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Ring structural transitions in strongly coupled dusty plasmas
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This paper presents a numerical study of ring structural transitions in strongly coupled dusty plasma confined
in a ring-shaped (quartic) potential well with a central barrier, whose axis of symmetry is parallel to the
gravitational attraction. It is observed that increasing the amplitude of the potential leads to a transition from a
ring monolayer structure (rings of different diameters nested within the same plane) to a cylindrical shell structure
(rings of similar diameter aligned in parallel planes). In the cylindrical shell state, the ring’s alignment in the
vertical plane exhibits hexagonal symmetry. The ring transition is reversible, but exhibits hysteresis in the initial
and final particle positions. As the critical conditions for the transitions are approached, the transitional structure
states exhibit zigzag instabilities or asymmetries on the ring alignment. Furthermore, for a fixed amplitude of the
quartic potential that results in a cylinder-shaped shell structure, we show that additional rings in the cylindrical
shell structure can be formed by decreasing the curvature of the parabolic potential well, whose axis of symmetry
is perpendicular to the gravitational force, increasing the number density, and lowering the screening parameter.
Finally, we discuss the application of these findings to dusty plasma experiments with ring electrodes and weak
magnetic fields.
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I. INTRODUCTION

Complex (or dusty) plasmas are collections of nano-sized
or micron-sized solid particles suspended in a plasma envi-
ronment. Typically, the dust grains acquire negative charge
and interact via the Yukawa (shielded Coulomb) potential.
Depending on the coupling strength [1], the dusty plasma
structure can be treated as a fluid [2,3], a visco-elastic fluid
[4–7], or a crystal [8–11]. Variations of the coupling strength
lead to phase or structure transitions [12–14] and control over
the growth of instabilities (gravity driven [15,16] and shear
driven [17–19]), turbulence [20–23], and wave propagation
[24–26]), etc. In Earth-based experiments, due to the macro-
scopic size, the dust particles normally levitate close to the
lower electrode, in the plasma sheath, where the gravitational
force is balanced by the sheath electric force. In addition, the
repulsive Yukawa interaction (the expansion) is commonly
balanced by applying an external magnetic field [27–31] or by
externally applied radial confinement potential [32], for exam-
ple, due to a disk cutout or a ring placed on the lower electrode
of a capacitively-coupled RF reference cell. Thus, the engi-
neering of the vacuum chamber electrodes can be used to
shape the confinement potentials in the plasma, which allows
for the exploration of a wide range of structural and dynamical

*vsd0005@auburn.edu
†egk003@auburn.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

phenomena. For example, one-dimensional transverse optical
modes have been investigated experimentally using horizon-
tally aligned (perpendicular to gravity) dust chains confined
in a harmonic potential created by a linear groove in the
lower electrode [33]. The two-dimensional zigzag transitions
have been studied in dusty plasmas confined by a biharmonic
potential well created by a rectangular depression between
four conducting bars placed on the RF powered electrode [34].
It has been shown that the properties of dust cluster rotation
in a nonmagnetized dusty plasma is highly dependent on the
characteristics of the parabolic radial confinement potential
[35,36]. Numerical simulations of dusty plasma crystals con-
fined in this type of potential have shown a transition from
fully hexagonal structure to a structure with hexagonal lattice
interior surrounded by concentric rings [37]. The formation
of ring structure in dusty plasmas is of particular interest
to the present study. A ring-shaped quadratic potential well
has been used to numerically demonstrate the formation of
complete and incomplete dust rings in the horizontal (perpen-
dicular to gravity) plane [38,39]. Moreover, longitudinal and
transverse dispersion relationships have been experimentally
observed for this potential type [40]. A ring-shaped potential
was formed using a circular grooved electrode with a center
post and used to study a rotating ring of dust particles in a
nonmagnetized plasma [41]. A rotating dust ring has also been
observed within the ring-shaped asymmetric potential well
created by asymmetric sawteeth of gears on the lower elec-
trode [42]. Finally, it has been shown that in the presence of a
weak magnetic field (about 150 G), the confinement potential
of a ring placed on the lower electrode is modified, leading to
the formation of a rotating ring dust structure [30].

Motivated by these experimental observations, here we
use molecular dynamics (MD) simulations to explore ring
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structural transitions for dust particles confined by a ring-
shaped (quartic) potential well with a central barrier. Specif-
ically, we investigate the critical conditions leading to a
transition from a ring monolayer structure (rings of different
diameters nested within the same plane) to a cylindrical shell
structure (rings of similar diameter aligned in parallel planes).
It is observed that the structural transition is governed by a
competition between the strength of the Yukawa interaction
potential and the properties of the external confinement po-
tential. Thus, we conjecture that these ring transitions can
be used to investigate dust particle charge in experiments
where the shape of the double-well potential can be varied
(for example, through changing the power on a ring elec-
trode and the strength of an external magnetic field). In the
present simulation, two types of external potentials have been
employed: a ring-shaped quartic potential well providing the
horizontal confinement and a parabolic potential well provid-
ing the vertical confinement. The axis of symmetry of the
quartic potential is parallel to the gravitational force, whereas
the parabolic potential is perpendicular to it. Before proceed-
ing, here, it is also important to keep in mind that if the
confinement/direction/plane is horizontal, it is perpendicular
to gravity; if it is vertical, it is parallel to gravity.

