorbed ordinary mode near the resonant absorption layer. If this effect is significant, it could impair the well-
localized power deposition profile. The analysis of parameter dependencies gives insight into what physical
factors affect the power exchange between the coupled modes. The calculations show a rather small impact of
non-Hermitian mode coupling on the overall heating quality in toroidal magnetic confinement devices at electron
temperatures above 200 eV.
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I. INTRODUCTION

Electron cyclotron resonance heating (ECRH) is certainly
one of the principal plasma heating methods in magnetic
confinement systems. ECRH, as well as any plasma-wave
interaction process, is a collection of various physical phe-
nomena. A short list includes microwave beam propagation
in an inhomogeneous plasma, resonant gyroaveraged electron
dynamics under microwave action in an inhomogeneous mag-
netic field, decorrelation of electron gyrophases relative to the
wave phase between the successive electron transits across
the beam, and collisional relaxation of the perturbed electron
velocity distribution. In spite of all intrinsic complexity, the
essential features of various ECRH scenarios, such as the mi-
crowave preferable direction, polarization, and the absorption
efficiency, are well described by the hot Maxwellian plasma
dispersion tensor alone [1–4]. Thus, it is known that the
effective second harmonic ECRH in medium-sized toroidal
devices implies that mainly the fast extraordinary (X) mode
should propagate in the plasma volume [in large devices the
scenario employing the ordinary (O) mode also may be opera-
tive [5,6]]. Once the mixed-mode microwave beam crosses the
resonance layer, where the wave frequency is nearly twice the
gyrofrequency, at electron temperatures above a few hundred
eV, the X mode power fraction is almost completely absorbed.
In experiments, this place is usually located in the plasma
core. At the same time, for example at densities ∼1019 m−3

and electron temperatures ∼1 keV, the O mode power fraction
loses only ∼10% in this layer. After the first pass through
the plasma, the unabsorbed remainder of the microwave beam
reflects back off the curved inner chamber wall (in the absence
of a special reflector) and mostly becomes a stray radiation,
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whose subsequent absorption in the plasma is far from being
located centrally. It can lead to an excessively wide ECRH
power deposition profile, which is sometimes observed in
experiments [7,8].

There can be several reasons why the X mode power may
be partly lost on its way from the launching structure to
the plasma core, even when geometric optics predicts proper
beam propagation. First, the optimal polarization (generally,
elliptical) of the injected microwave notably depends on the
angle between the ambient magnetic field and the wave vector
at the place where the beam enters the plasma. Thus, small
tuning errors of the polarizer settings may produce a mode
purity defect up to a few percent [6]. Next, linear coupling
of X and O mode waves inevitably occurs in the edge plasma
layer, where the anisotropy degenerates. Numerical simula-
tion [9] shows that in this layer an extra power up to 4–6%
may be transferred from the X to the O mode. Nonlinear
wave effects all along the beam trajectory are also possible
sources of anomalous ECRH degradation. As it has been
recently claimed [10], a parametric decay of X mode into
localized plasma modes may possess a relatively low power
threshold and give rise to significant redistribution of wave
power deposition. There is also significant experimental ev-
idence supporting the occurrence of such parametric decay
instabilities [11,12]. Finally, if the wave vector is almost
perpendicular to the magnetic field near the resonance, there
exists another linear coupling zone, which approximately co-
incides with the location of resonant absorption. This effect
is unique to second harmonic ECRH and arises due to an
extreme surge of the X mode refractive index near the reso-
nance. It has been known for decades [1], but didn’t attract a
deeper interest. Here we explore the possible impact of such
mode coupling on ECRH efficiency by extending the proven
asymptotic technique based on the short-wavelength parax-
ial approximation to the case of two interacting modes in a
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substantially non-Hermitian plasma. The developed method
itself is independent of the specific wave mode properties,
which are taken into account later via the dispersion tensor
eigendecomposition. In contrast to phase space methods based
on variational principles [13] and “quasioptical” methods
(see, for example, Ref. [14] and the references cited therein)
the described technique does not employ the complicated
Weyl symbol calculus, which makes it more intelligible for
physicists.

This paper is organized as follows. In Sec. II, we present
a thorough eigenmode analysis of Gaussian beam propaga-
tion, starting from the familiar case of a single independent
mode and then arriving at the case of two coupled modes.
In Sec. III, we obtain the analytical expressions for eigenval-
ues and corresponding eigenvectors of the weakly relativistic
plasma dispersion tensor for the case of quasiperpendicular
wave propagation. We also numerically demonstrate the ap-
pearance of non-Hermitian mode coupling near the second
harmonic EC resonance. In Sec. IV, we present the results
of a numerical simulation that implements the mathematical
model described in the previous sections. Section V contains
a summary of our study.

II. AMPLITUDE EQUATIONS FOR INDEPENDENT
AND COUPLED MICROWAVE BEAMS

Suppose a monochromatic microwave beam of frequency
ω propagates in a stationary plasma whose inhomogeneity
scale is much larger than the wavelength and somewhat larger
than the beam width. Absorption, phase front curvature, and
polarization variation of the wave also may occur, with a
similar condition on the corresponding spatial scales. For
brevity, further we will omit all exp(−iωt ) factors from the
wave-field expressions and will omit ω from the argument
lists. It is convenient to consider the three-dimensional (3D)
wave vector equation in the following generic integral form:∫

L
(

ρ,
r + r′

2

)
E(r′)d3r′ = 0, (1)

where the complex vector E is the microwave electric field, r
is the position vector, and ρ ≡ r − r′ is the nearby displace-
ment. According to Maxwell’s equations, the dispersion 3 × 3
matrix kernel L includes the local part, which becomes the
partial differential operator after convolution, and the nonlocal
plasma conductivity matrix kernel σ:

L=
[

c2

ω2
∇∇T−

(
c2

ω2
∇T∇ + 1

)
I
]
δ(ρ)− 4π i

ω
σ

(
ρ,

r + r′

2

)
.

(2)
Here c is the vacuum speed of light, I is the identity matrix,

δ(·) is the delta function, T denotes the matrix transpose, and
to clarify, a vector is a column matrix and, therefore, ∇∇T is a
matrix operator and ∇T∇ = ∇ · ∇ is a scalar operator. Both L
and σ depend on their first argument due to spatial dispersion
and on the second one due to plasma inhomogeneity. How-
ever, the specific form of L is of no importance for further
consideration in this section.

