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Parameter study of decaying magnetohydrodynamic turbulence
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It is well known that helical magnetohydrodynamic (MHD) turbulence exhibits an inverse transfer of magnetic
energy from small to large scales, which is related to the approximate conservation of magnetic helicity. Recently,
several numerical investigations noticed the existence of an inverse energy transfer also in nonhelical MHD
flows. We run a set of fully resolved direct numerical simulations and perform a wide parameter study of the
inverse energy transfer and the decaying laws of helical and nonhelical MHD. Our numerical results show only
a small inverse transfer of energy that grows as with increasing Prandtl number (Pm). This latter feature may
have interesting consequences for cosmic magnetic field evolution. Additionally, we find that the decaying laws
E ∼ t−p are independent of the scale separation and depend solely on Pm and Re. In the helical case we measure
a dependence of the form pb ≈ 0.6 + 14/Re. We also make a comparison between our results and previous
literature and discuss the possible reason for the observed disagreements.
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I. INTRODUCTION

Decaying magnetohydrodynamic (MHD) turbulence has
received special attention in recent years. The study of decay-
ing turbulence has been a topic of interest in its own sake for
decades [1–10]. Furthermore, the decay of MHD turbulence
is of central importance for astrophysics and cosmology, es-
pecially for the generation and evolution of large-scale cosmic
magnetic fields [11–15].

The presence of an inverse cascade in helical MHD tur-
bulence has been studied for many decades now [16], and a
large number of numerical studies have been dedicated to this
topic. Some used direct numerical simulations (DNS) [5,17–
22], whereas others used closure approximations and cascade
models [23–25].

In recent years, several studies found evidence of an inverse
energy transfer also in nonhelical flows [26–33]. The physical
mechanisms involved in the nonhelical inverse transfer are
different to those in the case of magnetic helicity and are
not yet completely understood. Some recent studies claim
that magnetic reconnection may play an essential role in this
inverse transfer [30–32,34–37]. Only a few works analyzed
the dependence of this effect on the magnetic Prandtl number,
Pm = ν/η, which is the ratio of kinetic viscosity to magnetic
diffusivity [26,29]. This is important for applications, since
it is estimated that Pm � 1 in astrophysical systems such
as the interstellar and intergalactic medium [38–40]. This is
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also noted in Ref. [32], where the authors choose a value of
Pm � 1.

In this work we perform a series of fully resolved DNS
of decaying MHD turbulence with special focus on the in-
verse transfer of magnetic energy as well as the decaying
exponents for a wide range of parameters such as Prandtl
number, Reynolds number, and scale separation. Most of the
simulations in this paper are initially in equipartition and a
small number are magnetically dominated. This is contrary to
most recent numerical results which are mainly magnetically
dominated.

Recent numerical studies implement hyperviscosity and
hyperresistivity to overcome resolution limitations. Our whole
analysis is based on flows with standard viscosity and we only
run a few hyperviscous runs for the sake of comparison.

The paper is organized as follows. In Sec. II we give a brief
introduction to decaying hydrodynamics and decaying MHD
for both helical and nonhelical turbulence and its applications
to the topic of primordial magnetic fields. In Sec. III, we give
basic definitions and describe the numerical setup. In Sec. IV
we discuss the subtleties involved in the measurement of the
decaying exponents. In Sec. V, we make a comparison among
a hydrodynamic, a helical, and a nonhelical MHD simulation.
In Sec. VI, we perform a detailed analysis of decaying helical
and nonhelical MHD for varying Prandtl number. In Sec. VII
we do the same for varying Reynolds number, and in Sec. VIII
for the scale separation. In Sec. IX, we show the results of a
small number of simulations that use hyperviscosity and hy-
perresistivity to study the effect that these have on the inverse
transfer. We dedicate Sec. X to the comparison between our
results and those produced by other codes in literature.

II. DECAYING TURBULENCE

A. Decaying hydrodynamics

The first to establish the laws of decaying turbulence was
Kolmogorov in one of his foundational works in 1941 [3].

2470-0045/2023/107(5)/055206(17) 055206-1 Published by the American Physical Society

https://orcid.org/0000-0003-2865-5917
https://orcid.org/0000-0001-5005-7812
https://orcid.org/0000-0002-9929-7603
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.055206&domain=pdf&date_stamp=2023-05-12
https://doi.org/10.1103/PhysRevE.107.055206
https://creativecommons.org/licenses/by/4.0/


ARMUA, BERERA, AND CALDERÓN-FIGUEROA PHYSICAL REVIEW E 107, 055206 (2023)

This theory is based on the approximate invariance of the
Loitsyansky integral I = − ∫

dr r2〈u(x)u(x + r)〉 ∼ L5U 2 =
2L5E , where L is the integral length scale, E the energy, and
U the root-mean-squared velocity. This integral is used to set
the timescale of the energy decay, assuming that dE/dt ∼
−E/T ∼ −E3/2/L ∼ −E17/10, the energy decay rate, follows
the power law

E ∝ t−10/7. (1)

The invariance of the Loitsyansky integral has been chal-
lenged by some authors years later. These suggest that
long-range correlation may exist in turbulent flows depending
on the form of the initial spectrum (∼k2 or ∼k4) [1,8,9,41–
43]. This gives place to multiple predictions for the decaying
laws that depend on initial conditions and other physical as-
sumptions. For instance, in 1967, Saffman predicted a decay
law of the form E ∼ t−6/5 for an initial spectrum of the form
E (k) ∼ k2 [1].