For a fixed number of dust particles, the transition from a
circular monolayer to a cylindrical shell structure is observed
as the amplitude of the quartic potential is gradually increased.
The transition is reversible and occurs through several inter-
mediate transitional states. In these intermediate states, since
the number of dust particles is either slightly higher or slightly
lower than the requirement of ring formation number, these
transition states exhibit a zigzag instability [43] or formation
of uneven rings in both the horizontal and vertical directions.
We observe that for an appropriate number of particles in the
cylindrical shell phase (the number needed to form perfect
rings for a given width of the annular potential well), the ring
alignment in the vertical plane exhibits a hexagonal symme-
try. For a fixed number of particles and a fixed amplitude
of the quartic potential that supports a cylinder-shaped shell
structure, decreasing the curvature of the parabolic potential
(causes for the vertical confinement) results in the forma-
tion of additional rings in the cylindrical shell structure. This
process occurs via several intermediary transition structures
that exhibit irregularities only in the vertical direction. Sim-
ilar observations have been made for simulations where the
screening parameter is decreased and/or the dust number
density is increased.

This paper is organized as follows. Section II presents the
numerical scheme with a brief description of the external
forces and potentials involved in our study. Section III is de-
voted to the numerical investigation of the structural transition
phenomena followed by a detailed discussion of the obtained
results. Finally, in Sec. IV, we provide a summary of our
results and discuss applications of these findings. The CGS
system of units is used in everything that follows.

II. MODEL AND METHODOLOGY

We consider a dusty plasma that includes N dust par-
ticles which interact through a Yukawa potential energy
U ykw. Each particle has the same negative charge Q (in

special circumstances like secondary electron emission [44]
or nonneutral ion conditions, dust particles become positively
charged [45,46]) and the same mass md . These particles are
confined vertically with a parabolic potential energy U ext

z
as well as horizontally with a ring-shaped potential energy
U ext

r . Therefore, the Hamiltonian H of the system can be
expressed as

H = Kd + U ykw + U ext
z + U ext

r . (1)

The Hamiltonian H is the sum of the kinetic energy Kd , the
interparticle interaction potential energy U ykw, and external
potential energies U ext.

A. Yukawa interparticle interaction potential

The dust interparticle interaction is governed by a Yukawa
potential of the form

U ykw

i j = Q

ri j
exp(−ri j/λD). (2)

Here, ri j is the radial distance between two particles and λD is
the Debye length due to the background plasma [47]. Such a
Yukawa system can be thermodynamically described by two
dimensionless parameters: the screening parameter κ = a/λD

(i.e., the ratio of the inter-particle distance over the Debye
length) and the unscreened Coulomb coupling parameter � =
Q2/akBTd (the ratio of interparticle Coulomb energy to the
thermal kinetic energy); Here, the interparticle distance is
given by a = (3/4πnd )1/3, nd is the dust density, Td is the
dust temperature, and kB is the Boltzmann constant.

B. Vertical confinement from a parabolic potential well

The simulation extends from 0 to lz along the vertical ẑ
direction. The external force due to gravity acts vertically
downward

Fg
z = md g(−ẑ)

while the vertical upward electric force F ext
z is given by

F ext
z = QE ext

z (ẑ).

Here we consider an electric field of the form

E ext
z = Ez0(z − lz + c), (3)

where c < lz/2 is a parameter that controls the curvature
(“sharpness” and “depth”) of the potential energy well. The
larger the value of c, the sharper and deeper the curved poten-
tial well [see Fig. 1(a)]. In order to levitate the dust particles at
an equilibrium vertical position z = h, the above two external
forces should balance each other [48] at z = h, i.e.,

F g
z = F ext

z at z = h.

Thus, the magnitude of the electric field at z = h is given by

Ez0 = md g

Q

1

(h − lz + c)
. (4)
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FIG. 1. The net parabolic potential energy diagram. Subplot
(a) shows the potential energy U ext

z as a function of z for several
typical values of c and an equilibrium position h = 0.5 cm. Subplot
(b) shows a schematic diagram for an equilibrium position z = h
(horizontal dotted line) for a particle (blue dot) where the gravita-
tional force is balanced by the force due to the parabolic potential
energy (blue solid curve).

The total potential energy associated with each particle at any
vertical position z is

U ext
z = md gz + QU ext

z (5)

and has contributions from the gravitational potential energy
md gz and the electrostatic energy QU ext

z associated with the
externally applied electric field E ext

z . Here, U ext
z = −∫

E ext
z dz.