The crucial point in the following asymptotic analysis
is the representation of the possibly irregular (noneikonal)
wave-field E(r) as a continuous superposition of locally plane

waves,

E(r) = (2π )−3
∫

exp (ik · r)A(k, r)d3k, (3)

which differs from the usual plane wave decomposition (i.e.,
inverse Fourier transform) in that the amplitudes A(k, r) re-
tain all the wave-field spatial inhomogeneity except only the
smallest-scale one [resulting from the fast phase variation of
E(r)]. This can be done most conveniently [15] using the
smoothly windowed local Fourier transform,

A(k, r) =
∫

exp(−ik · r′ − |ρ|2/w2)E(r′)d3r′, (4)

with w chosen intermediate between the length scales
|∇ ln Ẽ |−1 and |∇ ln Ã|−1 (here the tilde denotes the scalar
counterpart of the complex vector, i.e., the complex function
whose argument is a weighted average of the vector com-
ponent arguments). The assumption of weak inhomogeneity
specifically means that |∇ ln Ã| � |∇ ln Ẽ |, hence the defini-
tion of Eq. (4) is feasible and it ensures that A(k, r) is always
a slowly varying function of r, even at caustics [16]. A widely
spread 1D prototype of what we do is the representation of
a temporal variation in sound intensity as an audio-frequency
spectrum that also varies in time, but not very rapidly. The
framework of Eqs. (3) and (4) is more general and methodi-
cally simple than the WKB method, which picks out only one
Fourier component even though admitting that the selected k
may slowly vary in space. In fact, both methods are related as
follows. In the case that E(r) is locally a regular wave field,
A(k, r) is nonzero only in the close vicinity of k = ∇ arg(Ẽ ):

A(k, r) ≈ π3/2w3E(r) exp

(
−ik · r − w2

4
|k − ∇ arg(Ẽ )|2

)

→ (2π )3E(r) exp (−ik · r)

× δ[|k − ∇ arg(Ẽ )|] as w → ∞. (5)

This expression also demonstrates conformity between the
dependencies of |A| and |E| on r away from caustics or other
zones where the k spectrum is not condensed. Seeking A(k, r)
instead of E(r) means doubling the problem dimensionality
(k is an independent real vector variable, not a function of
r) for the sake of reliability of the asymptotic technique. The
reverse projection of A onto 3D r space in a specified region
is the ultimate goal.

The slow spatial variation of plasma parameters allows one
to use the following approximation in Eq. (1):

L
(

ρ,
r + r′

2

)
≈

(
1 − ρ

2
· ∇

)
L(ρ, r), (6)

for displacements within the radius (small compared to w)
of spatial dispersion. The slow spatial variation of A(k, r)
justifies the approximation

E(r′) ≈ (2π )−3
∫

exp(ik · r′)

×
(

A − ρα

∂A
∂rα

+ ραρβ

2

∂2A
∂rα∂rβ

)
d3k, (7)
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which arises from Eq. (3). From now on, we imply the summa-
tion from 1 to 3 over the repeated Greek indices and assume
that the coordinates are Cartesian.

It is known [17] that Gaussian beams are the simplest and
the most frequent type of microwave beams in laboratory
plasmas. In any case, a microwave beam of arbitrary form
can be decomposed into a sum of Gaussian beamlets [18].
So to proceed further, we suppose that if r is a point on the
beam axis, then ∂2A/∂rα∂rβ ≈ iAQαβ , where the symmetric
complex matrix Q(r) ≡ ∇∇T arg(Ẽ ) is approximately equal
to ∇∇T arg(Ã) according to Eq. (5). One should note that, for
the Gaussian beam wave field E(r′), six independent entries
of ReQ specifies three parameters of the phase front curvature
at r and six entries of ImQ specifies another three parameters
of the amplitude envelope across the axis. Therefore, both half
of ReQ and half of ImQ may seem undefined or insignificant,
but, as explicated below, they are also strictly determined
because Q is subjected to a certain geometry constraint.

The approximations of Eqs. (6) and (7) imply that all the
terms within parentheses which contain spatial derivatives are
relatively small. Substitution of Eqs. (6) and (7) into Eq. (1)
leads to an equation of the form

∫
exp(ik · r)	(k, r)d3k = 0,

which requires 	 = 0. The non-negligible terms from the
latter equation constitute the following equation for the slow
spatial variation of A (see Appendix A for details):

�A − i

2

∂2�

∂kα∂rα

A − i
∂�

∂kα

∂A
∂rα

− i

2

∂2�

∂kα∂kβ

AQαβ = 0. (8)

Here �(k, r) ≡ ∫
exp(−ik · ρ)L(ρ, r)d3ρ is the local dis-

persion tensor, which can be expressed through the plasma
dielectric tensor ε(k, r) as � = N2I − NNT − ε, where N ≡
kc/ω.

The next step of the analysis is to perform the polarization
eigenmode decomposition of Eq. (8). Let us define the ma-
trices D ≡ diag(λ(1), λ(2), λ(3) ) and X ≡ (x(1) x(2) x(3) ),
where the diagonal entries λ(m) are the eigenvalues of � and
the columns x(m) are the corresponding right eigenvectors
such that |x(m)| = 1 while arg(x̃(m) ) are arbitrary. Therefore,
�X = XD and, accordingly, � = XDX−1. One should point
out that while X−1 = (y(1) y(2) y(3) )T, where y(m) are the
left eigenvectors obeying y(m) · x(n) = Imn, this does not al-
ways imply |y(m)| = 1 (but if � is Hermitian, i.e., � = �∗T,
then y(m) = x(m)∗). The notation U (mn)

α ≡ y(m) · ∂x(n)/∂kα and
V (mn)

α ≡ y(m) · ∂x(n)/∂rα will be used below. We also intro-
duce the vector z(k, r) ≡ X−1A; it is easily seen that A =
zαx(α) and so the components of z are the coefficients of the
eigenmode decomposition. Additionally, we will initially use
the following matrix notation:

Gα ≡ X−1 ∂�

∂kα

X,

Ĝαβ ≡ X−1 ∂2�

∂kα∂kβ

X, (9)

F ≡ X−1 ∂�

∂kα

∂X
∂rα

− ∂X−1

∂rα

∂�

∂kα

X,

some components of which will be expressed later in terms
of λ(m), U (mn)

α , and V (mn)
α (complete expressions are given in

Appendix B). Multiplying Eq. (8) with X−1 from the left

yields

2Gα

∂z
∂rα

+
(

2iD + ∂Gα

∂rα

+ F + ĜαβQαβ

)
z = 0. (10)

A. Independent microwave beam

In the simplest case of a plane wave in a homogeneous
plasma one has F = 0, Q = 0, ∂z/∂rα = 0, ∂Gα/∂rα = 0,
and ImD = 0, so Eq. (10) reduces to Dz = 0. The latter
expression consists of three independent scalar equations
λ(m)zm = 0 (without summation over m). Evidently, propa-
gation of any particular wave mode is possible only if the
corresponding dispersion relation λ(m)(k) = 0 is fulfilled. Of
course, this case has little to do with microwave behavior in
fusion plasmas and it serves just to illustrate how the concept
of wave modes emerges from Eq. (10).