Furthermore, numerical and experimental results add to
the controversy by showing a variety of results for the
decaying exponent p (i.e., E ∼ t−p), as well as different
conclusions for the dependence of p on initial conditions
and experiment/simulation setup. For experimental results see
Refs. [44–49] and for numerical results see Refs. [50–58].
There are many factors that might affect the evolution of
the decay in either numerical simulations or experiments.
For instance, even though the theory assumes the Re→ ∞
limit, numerical and experimental measurements are done
at finite Reynolds numbers, preventing the formation of the
self-similar cascade on which the theories rely. Furthermore,
some authors notice the importance of large-scale resolution,
suggesting that a saturation occurs when the size of the largest
eddies becomes similar to size of the box, thus affecting the
dynamics of the decay [47,52,59].

These controversies brought recent attention to the prob-
lem of obtaining truly universal laws for decaying turbulence
[51,60]. In Ref. [60], the authors collected data from different
numerical and experimental results reported over decades,
which was analyzed to provide some clarity on this issue.

B. Decaying MHD

A topic of major theoretical and practical importance is the
decay of MHD turbulence. In MHD, the difficulty to establish
universal decaying laws goes one step further. The variety of
physical situations and initial conditions is much wider than in
hydrodynamics, and the interplay of time and length scales is
much more complex. Still, multiple predictions can be made
based on different assumptions.

A common classification for MHD flows is done in terms
of the value of the magnetic helicity, which is defined as

〈Hb〉 = lim
V →∞

V −1
∫

V
dV 〈A · B〉, (2)

where B is the magnetic field and A is the magnetic vector
potential such that ∇ × A = B. The magnetic helicity is an
ideal invariant in MHD, and its turbulent dynamics present
interesting properties. The pioneering paper by Frisch et al.
[16] showed that the magnetic helicity spectrum Hb(k, t ) =∫
|k|=k〈A(k) · B(−k)〉 exhibits an inverse cascade that had not

been previously predicted or observed for kinetic helicity
in pure hydrodynamic flows. Additionally, in this paper it
is shown that the flow must obey the following realizabilty
condition:

|Hb(k, t )| � 2|Eb(k, t )|
k

, (3)

where Eb(k, t ) is the magnetic energy spectrum. This sug-
gests that the inverse cascade of magnetic helicity might be
accompanied by a transfer of magnetic energy to large scales
in order to satisfy the condition in Eq. (3). The implication of
this process is that magnetic energy is redistributed to larger
scales, leading to the creation of coherent magnetic structures
at scales much larger than the ones where the energy was
initially injected. Over the decades, numerous numerical evi-
dence have supported the existence of such an inverse cascade
[17,19,21,22,25,28].

We refer to flows as helical if the Eq. (3) satisfies the
equality for a most values of k. In this case, it is said that mag-
netic helicity is maximal. Alternatively, we define the flow
to be nonhelical if the magnetic helicity is practically null.
In the nonhelical case, the mechanisms and phenomenology
described above are not present in nonhelical flows. Apart
from these two cases, MHD flows can also be partially helical,
but in this work, we only focus on cases where magnetic
helicity is either maximal or vanishing.

For decaying turbulent MHD flows, the difference between
helical and nonhelical flows is also remarkable. In the helical
case, magnetic helicity is approximately conserved during the
decay, even for nonvanishing resistivity, hence, looking at
Eq. (2) it can be estimated that

〈Hb〉 ∼ B(t )2L(t ) ∼ Eb(t )L(t ), (4)

where B is the rms magnetic field and L is the coherence
length of the field.

This conservation results in an inverse cascade of magnetic
helicity from small to large length scales that supports an in-
verse transfer of magnetic energy. This also produces a slower
energy decay and a faster growth of the integral lengthscale
than in the hydrodynamic case.

For U ∼ B and Lb ∼ Lu, it can be derived that the mag-
netic and kinetic energy decay with similar rates Eb ∼ Eu ∼
t−2/3 [31]. Nevertheless, the magnetic field decay measured
in numerical simulations is shallower than this prediction
[5,7,11,28,61].

In Refs. [31,34–37], it is proposed that magnetic reconnec-
tion is the mechanism leading the inverse transfer and setting
the decay timescale. Based on these arguments, in Ref. [31]
different decay rates are computed depending on the situa-
tion. For U 
 B, it is found that Eb ∼ t−4/7 and Eu ∼ t−5/7,
whereas for U ∼ B, it is conjectured that an invariant related
to the cross-helicity (even in cases with no net cross-helicity),
produces a decay of the form Eu ∼ t−1 and Eb ∼ t−1/2.

In the nonhelical case, the conservation of magnetic he-
licity cannot be used to estimate the timescale of the decay.
The nonhelical inverse transfer found recently in numerical
work has brought increasing interest in this topic. A decade
ago, multiple works reported this inverse energy transfer using
DNS [27,28,33], although many years before, in Ref. [5]
they had observed a small inverse transfer of energy in
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direct numerical simulations for the nonhelical case, suggest-
ing that this effect could be more pronounced at larger values
of Re. The physical mechanisms behind this inverse transfer
remain unclear and recent studies were dedicated to this topic
[29–32,62].

Campanelli analyzed the problem of decaying nonheli-
cal MHD using Olesen scaling arguments. These explore
the self-similarity properties of MHD equations [63], reach-
ing to the conclusion that for an initial spectra of the form
[Eb(k, t ) ∼ Eu(k, t ) ∼ k4], the magnetic energy decays as
Eb ∝ t−1 [13,64,65].