Therefore, the total potential energy becomes

U ext
z = md gz − Ez0

(z − lz + c)2

2
. (6)

This total potential energy has a parabolic shape with a
symmetry axis perpendicular to gravity and centered on the
equilibrium vertical position z = h. This parabolic potential
is appropriate for modeling dust particles levitated near the
plasma sheath in laboratory experiments [43,49,50]. The form
of the potential selected here has been used to determine
analytically the dust particle charge [51] and to simulate
numerically structural transitions [14,52,53]. The potential
energy diagram (z vs U ext

z ) for several values of c is shown
in Fig. 1(a), where h = 0.5 while the other parameters are
fixed. This shows that as c increases, the walls of the potential
well become steeper and the well becomes deeper without
changing the vertical location of the minima h = 0.5. Thus,
it is expected that a larger value of c will result in a decreased
volume of vertical space available to levitate the dust particles.
Later in the paper, we show how a decrease in the c value can
be used to simulate the formation of additional rings in the
cylindrical ring structure. A schematic diagram in Fig. 1(b)
shows the equilibrium position for a particle (blue dot) along
the horizontal dotted line at z = h where the gravitational
force is balanced by the confinement force due to the parabolic
potential energy (blue solid curve).

C. Horizontal confinement from a ring-shaped potential well

In this work, we are interested in modeling experiments
where a radial confinement potential traps the dust parti-
cle in a circular groove. For this we chose the following

electric field profile

Eext
r = Er0(xx̂ + yŷ)(r − d )(r + d ), (7)

where the horizontal plane is defined by the x axis and the y
axis. Here, Er0 is the constant value of the radial electric field.
The corresponding potential is

U ext
r = −Er0

4
(r − d )2(r + d )2.

Therefore, the total radial potential energy associated with
each negatively charged dust particle is

U ext
r = QU ext

r = Er0
Q

4
(r − d )2(r + d )2. (8)

This quartic potential energy well is characterized by a ring of
minimum energy at a radial distance r = d , a barrier centered
at r = 0, and an axis of symmetry parallel to the gravitational
attraction. Figure 2(a) shows a three dimensional (3D) view of
this potential, while Fig. 2(c) shows a one dimensional (1D)
projection. The corresponding force on a negatively charged
dust particle is given by Fext

r = QEext
r :

Fext
r = QEr0(xx̂ + yŷ)(r − d )(r + d ). (9)

Fext
r is a radial vector force and has no tendency to swirl

(∇×Fext
r = 0). A schematic quiver plot of this radial force

[Fig. 2(b)] shows that the force (as arrows) is pointing in
the direction of minimum radial potential energy, i.e., r = d
(the blue solid circle). The arrowheads pointing outward (in-
side the circle) from the center represent the radially outward
push on particles due to the central barrier, while the arrow-
heads pointing inward (outside the circle) represent the inward
push due to the periphery of the potential. Thus, it is expected
that, in this potential, the particles get trapped in a circular
groove centered at radius r = d .

To illustrate how an increase in the quartic potential am-
plitude results in a ring structural transition, we have sketched
the 1D profile (along x, at y = 0) of this potential in Fig. 2(c)
for three different values of Er0. It is evident that an increase
in Er0 leads to steeper sides of the the well and a decreased
radial space where the particles can levitate at a particular
height z = h. Furthermore, Eq. (9) shows that higher Er0

results in greater radial force, which tends to squeeze the
particles closer to the minima of the well. Starting with a
small amplitude, Er0 = low, and fixed parameters for the ver-
tical potential, we can introduce a sufficient number of dust
particles to fill up the potential well and form a ring-shaped
monolayer (coplanar nested rings of decreasing radius), ra-
dially centered around r = d and vertically located at some
z = h. The dust particles remain in-plane on the condi-
tion that, for the equilibrium interparticle spacing within
the monolayer, the dust-dust interaction forces are balanced
by the radial potential force and the gravitational force is
balanced by the vertical parabolic potential force. As the
amplitude of the radial confinement is increased to some
intermediate value Er0 = mid , the dominance of the radial
potential force over the dust-dust interactions will result in
a structural state where these coplanner rings will show
irregularities in the horizontal and vertical directions (i.e.,
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FIG. 2. Radial force and potential diagrams (not to scale). (a) A 3d schematic surface diagram of the quartic ring-shaped potential energy
discussed in Eq. (8). The letter H that appears in the color bar is the acronym for the high-potential value region, while L stands for the
low-potential region. (b) A schematic quiver plot of the radial force vector from Eq. (9). (c) A 1D projection of the 3D potential shown in
(a) for three different values of Er0.

transitional state). Finally, beyond a critical value of the am-
plitude, Er0 = high, new rings with the same diameter will
form and align one above the other within a cylindrical surface
with radius d (i.e., a cylindrical shell structure). The new force
balance will result in a new interparticle separation within the
cylindrical shell.