In an inhomogeneous plasma all the terms entering
Eq. (10) are nonzero, making Eq. (10) consist of three coupled
scalar equations. In each of these equations the term 2iλ(m)zm,
which is not a priori small, is balanced by the terms containing
spatial derivatives, so in a weakly inhomogeneous plasma,
the condition |λ(m)| → 0 is still necessary for the particular
mode to be active. Suppose now that any two functions |λ(m)|
corresponding to different eigenmodes do not vanish simulta-
neously at any point of (k, r). This means that only one mode,
say m = 1, has the distinctive feature |λ(1)| → 0 in a certain
subspace of (k, r) and, therefore, it alone (|z1| � |z2|, |z3|)
can propagate along some path belonging to this subspace. In
other words, this mode is well separated in either r or k from
the other modes and it can be regarded as independent. It is
helpful to write out (see Appendix B for details)

(
Gα

∂z
∂rα

)
1

= ∂λ(1)

∂kα

∂z1

∂rα

+
∑
n �=1

(λ(n) − λ(1) )U (1n)
α

∂zn

∂rα

(11)

and notice that the terms containing λ(n)∂zn/∂r are much less
than |λ(n)zn| for all n. Only the first term on the right-hand side
of Eq. (11) should therefore be retained. Having multiplied the
first scalar equation of Eq. (10) by z∗

1, we obtain

∂

∂rα

(
∂λ(1)

∂kα

|z1|2
)

+
(

2iλ(1) + 2i
∂λ(1)

∂kα

∂ arg (z1)

∂rα

+ F11

+ Ĝαβ11Qαβ

)
|z1|2 = 0. (12)

It may be seen from Eq. (12) that if � is non-Hermitian,
there exists a new length scale ∼|Imλ(1)|−1|∂Reλ(1)/∂k| of
|z1| inhomogeneity due to absorption. Recalling the condi-
tion for all inhomogeneity length scales to be large enough
(that was necessary for the above derivation), we conclude
that the smallness of |Imλ(1)| is a more general requirement
than the essentially local condition |Reλ(1)| → 0. This means
that, for our purposes, all terms containing derivatives of
Imλ(1) usually contain an extra smallness compared with
those containing derivatives of Reλ(1). Another consequence
of the stated restriction is that the non-Hermitian deviation of
y(1) from x(1)∗, as well as the nonorthogonality of the right
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eigenvectors, is small:

|y(1) − x(1)∗|2 ≈
∑
n �=1

|x(1)∗ · x(n)|2

� 4|Imλ(1)|
∑
n �=1

|Imλ(n)|
|λ(1) − λ(n)∗|2 � 1 (13)

(see, e.g., Ref. [19] for the proof of the left inequality). After
omitting the terms, which are thus found to be negligible, from
Eq. (12) and splitting the latter into the real and imaginary
parts, we have

∂

∂rα

(
∂Reλ(1)

∂kα

|z1|2
)

=
(

2Imλ(1) − ∂2Reλ(1)

∂kα∂kβ

ReQαβ − Reχ (11)

)
|z1|2, (14)

Reλ(1) + ∂Reλ(1)

∂kα

κ (1)
α + 1

2

∂2Reλ(1)

∂kα∂kβ

ImQαβ + 1

2
Imχ (11) = 0,

(15)

where κ(1) ≡ ∇ arg(z1) + |x(1)
α |2∇ arg(x(1)

α ) and χ (11) ≡∑
n �=1 λ(n)[U (1n)

α V (n1)
α − U (n1)

α V (1n)
α − 2U (1n)

α QαβU (n1)
β ]. It is

worth noting that κ(1) and χ (11) are both invariant under
the changes x(m) → x(m) exp(iϕ(m) ) with arbitrary real ϕ(m)

provided that arg(z1x̃(1) ) is unchanged.
A physical interpretation of Eqs. (14) and (15) directly

comes from their mathematical properties. The continuity
Eq. (14) is definitely a wave power transport equation and
it reveals that the wave power flux, which is proportional
to the vector under the divergence operator on the left-hand
side, is collinear with ∂Reλ(1)/∂k. Equation (15) is algebraic
and does not contain |z1|. It is a condition of radiative trans-
parency, i.e., a modified dispersion relation, which does not
merely impose a constraint on k by the terms dependent only
on k and r, but also specifies the gradient of an additional
phase shift arg(z1x̃(1) ) due to the nonzero Q. This phase shift
contains, for example, the Gouy phase shift [17,20], which
arises due to the third term in Eq. (15) and evolves slowly
everywhere except near the microwave beam waists. All the
terms of Eq. (15) are small compared to 1, therefore similarly
one can consider Eq. (15) with Reλ(1)(k, r) = 0 being the
main condition and ∇ arg(z1x̃(1) ) being the compensation for
the remaining terms. In this way, Eqs. (14) and (15) give
an alternative reasoning (compared to the standard WKB ap-
proach [21,22]) of why and how the short-wavelength paraxial
asymptotic technique should involve the numerical algorithm
known as “ray tracing.” This algorithm consists in calculating,
starting from given initial values, two parametrically defined
3D curves R(s) and K(s), which are respectively the spatial
trajectory of wave power transport (and hence may be the axis
of a propagating Gaussian beam) and the corresponding evo-
lution of k that continuously satisfies the dispersion relation.
Up to a constant factor, Eq. (14) yields dR/ds = ∂Reλ(1)/∂k,
which, taken together with the condition Reλ(1)(K, R) = 0,
requires dK/ds = −∂Reλ(1)/∂r; the derivatives should be
estimated at r = R(s) and k = K(s) + ∇ arg(z1x̃(1) ). The vec-
tor dR/ds is thus proportional to the group velocity vg ≡
−(∂Reλ(1)/∂k)(∂Reλ(1)/∂ω)−1, which gives the proper sign
for the increments of s in the calculation. Within the “beam

tracing” framework [23,24], the matrix Q is also a function
of s. The equation for dQ/ds, which is not required herein, is
nothing but a conservation condition for the universal geome-
try constraint QdR/ds = dK/ds along an arbitrary path R(s)
(see Ref. [25] for the details).