In Ref. [27], the PENCIL code is used and a clear inverse
transfer of magnetic energy is observed for a magnetically
dominated case. The authors suggest that the inverse transfer
occurs due to the shallower kinetic spectra ∼k2 that dominates
at large scales, interacting with the magnetic field to force
larger coherence scales, or due to the local two-dimensional
behavior of the magnetic vector potential that might enhance
the inverse transfer. In this work, a weak turbulence spectrum
(∼k−2) is observed in the inertial range. Runs that start with
small helicity show an energy decay that goes like t−1 initially
and then approach a t−1/2 as the system approaches maximal
helicity. The t−1 scaling has been repeatedly observed in
numerical simulations of nonhelical MHD [5,7,28–30,33,66].
In [28,33], an inverse energy transfer and a magnetic energy
decay of t−1 are also reported.

Recently in Ref. [30], magnetic reconnection is proposed
as the main mechanism for the inverse transfer, and this is
investigated using DNS of initially magnetically dominated
flows as well as a kinetic dominated case. The authors show
that if the time is normalized using the magnetic reconnection
timescale, then all decay curves with different Lundquist num-
bers collapse into each other. When the flow is initialized with
nonzero kinetic energy, a weaker but present inverse transfer
is found, possibly related to the dynamo action at large scales.

In Ref. [31], the authors give an intuitive explanation of
the mechanism leading the decaying timescale based on small
positive and negative helical structures. Similarly to the con-
servation of the Loitsyansky integral in hydrodynamics, the
authors propose that the finite contributions from these helical
structures conserve the integral IH = ∫

dr〈h(xh(x))〉, where
h = A · B is the helicity density. This results in a conservation
law of the form

B4L5 ∼ E2
b L5 ∼ const. (5)

For the magnetically dominated case, this gives a magnetic
energy decay of the form t−1.18 in the slow reconnection
regime and t−1.11 in the fast reconnection regime. Never-
theless, for the case in which U ∼ B, it is conjectured that
a Saffman-type invariant associated to cross-helicity gives a
decay of t−10/7 for both the magnetic and kinetic energy, same
as the Loitsyanksy-Kolmogorov prediction for hydrodynamic
flows.

Most of the decaying nonhelical MHD studies found in
literature have been done for Prandtl number Pm = 1, except
from Refs. [26,27,29,32]. In Ref. [29], a thorough numeri-
cal study using the PENCIL code is performed, with a wide
parameter range exploration varying Pm and scale separa-
tion. These simulations show that the inverse transfer is
suppressed for increasing Prandtl number. The authors argue

that this occurs due to the slow magnetic reconnection at
high Pm. The opposite behavior is observed in Ref. [26],
where the growth of magnetic energy at large scales grows for
increasing Pm.

C. Application to the decay of primordial magnetic fields

The prevalence of cosmic magnetic fields at different lo-
cations and scales in space presents a unique link to the
physics of the early universe through present–day observa-
tions, particularly (but not exclusively) the cosmic microwave
background. The presence of cosmic fields in voids of the
large-scale structure, with strengths of 10−16 G and coherence
lengths of Mpc scales, are thought to be of primordial origin
[12,67].

A major subject to explain the strength and scale of the
observed magnetic fields, is the evolution of the magnetic
fields across the multiple cosmological eras. This goes back
to the seminal paper of Turner and Widrow [68], where the
generation of cosmic magnetic fields in the context of infla-
tion was explored. Next, Brandenburg, Enqvist, and Olesen
found covariant MHD equations for an expanding spacetime
[23,24]. Finally, the first comprehensible numerical and an-
alytical study of the evolution of magnetic fields throughout
the (standard) cosmological expansion was given by Banerjee
and Jedamzik [11].

Accounting for the expanding background introduces new
terms to the usual MHD equations. This is hardly unexpected,
as even for the simple evolution of a “free” magnetic field,
its strength varies as 1/a2—with a(t ) denoting the scale
factor—due to flux conservation. However, it was pointed
out in Refs. [23,69] that for the radiation-dominated era, a
convenient rescaling of the MHD variables can render the
same set of equations as in flat spacetime. In this way, one
can use standard analytical and numerical tools to perform
the MHD analysis in a cosmological context. For the matter-
dominated era, one can introduce a different set of variables
that can render similar equations to those of standard MHD
[70,71]. Even though expansion-related terms persist, which
effectively slow down the rate of dynamical evolution, stan-
dard MHD equations can be applicable for periods of time
where the typical microphysical processes are faster than the
expansion rate, or equivalently, where the corresponding char-
acteristic times are smaller than one expansion time. On the
other hand, it has also been reported that the assumption of
incompressibility is valid during the radiation-dominated era
due to the large value of the speed of sound in a relativis-
tic plasma. This could be extended to the matter-dominated
era, except for field strengths leading to current values larger
than 10−11G, where the fluid is not compressible after photon
decoupling. Thus, as long as one stays below that value, the
results we obtain in nonrelativistic and incompressible MHD
could be, in principle, applied to this cosmological period.