D. Governing equation

Including the interaction and confinement forces discussed
above, the equation of motion of the ith dust particle for the
Hamiltonian Eq. (1) can be written as

md r̈i = Fykw
i j + Fext

r + Fg
z + Fext

z . (10)

The right-hand side (RHS) of Eq. (10) is the sum of all the
forces acting on the ith dust particle, which are given by

Fykw

i j = −∇
∑

i< j

U ykw

i j ,

Fext
r = +QE ext

r r̂,

Fg
z = −md gẑ,

Fext
z = +QE ext

z ẑ.

Fykw
i j is the dust-dust interaction force, which is assumed to

be a Yukawa (screened Coulomb). The following three force
terms account for radial confinement, gravity, and vertical
confinement. In each simulation case presented here, we first
disperse N identical dust particles randomly in a 3D simula-
tion box. Then, the particle dynamics is advanced according
to Eq. (10).

Here, we consider two cases: (i) ring structural transi-
tion due to changing amplitude of the quartic potential and
(ii) properties of the cylindrical shell structure for various
particle numbers, coupling, and curvature of the parabolic
potential. The equilibrium state in each simulation run has
been achieved using a Nose-Hoover thermostat [54,55]. The
velocities were chosen to follow a Gaussian distribution cor-
responding to dust temperature Td for the considered coupling
parameter �. It should be noted that for each simulation
run, the system reached the desired equilibrium temperature
(verified by temperature fluctuations and energy plots) well in
advance of the simulation time.

First, to study the ring structural transition, we fix all other
parameters and gradually change the amplitude Er0 of the
quartic potential. This is achieved by a succession of simu-
lation runs. For each value of Er0, the simulation is advanced
until an equilibrium state is achieved. Then, the simulation is
stopped, the potential amplitude is varied, and the simulation
is advanced until a new equilibrium state is achieved. In these
successive runs, the equilibrium particle positions at the last
time step of one run are used as initial positions for the next
run (with a new Er0). The initial temperature remains the same
for all simulation runs. The total sum of potential energy and
kinetic energy is conserved in each individual run but varies
from run to run due to the changing confinement potential
energy.

Next, for fixed quartic potential parameters, we explore
how the properties of the cylindrical shell structure change
with particle number, coupling strength, and characteristics of
the parabolic (vertical) potential well. First, we select a value
of the quartic potential amplitude Er0 that results in the for-
mation of a cylindrical shell structure for given initial particle
number, coupling, and parabolic potential. After equilibrium
is achieved, successive simulation runs are used to vary one
parameter (particle number, coupling strength, or parabolic
potential curvature), while all other parameters are fixed. In
each case, the resulting formation of perfect or imperfect rings
inside this shell structure is analyzed.

III. NUMERICAL SIMULATION, RESULTS,
AND DISCUSSION

All simulations have been carried out using the open-
source MD code LAMMPS [56]. Boundary conditions are
periodic in the xy plane and nonperiodic in the z direction.
For all simulations, we consider a 3D simulation box of
lx (= 1cm)×ly (= 1cm)×lz (= 1cm). lx, ly, and lz are the
system lengths in the x, y, and z directions, respectively. Here,
−0.5� x �0.5, −0.5� y�0.5, and 0� z�1. Each dust parti-
cle has the same charge Q = 11940 e− and same mass md =
6.99×10−10g. The confining quartic potential has a ring-
shaped minimum along the radial distance d = 0.3535 cm,
located between the central barrier at r = 0 cm and the radial
edge at r = 0.5 cm. We have considered a constant value of
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FIG. 3. Three equilibrium stages of the ring structural transition are represented in (a) under the influence of the increasing amplitude of
the ring-shaped quartic potential shown in (b).

gravitational acceleration, g = 981 cm/s2. The other parame-
ters are chosen according to the specific problem.

A. Ring structure transition

Keeping in mind the cylindrical symmetry of the quartic
potential, at t = 0, 96 (= 3×32) dust particles are randomly
dispersed in a cylindrical volume of radius r = 0.5 cm cen-
tered around (0,0) and extending on the z axis from z =
0.4 cm to z = 0.6 cm within the simulation box. The coupling
parameter is � = 200 and the respective dust kinetic tem-
perature Td = Q2/akB� = 1.404 eV. With typical inter-dust
distance a = 7.31×10−2cm and κ = a/λD = 1.0, the corre-
sponding value of the Debye length is λD = 7.31×10−2cm.
The characteristic frequency of the dust particles is ωpd =
4πnd Q2/md∼19.0 s−1, which corresponds to the dust plasma
period of 0.331 s (= 2π/ωpd ). We have chosen a simulation
time step of �t = 5×10−3 ω−1

pd or �t = 2.63×10−4 s so that
the simulation can easily resolve all phenomena occurring at
the dust response time scale.