In the regular propagation regime, it follows from Eq. (5)
that the magnitudes of the wave field at the beam axis ER(s) =
E(R) and the value z1(k, R) are related as |z1| = |ERg(k)|,
where g(k) is a narrow Gaussian function, so that one can
write

d|ER|2
ds

= |g|−2 dR
ds

· ∇|z1|2

= |g|−2 ∂

∂rα

(
∂Reλ(1)

∂kα

|z1|2
)

− ∂2Reλ(1)

∂rα∂kα

|ER|2. (16)

Equations (14) and (16) combine into the equation

d

ds
ln |ER|2 = 2Imλ(1) − ∂2Reλ(1)

∂rα∂kα

− ∂2Reλ(1)

∂kα∂kβ

ReQαβ − Reχ (11). (17)

Gaussian beams possess the following feature, which is
conserved during propagation: one of the eigenvalues of ImQ
is zero and the other two (say, τ1 and τ2) are positive. It was
shown in Ref. [25] that one can present Eq. (17) in a more
physically intelligible form that reveals the eigenmode power
balance:

d

ds
ln

(
|ER|2S

∣∣∣∣dR
ds

∣∣∣∣
)

= 2Imλ(1) − Reχ (11), (18)

where S ≡ (τ1τ2)−1/2 is, up to a factor, the beam cross area.
The first term on the right-hand side of Eq. (18) accounts for
the actual power dissipation. The last term, which is usually
negligible, is responsible for practically small “artificial” de-
viations in power, which may arise since our definition of
eigenmodes comes from simple diagonalization of � rather
than from cumbersome diagonalization of Eq. (8) (see, for
example, Ref. [26]).

B. Coupled microwave beams

Now let us consider the case of two modes being active
together within some zone of (k, r) (hereafter the bizone, BZ),
where |λ(1)|, |λ(2)| → 0. Equation (10) was obtained under
the paraxial assumption, which implies that only one spatial
axis exists. Two different active modes generally propagate
in plasmas as two beams whose ray trajectories R(m)(s) and
K(m)(s) (m = 1, 2) cross (or nearly cross) within the BZ,
but may not be parallel. However, we will suppose below
that both dR(m)/ds are collinear in the BZ, so the paraxial
approximation (7) is justified, and hence Eq. (10) is valid.
It was demonstrated in Ref. [27] that any two beams can
be brought into coaxiality within the BZ by changing over
to a specially oriented hybrid (k1 r2 r3)T representation,
in which a similar paraxial formalism may be developed.
Therefore, the subsequent analysis can also be adapted to
immediately bifurcating beams.

We allow for the beams to possess different Q(m)(s). This
means that one has to replace Qαβzm in Eq. (10) with Q(m)

αβ zm.
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Having multiplied the first two equations of Eq. (10) respectively by z∗
1 and z∗

2, we obtain two equations of the same form,

∂

∂rα

(
∂λ(m)

∂kα

|zm|2
)

+
(

2iλ(m) + 2i
∂λ(m)

∂kα

∂ arg (zm)

∂rα

+ Fmm + ĜαβmmQ(m)
αβ

)
|zm|2 + (

Fmm̄ + Ĝαβmm̄Q(m̄)
αβ

)
z∗

mzm̄ = 0, (19)

where the pair (m, m̄) is either (1, 2) or (2, 1). In the case of nearly degenerate eigenvalues, the corresponding eigenvectors are
not guaranteed to be almost orthogonal, which is seen since the right inequality of Eq. (13) is not valid in the BZ. Nevertheless,
any linear combination of such eigenvectors is also an eigenvector and hence one can redefine x(m) via Gram-Schmidt
orthogonalization such that the deviation of y(m) from x(m)∗ remains small. Thus in the same way as above, Eq. (19) yields
the following power transport equation and the modified dispersion relation for either of the active modes 1 and 2:

∂

∂rα

(
∂Reλ(m)

∂kα

|zm|2
)

=
(

2Imλ(m) − ∂2Reλ(m)

∂kα∂kβ

ReQ(m)
αβ − Reχ (mm)

)
|zm|2 − Re(η(m)z∗

mzm̄), (20)

Reλ(m) + ∂Reλ(m)

∂kα

κ (m)
α + 1

2

∂2Reλ(m)

∂kα∂kβ

ImQ(m)
αβ + 1

2
Im

(
χ (mm) + η(m) zm̄

zm

)
= 0, (21)

where κ(m) ≡ ∇ arg(zm) + |x(m)
α |2∇ arg(x(m)

α ), χ (mn) ≈ λ(3)[U (m3)
α V (3n)

α − U (3n)
α V (m3)

α − 2U (m3)
α Q(n)

αβU (3n)
β ],

η(m) ≡ ∂ (λ(m) + λ(m̄) )

∂kα

V (mm̄)
α + 2

∂ (λ(m̄) − λ(m) )

∂kα

Q(m̄)
αβ U (mm̄)

β + χ (mm̄). (22)

One can see from Eq. (21) that the phase coherence condition
Im(η(m)zm̄/zm) = 0 must be fulfilled so the two active modes
remain close in k space for a while. In particular, it defines the
initial phase of the “newborn” mode driven by the “parent”
beam in the BZ.