Most numerical works are done at moderate Prandtl num-
bers. However, the interstellar and intergalactic medium have
an estimated Prandtl number in the range 108–1014 [11,38–
40,72–74]. Even though these numbers are not practical for
DNS, we can study the trends in the behavior for increasing
Pm. This can give some hints to understand a more realistic
scenario.
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III. NUMERICAL SETUP

We investigate the decay of MHD turbulence using fully
resolved DNS for a wide range of parameters. For this we use
the EddyBurgh code [75,76]. This solves the incompressible
MHD equations given by

∂t u = −(u · ∇)u + ν∇2u + (∇ × B) × B, (6a)

∂t B = (B · ∇)u − (u · ∇)B + η∇2B, (6b)

where ν is the viscosity and η the resistivity. We use
Alfvenic units, so the mass density ρ = 1 and the Alfvén
velocity vA = B.

EddyBurgh is a pseudospectral DNS code that solves
MHD equations (6) on a cubic box of length �box = 2π

with periodic boundary conditions. This consists of a cu-
bic lattice of N3 equally spaced collocation points, where
N = 256, 512, 1024, 2048, and 4096. The 2/3 dealiasing rule
is implemented. We use a predictor-corrector time-stepping
procedure, also known as Heun’s method [77].

To initialize the fields in a given helical state, we use a or-
thonormal helical basis h+

k , h−
k , which are eigenvectors of the

curl operator, so they satisfy ik × h+
k = kh+

k and ik × h−
k =

−kh−
k . These are fully helical by construction. Furthermore,

given that the fields are solenoidal, we can expand the three-
dimensional kinetic and magnetic fields into this helical basis,
i.e., B(k, t ) = B+(k, t )h−

k + B−(k, t )h+
k for the magnetic field

and likewise for the kinetic field. For further details, we refer
the reader to Refs. [78–80]. Our runs are initialized either with
maximal magnetic helicity (labeled with H) or with vanishing
helicity (labeled with NH). For this we first initialize the fields
by assigning a Gaussian-random vector to the fields at each
point x. Then we apply a Fourier transform and we expand
the resulting fields onto the helical basis to set the desired
initial helical state. Setting the initial state as nonhelical is
rather straightforward, as the Gaussian-random vectors gives
an distribution of positive and negative helical modes that
cancel each other out, resulting in a state with no net helicity.
In order to set the initial state as fully helical, we keep only
one of the helical projections B+ or B− (the choice is indis-
tinct). In this work, kinetic and cross-helicities are set to zero
initially. Finally, we rescale the fields to obtain the desired
initial spectra. All our runs have an initial magnetic spectrum
of the form

Eb(k) = Eb(t = 0) c1

(
k

kp

)4

exp

[
− 2

(
k

kp

)2
]
, (7)

c1 = 211/2

3
√

π
k−1

p , (8)

where kp is the wave number at which the spectrum peaks and
c1 is a normalisation factor that ensures that the initial energy
remains invariant under changes of kp. This spectrum has a
form of ∼k4 for k < kp and it peaks at k = kp and shows a
sudden cutoff for k > kp.

All simulations are freely evolving from t = 0. Most runs
are initially in equipartition [i.e., Eu(k, t = 0) = Eb(k, t =
0)], although we run a smaller number of simulations that
are initialized with the velocity field set to zero. The integral
(or coherence) lengthscales of the kinetic and magnetic field
are computed as Lu,b = (3π/4E )

∫ ∞
0 dk Eu,b(k)/k. The rms

velocity is defined so that Eu = 3U 2/2 and the rms mag-
netic field such that Eb = 3B2/2. The large eddy turnover
time is Tu = Lu/U and the Alfvén time is Tb = Lb/B. We
use the initial eddy turnover time as a reference. Runs with
equipartition satisfy U (0) = B(0) and Lu(0) = Lb(0), and,
hence, we refer to the large eddy turnover time simply as
T = Tu(0) = Tb(0). In the magnetically dominated case, T =
Tb(0), as Tu is not defined for t = 0. In the same way we
express the initial Reynolds number Re(0) = U (0)L(0)/ν as
Re, note that this is not defined when the velocity field is
initialized to zero. We also refer to the initial Lundquist num-
ber S(0) = B(0)Lb(0)/η as S. The magnetic Reynolds number
Reb = UL/η and the Lundquist number are equivalent at
t = 0 for all runs initialized in equipartition. The kinetic and
magnetic dissipation rates are computed as εu = 2ν

∫
dk Eukγ

and εb = 2η
∫

dk Eb(k)kγ , where γ = 2 for standard viscosity
and γ = 4 for the hyperviscous/hyperresistive case. We keep
all simulations fully resolved unless otherwise stated. We
consider runs fully resolved when both the kinetic dissipative
scale kν = [εu(t )/ν3]1/4 and the magnetic dissipative scale
kη = [εb(t )/η3]1/4 satisfy kmax/kν > 1.25 and kmax/kν > 1.25
throughout the entire duration of the run. Only in one extreme
case we get kmax/kη ≈ 1.15.

We run two cases using hyperviscosity and hyperresistivity,
with the aim of establishing a qualitative comparison with
previous results in literature. This consists in modifying the
viscous and resistive terms in Eqs. (6a) and (6b), respectively,
so the gradient is now of fourth order, i.e., ν∇2 → ν2∇4 and
η∇2 → η2∇4. In all nonhelical runs, Hb/2EbLb ∼ O(10−3).
This ensures that the simulations remain practically nonheli-
cal for all times.

The aim of this work is to perform a wide parameter study
of MHD decay by measuring the spectra evolution and the
scaling laws for a number of high-resolution numerical sim-
ulations of helical and nonhelical MHD turbulence. We pay
special attention to the inverse transfer of energy.