These initial conditions were used to study the ring struc-
tural transition due to a gradual change in the amplitude
of the quartic potential. For each value of the quartic po-
tential, the simulation is run until an equilibrium state is
achieved. Each simulation run has a total number of time
steps Nsteps = 6×104, which corresponds to run time 15.78 s
(i.e., Nsteps×�t s). After t = 15.78 s, the simulation is stopped
and the amplitude of the quartic potential Er0 from Eq. (8)
is changed. First, the amplitude is increased in 80 succes-
sive runs from Er0 = 0.05 statV/cm to a maximum value of
Er0 = 4 statV/cm (= 0.05×80) at t = 1262.4 s. Then, for the
next 79 runs, the amplitude is decreased by the same amount
at the same time intervals to get back to Er0 = 0.05 statV/cm.
In this section, the curvature of the parabolic potential is kept
fixed at c = −1.0.

The three subplots in Fig. 3(a), from left to right, display
the final thermal equilibrium of 96 dust particles for three

representative values of the quartic potential well amplitude.
The subplots in Fig. 3(b) show the shape of the corresponding
potential well U ext

r for each case. In Fig. 3(a), the locations
of the quartic potential minima are marked by a black circle
with radius d = 0.3535 cm at a vertical height z = 0.5 cm
(minima of the parabolic potential). The colorbar in Fig. 3(a)
corresponds to the vertical positions of the dust particles. In
Fig. 3(b), the colorbar represents the magnitude of the quartic
potential energy. During the first 15.78 s of the simulation,
the dust particles form a circular monolayer structure un-
der the action of the quartic potential with amplitude Er0 =
0.05 statV/cm. The monolayer consists of approximately four
rings, nested within the same plane, which is visible by the
same green color of the dots in the first subplot of Fig. 3(a).
This circular structure has approximate symmetry about the
d = 0.3535 cm and is located at a vertical height z = 0.5 cm
because the net quartic potential force points in the direction
of the minimum (as discussed in Sec. II). The dust parti-
cles will remain within the plane if their planar interparticle
separation is sufficient for the dust-dust interaction force to
balance the confinement force from the quartic potential.

The particle positions of this circular monolayer structure
have been used as the initial positions for the next simulation
(from t = 15.78 s to t = 31.56 s) during which the quartic
potential amplitude is increased from 0.05 statV/cm to Er0 =
0.1 statV/cm. Higher Er0 value causes stronger radial force
which radially squeezes the dust particle structure around the
potential well’s minimum. The central barrier of the potential
pushes the ring of the innermost particles toward the mini-
mum, while the circular edge pushes the ring of the outermost
particles toward the minimum. The competition between the
radial potential (due to the increase in amplitude) and the
dust-dust interactions results in irregularities in the coplanner
rings both in the horizontal (perpendicular to gravity) and
vertical (parallel to gravity) directions.

At the later time t = 78.90 s, as the net confinement force
increases by increasing the amplitude to Er0 = 0.25 statV/cm,
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FIG. 4. Three equilibrium stages of the ring structural transition are represented in subplot (a) under the influence of the decreasing
amplitude of the ring-shaped quartic potential shown in subplot (b).

the middle two rings shift along the vertical z axis, one toward
the bottom (yellow dots), and one toward the top (magenta
dots). The innermost ring (which now has larger radius than
earlier at t = 15.78 s) and outermost ring (which now has
smaller radius than earlier at t = 15.78 s) remain nearly copla-
nar (green dots) at the same vertical height z = 0.5 cm. We
refer to this arrangement of dust particles as a transitional
structure state. An expanded image of the transitional struc-
ture state is shown in Fig. 5(b).

Further increasing the value of Er0 eventually leads to a
structure in which the dust particles are aligned in rings with
the same diameter, located one above the other within a cylin-
drical surface. At t = 1262.4 s, when the potential amplitude
is Er0 = 4 statV/cm, the particles settle in three perfect rings
with a radius of 0.3535 cm: the top one at z = 0.5442 cm
(red dots), the middle one at z = 0.5 cm (green dots), and
the bottom one at z = 0.4558 cm (blue dots). We refer to this

state as a cylindrical shell structure, where each of the three
rings has an equal number of dust particles (here, 32). Subse-
quent simulation runs with a higher potential amplitude do not
yield discernible changes to the cylindrical ring structure. All
transitional states in between the circular monolayer structure
and cylindrical shell structure consist of irregular rings that
manifest zigzag instabilities in both the horizontal and vertical
directions.