In order to obtain the coupled beam axis ampli-
tude equations for the regular propagation regime, we
have to define dR(m)/ds = γ (m)∂Reλ(m)/∂k and choose
the calibrating constant factors γ (m) such that dR(1)/ds =
dR(2)/ds in the BZ (hence one can omit the superscript
from R), because both of the values E(m)

R (s) must cor-
respond to the same position. Of course this necessitates
the definition dK(m)/ds = −γ (m)∂Reλ(m)∂r. Now let zm =
Ẽ (m)

R g(k) exp(−ik · R), where Ẽ (m)
R = x(m)∗ · E(m)

R , since both
of the modes share the same Gaussian g(k) in the BZ. This is
justified by the fact that the discrepancy |K(2) − K(1)| within
the BZ has an upper estimate of ∼�R−1 � w−1, where �R
is the BZ length. As a consequence,

d
∣∣E(m)

R

∣∣2

γ (m)ds
= |g|−2 ∂

∂rα

(
∂Reλ(m)

∂kα

|zm|2
)

− ∂2Reλ(m)

∂rα∂kα

∣∣E(m)
R

∣∣2
,

z∗
mzm̄ = Ẽ (m)∗

R Ẽ (m̄)
R |g|2, (23)

which, together with Eq. (20), results in the amplitude equa-
tion

2
d
∣∣E(m)

R

∣∣
γ (m)ds

=
(

2Imλ(m) − ∂2Reλ(m)

∂rα∂kα

− ∂2Reλ(m)

∂kα∂kβ

ReQ(m)
αβ

− Reχ (mm)

)∣∣E(m)
R

∣∣ − (W (m)
− + W (m)

+ )
∣∣E(m̄)

R

∣∣,
(24)

where

W (m)
± ≡ Re

[
η(m) ± η(m̄)∗

2

Ẽ (m)∗
R Ẽ (m̄)

R∣∣E(m)
R

∣∣∣∣E(m̄)
R

∣∣
]
.

Equation (24) is the main analytical result of this
work. Like in the nondissipative case [27], it is of the

Budden-Kravtsov type [28,29]. At the same time, it differs
from Eq. (17) only in the appearance of the last term. We have
split the last term into two parts containing W (m)

− = −W (m̄)
−

and W (m)
+ = W (m̄)

+ . The former describes the power exchange
between the active modes, whereas the latter is mainly a
correction accounting for the unequal group velocities of the
active modes. In the case that R(s) and K(m) are known, the
system of differential equations to be solved numerically in
the BZ includes three equations: two of the form of Eq. (24)
with m = 1, m̄ = 2 and vice versa, and the phase difference
equation

d

ds

[
arg

(
Ẽ (2)

R

) − arg
(
Ẽ (1)

R

)] ≈ dR
ds

· (K(2) − K(1) ). (25)

If the mode being born in the BZ is numbered 1, the
imposed initial conditions are |E(1)

R | = 0, K(1) = K(2) and
arg(Ẽ (2)

R ) − arg(Ẽ (1)
R ) = π− arg(η(1) ). The latter one com-

bines the phase coherence condition with the requirement
W (1)

− + W (1)
+ < 0, which is necessary for |E(1)

R | to start in-
creasing, according to Eq. (24). The initial value of ImQ(1)

must be equal to ImQ(2) such that the newborn beam inherits
the cross section amplitude profile of the parent beam. The
initial six independent entries of ReQ(1) are found from the
following equations: (i) three of the form v(α)TReQ(1)v(β ) =
v(α)TReQ(2)v(β ) with α and β being either 1 or 2, where the
real vectors v(1) and v(2) are both orthogonal to K(2) (the con-
ditions for inheritance of the equiphase surface in the paraxial
approximation), and (ii) the vector equation ReQ(1)dR/ds =
dK(1)/ds (the geometry constraint).

The two active modes remain coupled along s until their
phase difference is ∼π/2 due to the accumulation described
by Eq. (25). After that the values of arg(Ẽ (1)

R ) and arg(Ẽ (2)
R )

start to drift apart more rapidly, which soon results in z∗
mzm̄ →

0, because the peaks of particular Gaussians g(m)(k) do not
overlap any more. The BZ condition |λ(1) ± λ(2)| → 0 also
breaks down and the modes propagate away as independent
beams. However, in cases with resonant dissipation the power
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transfer between the modes can be terminated even before
that, if the parent beam is completely absorbed within the BZ.

III. EIGENDECOMPOSITION
OF THE DISPERSION TENSOR

In the following analysis, we neglect collisional corrections
to the dispersion tensor and suppose that the background
electron velocity distribution is Maxwellian. Let the axes of
local Cartesian coordinates be oriented such that the ambient
magnetic field B = (0 0 B)T and N = (N⊥ 0 N||)T;
let me be the electron mass and Te the electron temperature
in energy units. If the frequency of interest ω is below the
third EC harmonic, but is high enough to disregard ion motion,
the dispersion tensor obtained within the weakly relativistic
approximation μ ≡ mec2/Te � 1 (see, e.g., Refs. [1,30–34])
with the extra condition μ � 4N2 takes the form

� ≈

⎛
⎜⎝

N2
|| + M1 −iM2 N||N⊥(M4 − 1)

iM2 N2 + M1 iN||N⊥M4

N||N⊥(M4 − 1) −iN||N⊥M4 N2
⊥ + M3

⎞
⎟⎠,

(26)

where

M1 ≡ −1 + qμ

2

(
F [−1]

5/2 + F [1]
5/2 + N2

⊥
uμ

F [−2]
7/2

)
,

M2 ≡ qμ

2

(
F [−1]

5/2 − F [1]
5/2 + N2

⊥
uμ

F [−2]
7/2

)
,

M3 ≡ −1 + q + qN2
⊥

2u

(
F̄ [−1]

7/2 + N2
⊥

4uμ
F̄ [−2]

9/2

)
,

M4 ≡ qμ

2
√

u

[
F [−1]

5/2 − F [−1]
7/2 + N2

⊥
2uμ

(
F [−2]

7/2 − F [−2]
9/2

)]
,

F̄ [l]
ν ≡ F [l]

ν + 2a
(
F [l]

ν−1 − 2F [l]
ν + F [l]

ν+1

)
,

F [l]
ν ≡ Fν (ξl , a) ≡ −i

∫ ∞

0

dt

(1 − it )ν
exp

(
iξl t − at2

1 − it

)
,

ξl ≡ μ(1 + l
√

u), a ≡ μN2
||/2, q ≡ ω2

pe/ω
2, u ≡ ω2

ce/ω
2, and

ωpe and ωce are the electron plasma frequency and gy-
rofrequency. The function Fν is usually referred to as the
Shkarofsky function, tracing back to Ref. [30]. For a large
argument |ξl | � 1, this function varies as F [l]

ν ≈ (ξl + ν)−1.
Hence, far from the EC harmonic resonances, Eq. (26) reduces
to the well-known cold plasma limit. If a � 1, F [l]

ν can be
approximated through the nonrelativistic plasma dispersion
function.