IV. SCALING EXPONENTS p AND q

In this work we report scaling exponents for the kinetic
and magnetic energy decay Eu,b ∼ t−pu,b and coherence length
growth Lu,b ∼ t qu,b . Measuring these exponents is not always
a straightforward task. The first feature of the scaling expo-
nents we find in our simulation is that they are not constant
throughout the decay in all cases. To see this, we measure

pb(t ) = −d log Eb

d log t
, (9a)

qb(t ) = −d log Lb

d log t
. (9b)

Typically, there is an initial transient of a few eddy turnover
times for the system to reach an approximate self-similar
decay (see Sec. V and Figs. 1 and 2). When Re is high,
the system decays while turbulence is developed and the
decay follows a power law t−p. During this stage, a plateau
is observed in the evolution of p(t ). Nevertheless, in some
other cases, for moderate and low Re, there is no clear time
interval in which p and q reach a steady constant value. This
introduces certain ambiguity in the measurements. For very
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FIG. 1. Kinetic energy spectra during decay for runs HRe5,
NHRe5, and a hydrodynamic run with same parameters and same
initial spectrum. Different curves correspond to times t/T = 0, 1.6,
12.8, and 50.

low Reynolds numbers, turbulence is not developed at all and
the decay is almost entirely diffusive. Note that this becomes
slightly more difficult when we vary the Prandtl number, for
instance, for a low Pm we can have a turbulent kinetic decay
together with a diffusive magnetic decay only kept up by
dynamo effect.

We also note that when the scale separation kp ∼ O(1), the
initial transient tends to be slower, not only taking more time
for the energy to reach a power-law decay but also adding a
larger bias, since the approximation (t − t0)−p ≈ t−p becomes
more questionable, without clear arguments to determine t0 as
pointed out in Ref. [7]. Furthermore, for low Re, diffusion
takes over rather quickly, not allowing the development of
turbulence at t � t0.

We measure the scaling exponents by determining a time
interval in which an approximate plateau is observed in the
evolution of p(t ) and q(t ). Then we perform a linear regres-
sion with logarithmic axes within that time interval. In some
cases, when we compare multiple cases, there is no clear
common plateau in the evolution of their exponents. In those
cases we show the time evolution p(t ) and q(t ) and discuss the
criteria used. We acknowledge the bias that is introduced by
using logarithmic axes. An alternative method to overcome
these problems is used in Ref. [31] to make comparisons
to predictions, although this is also subject to the subjective
choice of intervals.

FIG. 2. Time evolution of the scaling exponents pu (a) and qu

(b) for runs HRe5, NHRe5, and a hydrodynamic run with same pa-
rameters and same initial spectrum. The horizontal gray dashed lines
correspond to typical values pu = 1, 10/7, and 2/3 and qu = 1/2 and
2/3.

Nevertheless, the main goal of this work is not to contrast
our measurements against precise theoretical predictions. In-
stead, we look at trends as we vary different parameters and
see whether our measurements are consistent with these pre-
dictions. In fact, discriminating between different theoretical
predictions that are very close requires a careful numerical
treatment that is often ignored in literature.

In order to obtain a fully turbulent decay, we need large
Reynolds numbers. This requires higher resolutions as we
need to resolve increasingly large wave numbers kν and kη.
However, if we want to observe the build-up of magnetic
energy at large scales and its influence in the decay, then
we need to have enough scale separation, i.e., kp � 1, but
this puts more energy closer to the dissipation scales, which
prevents us from obtaining a large Reynolds number for a
given resolution. This is especially challenging when it comes
to explore cases with Pm � 1 at the same time we keep a
relatively high Re. For low Re, the smaller scales are expected
to decay as exp(−2νk2t ); if most of the energy decays through
viscosity (or diffusivity in the case of magnetic energy), then
the decay is approximately of the form E ∼ t−5/2 [2,53]. In
Sec. VI E we provide more arguments that show that slight
details can significantly affect the predicted values of p and q
at finite resistivity.

Some authors use hyperviscosity and hyperresistivity to
overcome resolution limitations [29,31]. This allows a larger
inertial range without a greater demand on resolution. The
cost is that this alters the theoretical predictions, as it intro-
duces different scaling relations that we prefer to avoid in
this analysis and also because modifying the resistive region
affects the magnetic reconnection process. Still, we run a
few hyperviscous simulations just for the sake of qualitative
comparison with other results in literature.

V. MHD VS HD DECAY

First we show the spectral evolution and the scaling laws
of the kinetic energy decay of a helical and a nonhelical flow
with Pm = 1. We compare these to a pure hydrodynamic
decay with the same viscosity ν = 0.0003125, kp = 40, and
N = 2048. Both MHD simulations are initially in equiparti-
tion so the kinetic spectra are equivalent for all three runs at
time t = 0.

In Fig. 1, we see that the helical case shows a strong inverse
transfer of energy in the evolution of the kinetic spectra conse-
quence of the approximate conservation of the mean magnetic
helicity in the helical case. Instead, the nonhelical case shows
only a slight increase of kinetic energy at large scales than
the hydrodynamic case, which shows that even for the highest
Reynolds number we achieve, the inverse transfer of kinetic
energy is not significant.