To test the reversibility of this structure transition phe-
nomenon, we repeat the simulation from t = 1262.4 s to
t = 2509.02 s, this time decreasing the amplitude value from
Er0 = 4 statV/cm to Er0 = 0.05 statV/cm by the same amount
of 0.05 statV/cm at the same interval of time (= 15.78 s) for
each simulation run. The outcomes of this simulation are
shown in Fig. 4. Based on a visual comparison of subplots,
the formation of structures in Fig. 4(a) appears to be similar
to that in Fig. 3(a) for the same values of Er0. Thus, we find

FIG. 5. Comparison of the dust position distributions from the forward and backward simulations for corresponding values of Er0. The plot
in (a) shows the distribution of particle positions for t = 15.78 s [red circles, Fig. 3(a)] along with the distribution at t = 2509.02 s [black dots,
Fig. 4(a)]. The plot in (b) shows the distribution of particle positions for t = 78.90 s [multicolor circles, Fig. 3(a)] along with the distribution
at t = 2445.90 [multicolor dots, Fig. 4(a)]. Colorbar in the right panel corresponds to the vertical locations (z) of the particles.
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FIG. 6. The dust particles within the cylindrical surface structure arrange in a regular hexagonal pattern for Er0 = 4.0 statV/cm (data from
t = 1262.40 s). The figure panels [Figs. 3(c) and 4(a)] show three different views: (a) 3D view, (b) yz plane, and (c) xy plane.

that this structure transition is reversible in terms of layer or
ring formation.

As we mentioned above, in each successive run, the final
particle positions of the previous state have been used as the
initial positions for the next one. This means that during the
backward and forward simulations, the initial particle posi-
tions were not the same for the same Er0. For example, during
the forward run for Er0 = 0.05 statV/cm [at t = 15.78 s in
Fig. 3(a)], the initial particle positions were random, while
during the backward run, the initial particle positions for
Er0 = 0.05 statV/cm [at t = 2445.9 s in Fig. 4(a)] belong to
the previous state for Er0 = 0.1 statV/cm (at t = 2493.42 s).
Therefore, it is expected that the equilibrium particle distribu-
tions for forward and backward runs with the same Er0 will
differ.

Figure 5 shows the equilibrium states from the for-
ward and backward simulation runs with the same Er0.
The distribution of dust particles at t = 15.78 s (Fig. 3(a)]
from the forward simulation is represented by red circles (◦),
while the distribution of particles at t = 2509.02 s [Fig. 4(a)]
from the backward simulation is represented by black dots (•)
together in Fig. 5(a). We see that, although both simulations
resulted in circular monolayer structures, the distribution of
final particle positions is different. This is due to the dif-
ferences in initial distributions of particle positions in each
simulation. A similar trend is observed for transitional states.
In Fig. 5(b), the distribution of dust particles from the forward
simulation [represented by the multicolored circles (◦)] at
t = 78.9 s [Fig. 3(a)] has been plotted over the distribution of
particles from the backward simulation [represented by multi-
colored dots (•)] at time t = 2445.9 s [Fig. 4(a)]. It is again
visible that particle locations are not exactly the same under
the same external potential Er0 = 0.25 statV/cm. In Fig. 5(b),
we have highlighted the four rings with solid circles based
on their radii and vertical positions: the bottom (blue: radius
rbot = 0.3535 cm and vertical location zbot = 0.465 cm), the
top (red: radius rtop = 0.3535 cm and vertical location ztop =
0.535 cm), and the two middle rings (green: radii of the inner
(rmIN = 0.31 cm) and outer rmOUT = 0.39 cm, and same verti-
cal location zmIN = zmOUT = 0.5 cm). Thus, we conclude that
the ring structural transition exhibits hysteresis in the particle
positions.

Another interesting observation is that within the cylindri-
cal shell structure, the dust particles arrange in a hexagonal

lattice structure, as shown in Fig. 6. Figures 6(a) (3D view)
and 6(b) (yz plane). The z position of the top ring particles (red
dots) aligns with the z position of the bottom ring particles
(blue dots), while the middle ring particles (green dots) are
located in between. If the number of particles in the simula-
tion is increased enough so that more rings are added to the
cylindrical shell structure, the symmetry in vertical alignment
will repeat, forming an A-B-A-B-A-B structure [the curvature
of the parabolic potential (causes for the vertical confinement)
may also affect this structure].

Figure 7 shows the same simulation experiment repeated
with a smaller number of particles. Figure 7(a) depicts a ring
structural transition for 64 (= 2×32) dust particles. The cylin-
drical shell structure in this case is made up of two perfect
rings, each with 32 particles, where the top ring particles
(red dots) settle in between the bottom ring particles (blue
dots). Figure 7(b) depicts a 32 (= 1×32) particle with a single
perfect ring at the maximum value of the potential amplitude.

B. Parametric dependency in the formation of the cylindrical
shell structure

In addition to the amplitude value Er0, the number of dust
particles N (or number density), the screening parameter κ ,
and the control parameter c for parabolic potential U ext

z , all
play a crucial role in the formation of the observed dust struc-
tures. To investigate the role of these parameters, all results
in this section were obtained from a single simulation period
(0 s to 15.78 s) with fixed amplitude Er0 = 4.0 statV/cm. The
initial state is a random distribution of dust particles which
forms a cylindrical shell structure at equilibrium for the cho-
sen amplitude Er0 = 4.0 statV/cm. To ensure that the particles
are distributed uniformly within each ring and to prevent
a zigzag instability or ring irregularities in the cylindrical
shell structure, the number of particles should be divisible
by the number of rings. We have summarized some findings
regarding the formation of perfect or imperfect rings in the
cylindrical shell structures as different parameters are varied:
Fig. 8 (changing N for constant κ = 1 and c = −1), Fig. 9
(changing κ for constant c = −10 and N = 72), and Fig. 10
(changing c for constant κ = 1 and N = 72) for a fixed value
of Er0 = 4.0 statV/cm.