Assuming N2
|| � 1, from the equation det(� − λ(m)I) = 0

we obtain with an accuracy up to o(N2
|| )

λ(1) ≈ λ
(1)
0 + N2

||N
2
⊥

λ
(1)
0

(
1 − 2M4 + 2M2

4

) − ψ(
λ

(1)
0 − M1

)(
λ

(1)
0 − N2

⊥ − M1
) − M2

2

,

λ(�) ≈ λ
(�)
0 + N2

|| + N2
||N

2
⊥

λ
(�)
0

(
1 − 2M4 + 2M2

4

) − ψ(
λ

(�)
0 − λ

(1)
0

)(
2λ

(�)
0 − N2

⊥ − 2M1
) ,

(27)

where ψ ≡M1M2
4 +2(1 − M4)M2M4 + (1 − M4)2(N2

⊥ + M1),
� is either 2 or 3, and

λ
(1)
0 = N2

⊥ + M3,

λ
(�)
0 = M1 + N2

⊥/2 ±
√

M2
2 + N4

⊥/4 (28)

are the eigenvalues of � at N|| = 0 (the upper sign corre-
sponds to � = 2 and the lower to � = 3). In what follows,
we consider only the second harmonic ECRH, that is the
case of |ξ−2| � μ, because near the first harmonic resonance
the nearly perpendicularly propagating modes remain well
separated in k space. The condition N2

⊥ � 0.918, which is
fulfilled near the resonance in practically all ECRH schemes,
is sufficient to ensure that −π/2 < arg(M2) � 0 and, con-
sequently, −π < arg(M2

2 + N4
⊥/4) � 0. Hence, from now on

we assume that
√

M2
2 + N4

⊥/4 denotes the branch whose imag-
inary part is negative. The plane-wave dispersion relations for
O and X modes are Reλ(1) = 0 and Reλ(2) = 0, respectively.
The equation Reλ(3) = 0 (the dispersion relation for the slow
extraordinary mode gradually evolving into the electron Bern-
stein mode) has no roots at q < 1−u and N2

⊥ � 1.
Figure 1 shows the dispersion surfaces N2

⊥(q, u) obtained
by numerical solution of the equations Reλ(1,2)(N2

⊥) = 0 and
the distribution of −Imλ

(2)
0 over (q, u) evaluated at the cor-

responding dispersion surface. A prominent feature of the X
mode dispersion surface is the spikelike deformation located
near the resonance (u = 0.25), whose extent along u is propor-
tional to Te and whose amplitude is maximum at N|| = 0. As
a result, in the range N2

|| < 5μ−1 the dispersion surfaces of O
and X mode waves have common points near the resonance at
densities that may occur in ECRH experiments. These points
correspond to the BZ locations. In order to perceive the dis-
persion curves of both modes around the resonance in a 1D
slab geometry, one has to look, e.g., at the q = const slices of
Figs. 1(b) and 1(c).

The X mode surge of N2
⊥ around the resonance does not

appear in the Appleton-Hartree dispersion relation, which
corresponds to the μ → ∞ limit. That is why the effect
of linear mode coupling between the X and O mode waves
near the second harmonic EC resonance at N|| → 0 is not
widely known. This effect can result in malfunction of the
ray-tracing algorithm (uncontrolled mode jumps and hence
incorrect absorption calculations), if no special precautions
are taken. However, besides this, the model of independent
beams is not valid in the BZ and must be replaced with the
model of Sec. II B. The latter model allows one to combine the
ray/beam tracing technique with the consideration of cross-
mode interactions.

It is evident from Figs. 1(a) and 1(d) that non-Hermitian
plasma dispersion is not only of primary importance for this
type of mode coupling, but is also the origin of this effect.
Indeed, the peak in Imλ(2) near the resonance coincides with
the fast variation of arg(λ(2)) in the range between −π and 0.
Therefore, at fixed values of N2

⊥ and N2
|| , the function Reλ(2)

undergoes a distortion of similar amplitude. The spikelike be-
havior of N2

⊥, required to satisfy the dispersion relation, is the
compensation for such a distortion. Of course, the account of
non-Hermitian polarization deviations in the values of V (mn)

α

and U (mn)
α is obligatory in this case.
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FIG. 1. Vicinity of the second harmonic EC resonance: (a) X mode dispersion surface (Reλ(2) = 0) at N2
‖ = 0, μ = 511 (i.e., Te ≈ 1 keV);

(b) part of (a), but with the O mode dispersion surface (Reλ(1) = 0) superimposed; (c) the same as (b), but at N2
‖ = 4.5μ−1; (d) distribution of

−Imλ
(2)
0 evaluated at the dispersion surface (a).

Recalling that (� − λ(m)I)adj(� − λ(m)I) = 0, let us se-
lect (just to be explicit) the following three vectors from the
columns of matrices adj(� − λ(m)I) with different m:

j(1) =

⎛
⎜⎜⎝

N||N⊥[(M4 − 1)(λ(1) − N2 − M1) + M2M4]

iN||N⊥[M4(λ(1) − N2
|| − M1) + M2(M4 − 1)]

(λ(1) − N2
|| − M1)(λ(1) − N2 − M1) − M2

2

⎞
⎟⎟⎠,

j(�) =

⎛
⎜⎜⎝

(λ(�) − N2 − M1)
(
λ(�) − λ

(1)
0

) − N2
||N

2
⊥M2

4

iM2
(
λ(�) − λ

(1)
0

) + iN2
||N

2
⊥M4(M4 − 1)

N||N⊥[(M4 − 1)(λ(�) − N2 − M1) + M2M4]

⎞
⎟⎟⎠,

(29)

where again � is either 2 or 3. We may write out the nor-
malized right and the proper left eigenvectors of � as x(m) =
j(m)|j(m)|−1, y(m) = j(m′ ) × j(m′′ )|j(m)|J−1, where the triplet
(m, m′, m′′) is one of the permutations (1, 2, 3), (2, 3, 1),
(3, 1, 2), and J ≡ j(m) · (j(m′ ) × j(m′′ ) ). Accordingly, we have

V (mn)
α = |j(m)|

|j(n)|J
∂j(n)

∂rα

· (j(m′ ) × j(m′′ ) ) (30)

and a similar (with rα replaced by kα) expression for U (mn)
α .