This comparison becomes clear when we observe the en-
ergy at large scales as shown in Fig. 3, where we measure
the growth of energy for k � 3 as Eu3 = ∫ 3

0 dk Eu(k). In any
case, the growth of energy at large scales is much weaker than
the one found in Ref. [61], where the effect is much more
pronounced. In principle, this small difference between the
hydrodynamic and the nonhelical case can be due to either
a stronger inverse cascade of kinetic energy in MHD or the
transfer from magnetic to kinetic energy at large scales due to
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FIG. 3. Time evolution of large-scale kinetic energy
Eu3 (t )/Eu3 (0) for runs HRe5, NHRe5, and a hydrodynamic run
with same parameters and same initialization.

the local action of the Lorentz force. However, we cannot dis-
card that this difference is merely related to box size effects.

It is clear that the helical run shows a larger growth of
coherence length than both the nonhelical and the pure hy-
drodynamic case. This can be seen from the evolution of the
spectrum peak that is a fair estimate of the coherence length
evolution.

Finally, we look at the time evolution of the scaling
exponents pu and qu in Fig. 2. We see that the hydrody-
namic and the nonhelical MHD run have different transients
but end up decaying at the same rate, consistent with the
Loitsyansky-Kolmogorov prediction t−10/7. The integral scale
grows approximately like t0.4 in both cases. On the other hand,
the helical flow show different properties, with a shallower
decay that goes like t−2/3 and the integral scale grows approx-
imately like t1/2. Interestingly, the helical exponents present a
more erratic behavior, possibly due to the integral lengthscale
becoming comparable to the box size much faster than in the
other cases.

VI. DECAY AT VARYING PRANDTL NUMBER

We now look at the decay of helical and nonhelical MHD
for varying Pm. Most works in literature have been carried out
for a short range of values for Pm, except from Refs. [26,29]
and Ref. [26]. In Ref. [29], a thorough analysis at varying
Prandtl number is done using both standard viscosity and
hyperviscosity. The authors find that as Pm increases, the
growth of magnetic energy at large scales is suppressed. In
our simulations we find the opposite trend. We comment on
this in Sec. X.

We run a set of 22 simulations initialized in equipartition,
11 helical and 11 nonhelical (see Table I). The runs with Pm
= 32 is slightly underresolved, with kmax/kη ≈ 1.15 during
the first turnover times. We also run eight simulations with
the velocity field initialized to zero, four helical and four non-
helical (see Table II). In every case the scale separation is set
at kp = 40 and viscosity is fixed at ν = 0.005. This choice of
parameters results in a moderate Reynolds number, preventing
the kinetic flow from developing a complete turbulent state.

TABLE I. Helical and nonhelical runs for varying Prandtl num-
ber and fixed viscosity ν = 0.005 and kp = 40. All runs are initially
in equipartition.

Run Pm ν Re kp N

H/NHp−5 2−5 0.005 8 40 512
H/NHp−4 2−4 0.005 8 40 512
H/NHp−3 2−3 0.005 8 40 512
H/NHp−2 2−2 0.005 8 40 512
H/NHp−1 2−1 0.005 8 40 512
H/NHp0 1 0.005 8 40 512
H/NHp1 2 0.005 8 40 1024
H/NHp2 22 0.005 8 40 1024
H/NHp3 23 0.005 8 40 2048
H/NHp4 24 0.005 8 40 2048
H/NHp5 25 0.005 8 40 2048

Still, we increase Prandtl number while keeping constant vis-
cosity and we measure the scaling exponents at t ≈ 50T . The
reason for this is that p(t ) and q(t ) do not reach a constant
value for higher Pm. Instead, they tend to an asymptotic value
as time evolves. For this reason, we consider the value of p(t )
and q(t ) at the latest time measured (t = 50T ) as the best
estimate of the exponent.

A. Scaling exponents for initial equipartition

First, we analyze the case in which runs are initially in
equipartition. In Fig. 4(a) we show the kinetic and magnetic
scaling exponents for varying Pm, whereas in Fig. 4(b) we
show the scaling exponents measured for the magnetic coher-
ence scale.

The plot in Fig. 4(a) provides interesting clues about the
behavior of the decay at different Pm. A common and perhaps
obvious characteristic, is that both kinetic and magnetic decay
become shallower as we increase the Prandtl number.

For Pm � 0.25, helical and nonhelical decays have the
same decaying exponents, with the kinetic energy showing a
shallower decay than the magnetic energy. In the range 2−5 �
Pm � 0.5, pu remains approximately constant, whereas pb de-
creases. This is consistent with having a constant viscosity and
decreasing resistivity. This indicates that the decay is mainly
dominated by viscosity and diffusivity, with little influence
of magnetic helicity and little interplay between the magnetic
and kinetic fields. Nevertheless, it seems that there is a small
transfer from magnetic to kinetic energy, that would explain
why pb � 5/2 and pu � 5/2, where p = 5/2 is the expected
value for a purely viscous or resistive decay [2,53].

TABLE II. Helical and nonhelical runs for varying Prandtl num-
ber and fixed viscosity ν = 0.005 and kp = 40. All runs are initially
magnetically dominated with zero velocity field.

Run Pm ν S kp N

H/NHpz−2 0.25 0.005 2 40 512
H/NHpz0 1.00 0.005 8 40 512
H/NHpz2 4.00 0.005 32 40 1024
H/NHpz4 16.00 0.005 129 40 2048
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FIG. 4. Scaling exponents p (a) and q (b) for the following cases: Magnetic helical (blue squares), magnetic nonhelical (orange triangles),
kinetic helical (blue crosses), and kinetic nonhelical (orange crosses). Dashed horizontal lines correspond to the typical scaling values observed
in literature p = 1 for nonhelical flows and q = 2/3 for helical flows. All runs are initially in equipartition.