Figure 8 shows the results for different numbers of dust
particles N with fixed values of κ = 1 and c = −1. As
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FIG. 7. The ring structural transition for (a) 64 (= 2×32) and (b) 32 (= 1×32) dust particles due to the change in Er0.

FIG. 8. Ring structure formation in the cylindrical surface state for different number of dust particles N . All subplots show the equilibrium
structure at t = 15.78 s with fixed values of Er0 = 4.0 statV/cm, κ=1, and c = −1.
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FIG. 9. Ring structure formation in the cylindrical surface state for different κ . All subplots show the equilibrium structure at t = 15.78 s
with fixed values of Er0 = 4.0 statV/cm, number of particles N = 72, and c = −10.

illustrated in Fig. 8(a), particle numbers up to 34 arrange
into a single perfect ring with radius d = 0.3535 cm, located
at vertical equilibrium height z = 0.5 cm. As the density of
the dust particles increases, the interparticle separation de-
creases and the repulsive Yukawa interaction becomes more
pronounced. Since there is no more room to expand radially
within the same plane, further increasing N results in the
extension of existing rings vertically with some irregularities
and, eventually, in the formation of a new ring. Thus, with
the addition of one more particle to the 34-particle ring, the
structure becomes irregular due to a zigzag instability, as
displayed in Fig. 8(b). Further addition of particles leads to
the formation of a new ring located at a different vertical
height. Initially two irregular rings are formed that attempt to
balance vertically: one shifts lower and the other shifts higher
with respect to the vertical equilibrium location z = 0.5 cm,
as shown in Figs. 8(c) and 8(d). Finally, two perfect rings are
observed for particle numbers ranging from N = 58 = 2×29
up to N = 80 = 2×40, as shown in Figs. 8(e) and 8(f). The
addition of more particles results in the formation of an ad-
ditional ring through similar intermediate irregular structures
[Figs. 8(g)–8(i)]. The formation of three perfect rings is ob-
served for particle numbers ranging from N = 96 = 3×32 to
N = 108 = 3×36, as shown in Figs. 8(j) and 8(k). The forma-
tion of additional rings via irregular intermediate structures

is repeated if more particles are added to the current system
[Fig. 8(l)].

The snapshots in Fig. 9 represent the equilibrium configu-
rations of 72 particles for different κ at t = 15.78 s. The values
of Er0 = 4 statV/cm and c = −10 are constant. Figure 9(a)
shows that two perfect rings, made of 36 particles each, form
for κ = 5. The parameter κ is the ratio of average interparticle
separation to the Debye screening length. Thus, it quantifies
the characteristic spatial scale at which the Yukawa interaction
acts. As κ is decreased, the range of repulsive interactions
among dust particles increases. For Er0 = 4 statV/cm it is not
favorable for the dust particles to spread in the radial direc-
tion. Therefore, the effect of decreasing κ can either lead to
expanding the dust interparticle separation vertically, which
results in ring irregularities, or to producing a new ring at a
different vertical height. Figure 9(b) shows the formation of
irregularities in the existing two rings as they try to form a
third ring for κ = 3. Finally, three perfect rings are observed
to form for κ = 1, as shown in Fig. 9(b), with each ring
containing 24 particles (N = 72 = 3×24). The formation of
a forth ring through intermediate irregular states is repeated
as the value of κ is further decreased, as shown in Figs. 9(d)
and 9(e). It should be emphasized that in this case, the value of
c must favor the addition of a new ring to the given structure.
If c = −1, we don’t see this transition event.

FIG. 10. Ring structure formation in the cylindrical surface state for different c. All subplots show the equilibrium structure at t = 15.78 s
with fixed values of Er0 = 4.0 statV/cm; number of particles N = 72, and κ = 1 are kept constant.
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TABLE I. Ring structure formation in the cylindrical shell state for different numbers of dust particles for c = −5 and c = −10.