The obtained closed formulas for λ(m), U (mn)
α , and V (mn)

α allow
one to undertake the following numerical analysis.

IV. X-TO-O MODE POWER TRANSFER IN THE STRICTLY
PERPENDICULAR PROPAGATION CASE

In the numerical simulation reported below we restrict our
study to the single magnitude N|| = 0. In this case both vectors
dR(m)/ds ∝ K(m)∂Reλ(m)/∂N⊥ (m = 1, 2) are collinear in the
BZ and can be equated, and so the results of Sec. II B can
be directly applied. Although slightly nonperpendicular wave
propagation is of methodical importance, in practice one can
expect only small deviations from the strictly perpendicular
propagation case. Let us orient the axes such that K(m) =
(K 0 0)T and B = (0 0 B)T in the BZ. Then the
2 × 2 submatrices of Q(m) alone, formed by deleting the first
rows and first columns, characterize the equiphase surfaces
and the cross section amplitude profiles of the beams. The
other entries must be equal to Q(m)

1α = |dR/ds|−1dK (m)
α /ds.

We explicitly suppose here that the microwave radiation
comes to the BZ as a regularly propagating Gaussian beam.
This may seem merely a convenient demonstration of the
procedure described in Sec. II B, but in fact, considering Gaus-
sian beams is enough to determine whether the non-Hermitian
mode coupling effect can be a disturbance for ECRH. One can
imagine two questionable situations: (i) The wave field forms
a fold caustic in the resonance region if the plasma density
approaches the X mode cutoff value q ≈ 1−√

u [it is almost
the same as in a cold plasma, cf. Fig. 1(a)]. In such a case,
the second harmonic ECRH efficiency drastically falls down
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FIG. 2. Relative amplitude of the O mode generated in the BZ by the X mode beam with N|| = 0, when the magnitude of � is equal to
(a) 10−4, (b) 2 × 10−4.

and so there is no practical reason to study the importance
of mode coupling. Moreover, in the vicinity of the cutoff the
mode coupling merely disappears. (ii) The microwave beam
comes to the resonance layer at a rather oblique angle such
that strong variation in plasma dispersion properties across
the beam violates the paraxial approximation. In this case,
the following computational workaround exists [18]: At the
equiphase surface selected right before the resonance layer, a
2D discrete Gabor expansion of the wave field is performed.
The results provide the initial amplitudes for a nearly equiv-
alent set (several hundred) of distributed narrower Gaussian
beamlets, which then can be traced forward independently
(and summed up into a whole wave field, if necessary). Each
beamlet thus satisfies the paraxial approximation, while the
outcome of this section is also applicable to all of them.

In the typical layout of second harmonic ECRH, the mag-
netic field inhomogeneity contribution to ∇j(n) in the BZ
overrides all other contributions due to μ � 1, such that in
Eq. (30)

∂j(n)

∂rα

≈ −2μ
√

u
∂B

B∂rα

∂j(n)

∂ξ−2
.

Therefore, we will disregard changes of electron density and
temperature as well as the magnetic shear within the BZ in the
simulations. A brief examination of Eqs. (28) and (29) shows
that fixing N|| = 0 results in V (12)

α = V (21)
α = V (13)

α = V (31)
α =

0. Moreover, a useful finding is that from the whole derivative,

∂j(n)

∂kα

= c

ω

(
Kα

K

∂j(n)

∂N⊥
+ Bα

B

∂j(n)

∂N||

)
,

which is a part of the expression for U (mn)
α , only the term

containing Bα will persist in the cases of U (12)
α , U (21)

α , U (13)
α ,

and U (31)
α . On the contrary, the term containing Kα is the

only one that enters into U (23)
α and U (32)

α . Next, at N|| = 0
the derivatives ∂λ(m)/∂N|| vanish since all λ(m), in contrast to

j(m), depend solely on N2
|| . So in the calculation of W (1)

± the
somewhat simplified expressions

η(1) = 2
c

ω

∂
(
λ

(2)
0 − λ

(1)
0

)
∂N⊥

Q(2)
13 U (12)

3

+ λ
(3)
0 U (13)

3

(
V (32)

3 − 2Q(2)
13 U (32)

1

)
,

η(2) = 2
c

ω

∂
(
λ

(1)
0 − λ

(2)
0

)
∂N⊥

Q(1)
13 U (21)

3

− λ
(3)
0 U (31)

3

(
V (23)

3 + 2Q(1)
13 U (23)

1

)
, (31)

are actually involved, where

Q(m)
13 = 2μ

√
u
ω

c

∂B

B∂r3

∂Reλ(m)
0

∂ξ−2

(
∂Reλ(m)

0

∂N⊥

)−1

. (32)

Based on the above analysis, two important and not ev-
ident a priori statements should be made. (i) The single
inhomogeneity parameter that defines the power exchange
rate is the dimensionless longitudinal magnetic steepness � ≡
(c/ω)B · ∇B/B2 in the BZ. In the plasma core of different
toroidal devices, this parameter may range in magnitude from
almost 0 (in tokamaks or torsatrons/heliotrons) to about 10−4

in heliac-type stellarators, while in magnetic mirror devices it
may be much larger. (ii) For the effect under study, neither the
microwave beam width nor the wave-front curvature affects
the power exchange between X and O mode waves. It is
precisely this fact that justifies extension of the results below
to wave fields of forms other than the Gaussian beam.

Each cycle of numerical integration of Eqs. (24) and (25)
was performed at constant q and μ, starting from the lower of
two u values at which the dispersion surfaces of both modes
intersect [cf. Fig. 1(b)], in the direction of magnetic field
increase, until the mode coherence breaks down. The initial
amplitude of the X mode was set to 1. Figure 2 shows the
contours of the O mode amplitude beyond the BZ in the most
interesting ranges of q and μ (here Te varies between ∼1 keV
at the bottom and ∼0.1 keV at the top). In magnetic con-
finement fusion research, electron temperatures above several
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FIG. 3. (a) Relative amplitude of the unabsorbed X mode (in decimal logarithm units; contours below −5 are not shown) beyond the BZ,
without X-to-O mode power transfer. (b) The magnitude of η(1) at the BZ boundary for � = 2 × 10−4.

hundred eV are typical for ECRH operating regimes, while
lower temperatures may be of interest to special regimes or
plasma technology. We intentionally excluded the plasma-
vacuum interface limit q → 0 because in the given numerical
model it would correspond to an unphysical infinitely long
BZ. We also excluded the X mode cutoff limit q → 0.5 in view
of what has been stated above.