For Pm >0.5 an interesting situation is observed. When
we increase Pm, pb continues to decrease, and pu, which was
constant for Pm <0.5, starts decreasing. This indicates that
the kinetic decay becomes shallower due to a more effective
interaction with the magnetic field.

So far we have not made any distinction between the helical
and nonhelical decay. In the nonhelical case, as we keep
increasing Pm, we get pb < pu, and thus the magnetic decay
becomes shallower than the kinetic one, with both exponents
approaching 1. Nevertheless, the data shows no clear asymp-
totic behavior at this range of values. Studying the behavior at
larger Pm would require a larger computational power that is
not available at the moment.

In the helical case, for 0.25 < Pm � 1 the magnetic decay
is steeper than in the nonhelical case, but the kinetic decay is
equal or slower, which suggests a more effective transfer of
energy from magnetic to kinetic energy than in the nonhelical
case. For Pm >1, both the kinetic and the magnetic energy
decay at the same rate pb ∼ pu and at a much slower rate than
in the nonhelical case, approaching values in the range ≈1/2–
2/3. The helical data seem to show the start of an asymptotic
behavior at large Pm.

Now we look at the plots that show the evolution of these
exponents in time, from which we take the measurements
shown in the previous figures. In Fig. 5, we see that in most
cases, pb(t ) seems to approach an asymptotic behavior. This
indicates that there is a small bias towards smaller values in
the measurements of pb. For low Pm, pb(t ) seems to approach

FIG. 5. Time evolution of pb(t ) for nonhelical (left) and helical
(right) runs. Darker shades correspond to lower values of Pm, and
dotted lines represent the case with Pm = 1.

an asymptotic value after a short transient, but it suffers a
second transition at later times, where it ends up approaching
a larger value. This is observed in both helical and nonhelical
cases. This behavior is likely caused by the transition between
turbulent and diffusive decay, which is reasonable at low Pm.
The transients can be also influenced by the box size effect.

We analyze the scaling laws of the coherent lengths Lb

and Lu. This exponent has an erratic behavior at low Prandtl
number as we can see in Fig. 6. During an initial stage,
qb(t ) approaches an asymptotic behavior, but a few turnover
times later, qb(t ) starts to show an erratic behavior until it
finally decays, without reaching an asymptotic behavior. At
low Pm we expect a rather diffusive decay. With this initial
spectrum, the decay is approximately of the form Eb(k, t ) =
k4 exp(−2ηk2t ), which gives Lb ∼ t1/2; however, the finite
box size prevents Lb from growing further, and this might
explain the decay of q(t ) at later times.

Because of the above reasons, the values of qb for Pm
<0.25 should not be taken into account for the analysis. These
are shown merely for the comparison with the behavior of qu.

The measurements of qb are also taken at time t ≈ 50T .
The main characteristics shown in Fig. 4(b), is that qb and
qu increase for increasing Pm in the helical case, whereas it
decreases in the nonhelical case, showing that even though we
observe a slight increase of magnetic energy at large scales
in the nonhelical case, the coherence length does not grow
significantly faster. The values of qb in the helical case seem

FIG. 6. Time evolution of qb(t ) for nonhelical (left) and helical
(right) runs. Darker shades correspond to lower values of Pm, and
dotted lines represent the case with Pm = 1.
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FIG. 7. Scaling exponents p (a) and q (b) for the following cases: Magnetic helical (blue squares), magnetic nonhelical (orange triangles),
kinetic helical (blue crosses), and kinetic nonhelical (orange crosses). Dashed horizontal lines correspond to the typical scaling values observed
in the literature p = 1 for nonhelical flows and q = 2/3 for helical flows. All runs are initially magnetically dominated.

to approach 1/2 asymptotically for high Pm, whereas the non-
helical case does not show an asymptotic trend at this range.

B. Scaling exponents in magnetically dominated decay

We now look at the runs initialized with zero velocity.
Figure 7 shows the dependence of the exponents on Pm in
this case.

According to recent literature, magnetically dominated
should give a stronger inverse cascade in the nonhelical
case [30]. Nonetheless, our results show that the decaying
exponents are surprisingly similar to the runs with initial
equipartition. The only difference is that the values of qu in
the nonhelical case are slightly larger than in equipartition
cases. This indicates a faster growth of coherence length only
in the kinetic field. The magnetic decay rate shows no relevant
differences between magnetically dominated flows and those
in equipartition, as opposed to what is stated in Refs. [30,31].

C. Spectra evolution

It is useful to compare all the previous cases by looking
at the spectra evolution for varying Pm. Figure 8 shows the
spectra evolution for helical and nonhelical cases, and both
magnetically dominated and in equipartition. Many of the
features already mentioned are seen here with more clarity.

We see that, for Pm 
 1, the helical and nonhelical decays
are almost identical. At Pm = 1, we see that the magnetic de-
cay is slower in the helical case. The kinetic spectra shows an
identical decay in equipartition cases and a more pronounced
inverse transfer in the magnetically dominated case, due to the
interaction with the magnetic field at large scales.

For larger Pm, the inverse transfer of magnetic energy
becomes pronounced in the helical case, as expected. The
peak of the spectrum goes well past the initial k4 spectrum. On
the other hand, in the nonhelical case, only a weak build-up of
magnetic energy is observed close to the characteristic wave
number of the box, and the peak never goes past the initial
k4 spectrum, which indicates a slow growth of the coherence
length.