���������������No. of rings

c
c = −5 c = −10

1 Up to 23 Up to 19
2 32 (= 2×16) to 54 (= 2×27) 24 (= 2×12) to 44 (= 2×22)
3 60 (= 3×20) to 78 (= 3×26) 51 (= 3×17) to 72 (= 3×24)
4 96 (= 4×24) 84 (= 4×21) to 92 (= 4×23)
5 125 (= 5×25) to 130 (= 5×26)

Figure 10 shows equilibrium configurations of 72 particles
for different c values with fixed values of Er0 = 4 statV/cm
and κ = 1 at t = 15.78 s. For c = −1, two perfect rings are
observed, as shown in Fig. 10(a), and each of the rings
has an equal number of dust particles, 36. The parameter c
controls the curvature of the parabolic potential whose axis
of symmetry is perpendicular to the gravitational force and
centered on the equilibrium vertical position z = 0.5. When
c decreases, the curvature of the parabolic confining potential
becomes less steep, increasing the amount of vertical space
available for the particles. This can either cause growing
irregularities between neighboring rings or result in the for-
mation of new rings. Figure 10(b) shows that for c = −2,
the interparticle separation in the existing two rings increases
in the vertical direction resulting in irregular structure. For
c = −10, Fig. 9(c) depicts the formation of a third ring, with
each ring containing 24 particles (N = 72 = 3×24). If the
value of c is further decreased, additional rings are formed
through intermediate irregular states, as shown in Figs. 10(d)
and 10(e).

Table I provides a summary of results for simulations with
different numbers of dust particles N with fixed values of κ =
1. The range of perfect ring formation has is shown by rows
for c = −5 and c = −10.

IV. CONCLUSIONS AND OUTLOOK

In dusty plasmas, the competition between interaction po-
tential forces and external confinement forces can lead to
the formation of interesting structural states and structural
transitions. To explore the ring structural transition in a dusty
plasma, we conducted MD simulations where charged dust
particles are confined in a ring-shaped quartic potential well.
Here we presented the results from two cases. In the first case,
we examined how increasing the value of the quartic potential
amplitude can lead to the transition from a ring monolayer
structure (rings of different diameters nested within the same
plane) to a cylindrical shell structure (rings of similar diam-
eter aligned in parallel planes). We established that the ring
structure transition occurs through several transitional states
where the rings exhibit irregularities and zigzag instabilities.
The transition is also reversible, but shows hysteresis in the
initial and final distributions of particle positions. In the cylin-
drical surface structure, the particles are arranged in a perfect
hexagonal pattern, with each ring containing an equal number
of particles.

In the second case, we investigated how the ring formation
within the cylindrical surface structure state depends on the
number of dust particles N , the screening parameter κ , and the

curvature of the parabolic potential (denoted by the parameter
c) for a fixed value of Er0 = 4 statV/cm. For this high value of
the quartic potential amplitude it is not energetically favorable
for the particles to move in the radial direction; the effect
of the above parameters results either in the formation of
ring irregularities due to increased particle separation in the
vertical direction, or in the formation of new rings at different
vertical height. Therefore, as κ decreases, c decreases, and/or
the number density increases, we observe the formation of
additional rings within the cylindrical shell through several
intermediate states with irregularities solely in the vertical
direction.

We suggest that the present configuration (duty plasma
confined in a quartic potential well) can be used to explore
various fundamental phenomena. For example, in a laboratory
experiment where the quartic potential is achieved by a com-
bination of rings on the lower electrode and/or weak magnetic
field, rapid variations of the electrodes power can be used to
cause implosion or explosion of the annular dust structure that
would allow the exploration of various phenomena, including
acoustic waves, two-stream instabilities, bump-on-tail insta-
bilities, spatial variation in coupling strength, and much more.
This has been previously shown for sculpted ultracold neutral
plasmas in [57]. Since the transition from a ring monolayer
to a cylindrical shell structure is highly sensitive to the dust
interaction potential, we further conjecture that it can be used
to investigate the dust particle charging in laboratory settings.
Finally, we would like to add that since this ring-shaped poten-
tial looks like a Mexican hat, this potential is also referred to
as the “Mexican hat potential” [58,59]. For a system consist-
ing of classical particles in such a Mexican hat potential might
be a nice model for symmetry breaking via the Goldstone
mechanism [60,61].
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APPENDIX: THE STRUCTURE TRANSITION FROM A
CYLINDRICAL SHELL TO A CIRCULAR MONOLAYER

AND AGAIN TO A CYLINDRICAL SHELL

In the following Fig. 11, we compute the 96 random dust
particle system with the change in trend of Er0 which is
reversed from the previously discussed case in Figs. 3 and 4.
This means that the starting amplitude is the highest, Er0 =
4 statV/cm, then decreases to the lowest, Er0 = 0.05 statV/cm,
and then begins to increase to Er0 = 4 statV/cm. Apart from
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FIG. 11. A ring structural transition phenomenon under containment swinging potential well. There is an initial decrease in magnitude of
quartic potential well and then an increase in the magnitude.

the reverse order of the amplitude of potential, all other con-
ditions are similar. In Fig. 11, as expected, all five subplots
show the transformation from a cylindrical shell structure

(Er0 = 4 statV/cm) to a circular monolayer structure (Er0 =
0.05 statV/cm) and again to a cylindrical shell structure
(Er0 = 4 statV/cm) through various transition states.
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