It can be seen from Fig. 2 that roughly at Te > 200 eV a
very small fraction of the arriving X mode power is transferred
to the O mode even at the maximum magnitudes of � that may
occur in toroidal devices near the magnetic axis (for example,
in the TJ-II stellarator). Almost all the remaining power is
absorbed within the BZ. It is also noticeable that the overall
power transfer exhibits a nonmonotonic dependence on q, that
is on plasma density. This effect can be explained by com-
paring the distributions presented in Figs. 3(a) and 3(b). The
magnitude of η(1), which characterizes the power exchange
rate, increases along with q. However, in the range q < 0.2,
fast reduction of the Imλ(2) peak magnitude towards lower
values of q [cf. also Fig. 1(d)] prevents an abrupt complete
absorption of the X mode within the BZ, thus extending the
power exchange zone.

One should note that, under typical conditions of second
harmonic ECRH, the requirement |Imλ(2)| � 1 of the weakly
inhomogeneous approximation is only marginally satisfied
in the resonance region. Therefore, it would be of inter-
est to compare the presented results, which are based on
asymptotic consideration, with the results of 3D full-wave
modeling, if the corresponding codes will ever incorporate
finite-temperature effects.

V. SUMMARY

In this paper, we have extended the short-wavelength
paraxial asymptotic technique, widely known as Gaussian
beam tracing, to the case of two interacting modes in non-
Hermitian plasmas. This is an interesting analytical problem
per se but is also practically important since such a situation
often takes place in second harmonic ECRH schemes: if the

wave propagates perpendicularly to the magnetic field, X and
O mode waves are linearly coupled near the resonance. The
theoretical outcome of our study is a system of ordinary dif-
ferential equations, which contains two amplitude equations
of the form of Eq. (24) and the phase difference equation
in Eq. (25). In a hierarchy of computation, these equations
are appended to the basic system of beam tracing equations.
However, the problem under consideration does not require
the full-scale use of a beam tracing code, because the spatial
distribution of the wave field is beyond what we need to know.
The particular parameters for second harmonic ECRH of all
the equations involved are implicitly given by the expressions
obtained in Sec. III. A detailed analysis of the parameters re-
sponsible for power transfer between X and O mode waves has
shown the following. Among the different inhomogeneities
that may occur in magnetically confined plasmas, only the
longitudinal steepness of the magnetic field in the BZ af-
fects the power transfer rate. In addition, the latter is affected
by neither the microwave beam width nor the wave-front
curvature. Since any microwave spatial distribution can be
decomposed into a sum of independent Gaussian beamlets
with adjustable parameters [18], the paraxial approximation
adopted initially does not reduce the generality of results.

Numerical integration of the obtained equations was
performed systematically for the strictly perpendicular prop-
agation case. It was found that the power fraction, which
is eventually transferred to the weakly absorbed O mode, is
expected to be very small in toroidal devices at electron tem-
peratures above ∼200 eV. The main reason for the low overall
efficiency of X-to-O mode power transfer is very fast resonant
absorption of the X mode wave in the BZ. Thus, the effect
of non-Hermitian mode coupling near the resonance cannot
impair ECRH in most experimental setups, with the excep-
tion of magnetic mirror systems. However, during the initial
phase of ECRH plasma startup, it may somewhat worsen the
performance.

All data that support the findings of this study are included
within the article.
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APPENDIX A: DERIVATION OF EQ. (8)

Let us substitute Eqs. (6) and (7) into Eq. (1), replace
r′ by r − ρ, and change the order of integration to obtain∫

exp(ik · r)	(k, r)d3k = 0, where

	(k, r) ≡
∫ (

L − ρα

2

∂L
∂rα

)(
1 − ρβ

∂

∂rβ

+ i

2
ρβργ Qβγ

)

× exp (−ik · ρ)d3ρ A(k, r)

= �A − i

2

∂2�

∂kα∂rα

A − i
∂�

∂kα

∂A
∂rα

− i

2

∂2�

∂kα∂kβ

AQαβ

− 1

2

∂3�

∂kα∂rα∂kβ

∂A
∂rβ

− 1

4

∂4�

∂kα∂rα∂kβ∂kγ

AQβγ .

(A1)

Here �(k, r) ≡ ∫
exp(−ik · ρ)L(ρ, r)d3ρ. The last two terms

on the right-hand side of Eq. (A1) are the products of two
quantities, each being relatively small, which is why we may
neglect them. The condition 	 = 0 thus leads to Eq. (8).

APPENDIX B: COMPLETE EXPRESSIONS
FOR THE MATRICES IN EQ. (9)

Let us rewrite the first matrix of Eq. (9) in the form

Gα = X−1 ∂ (XD)

∂kα

− DX−1 ∂X
∂kα

,

then we obtain

Gαmn = y(m) · ∂ (λ(n)x(n) )

∂kα

− λ(m)y(m) · ∂x(n)

∂kα

= Imn
∂λ(n)

∂kα

+ (λ(n) − λ(m) )U (mn)
α . (B1)

The second matrix may be represented as

Ĝαβ = ∂Gα

∂kβ

+ X−1 ∂X
∂kβ

Gα − GαX−1 ∂X
∂kβ

,

which yields

Ĝαβmn = ∂Gαmn

∂kβ

+ U (mν )
β Gανn − GαmνU (νn)

β

= Imn
∂2λ(n)

∂kα∂kβ

+ (λ(n) − λ(m) )
∂U (mn)

α

∂kβ

+ ∂ (λ(n) − λ(m) )

∂kα

U (mn)
β + ∂ (λ(n) − λ(m) )

∂kβ

U (mn)
α

+ (λ(m)−λ(ν) )U (mν )
α U (νn)

β +(λ(n)− λ(ν) )U (mν )
β U (νn)

α .

(B2)

Similarly, we may write the third matrix as

F = GαX−1 ∂X
∂rα

+ X−1 ∂X
∂rα

Gα,

and hence

Fmn = GαmνV (νn)
α + V (mν )

α Gανn

= ∂ (λ(m) + λ(n) )

∂kα

V (mn)
α + (λ(ν) − λ(m) )U (mν )

α V (νn)
α

+ (λ(n) − λ(ν) )V (mν )
α U (νn)

α . (B3)
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