Interestingly, the kinetic energy shows a remarkable
growth of energy at low wave numbers, especially in the
magnetically dominated nonhelical case and in both helical
cases, adopting a k2-like spectrum. The tilt of the large-scale
spectrum might be originated only due to the saturation at the
box size. Nevertheless, this growth of kinetic energy indicates
that even though viscosity is kept constant across simulations,
the triadic interactions in the Lorentz force term make the
inverse transfer of kinetic energy much more effective at high
Pm. It is known that in the helical case, the inverse energy
transfer is driven by the inverse cascade of magnetic helicity,
which is better understood. In Ref. [62], it is found that in the
nonhelical case, transfers between different fields are more
nonlocal than between the same fields. Furthermore, non-
local triadic interactions contributing to the inverse transfer
of energy are less constrained than those contributing to the
forward transfer, especially in the magnetic dominated case,
thus enhancing the inverse transfers. This might explain the
larger inverse transfer of kinetic energy observed in the mag-
netic dominated case compared to the equipartition case in
nonhelical flows. In Fig. 9, we show the build-up of magnetic
energy at large scales in the equipartition case. We com-
pute the energy at large scales [i.e., Eb3

∫ 3
0 dk E (k)]. We see

that the build-up of large-scale energy grows with Pm, al-
though the initial transient becomes suddenly slower for the
cases with Pm � 8. The results are qualitatively similar in the
magnetically dominated case. This is in line with the findings
in Ref. [26]. However, in Ref. [29] the opposite trend is found.

D. High Reynolds number

Last, we perform a similar analysis to the one done in
Sec. VI A but for a smaller viscosity. This allows us to explore
the Pm variation at higher Re. The cost of this is that resolu-
tion limitations prevent us from exploring values of Pm larger
than 1. Simulations parameters are shown in Table III. All the
cases analyzed in this section are initially in equipartition.

In Fig. 10, we show the decaying exponent dependence
on Pm. We compare this with the plot in Fig. 4(a), done for
ν = 0.005.
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FIG. 8. Spectra evolution of runs NH/Hp-2,p0,p2,p4 and NH/Hpz-2,pz0,pz2,pz4, for times t/T = 0, 0.8, 3.3, 13, and 50. Solid lines indicate
magnetic energy spectra and dashed lines indicate kinetic energy spectra. Brighter lines correspond to earlier times.

We see that some qualitative features remain similar, es-
pecially at low Pm. The magnetic decay is mainly diffusive
and steeper than the kinetic. However, in this case the kinetic
decay is turbulent, with a rate pu ≈ 10/7, which is reasonable
given the higher Re in these simulations.

FIG. 9. Large-scale energy evolution Eb3 (t )/Eb3 (0), for nonheli-
cal (left) and helical (right) runs H/NHp. Brighter lines correspond
to higher Pm. The dotted line in each plot corresponds to the run with
Pm = 1.

We note that the decay in the helical case is shallower than
the nonhelical for Pm � 2−4. This is different to the case
ν = 0.005, where the same occurs at Pm � 1. Nevertheless,
we note that in both cases, this corresponds to the the same
magnetic Reynolds number Reb =Re, Pm ≈8, indicating that
the helical inverse transfer becomes more effective as soon as
the magnetic field starts to develop turbulence, independently
of the kinetic field.

TABLE III. Helical and nonhelical runs for varying Prandtl num-
ber and fixed viscosity ν = 0.003125 and kp = 40.

Run Pm ν Re kp N

H/NH∗
p−4 0.0625 0.0003125 128 40 2048

H/NH∗
p−3 0.125 0.0003125 128 40 2048

H/NH∗
p−2 0.25 0.0003125 128 40 2048

H/NH∗
p−1 0.5 0.0003125 128 40 2048

H/NH∗
p0 1 0.0003125 128 40 2048
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FIG. 10. Scaling exponents p (a) and q (b) for the following cases: Magnetic helical (blue squares), magnetic nonhelical (orange triangles),
kinetic helical (blue crosses), and kinetic nonhelical (orange crosses). Dashed horizontal lines correspond to the typical scaling values observed
in the literature p = 1 and 10/7 for nonhelical flows and q = 2/3 for helical flows. All runs are initially in equipartition.

The nonhelical kinetic decay does not become shallower
as we increase Pm, indicating that the interaction with the
magnetic field does not alter the evolution of the kinetic decay
at this range of Pm. The magnetic and the kinetic exponents
approach a Loitsyanksy-Kolmogorov decay of p = 10/7. In-
terestingly, for equal values of resistivity, the magnetic decay
is shallower in the case with lower Re.

In the helical case, the kinetic decay is strongly influenced
by the interaction with the magnetic field as we increase Pm.
Both end up decaying at the same rate for the largest values
of Pm, similarly to the high viscosity case. This shows that
helical magnetic fields are more effective at sustaining the
kinetic field than nonhelical ones.

Now we focus on the behavior of qb. The trends are more
defined at lower Pm than in Fig. 4(b), indicating that the
erratic behavior observed is a consequence of low Reynolds
numbers. For the largest values of Pm, the kinetic and
magnetic integral lengthscales grow at the same rate, with
the helical showing a value of qb � 0.5 and the nonhelical
q ≈ 0.4.

Even though the inverse transfer we observe is small, the
fact that it increases with Pm is appealing in the context of

possible cosmological applications, given the high values of
Pm in that context. Unfortunately, running fully resolved DNS
at higher Pm and Re is unfeasible at present.

E. Helicity conservation

It is expected that at sufficiently large Reynolds and
Lundquist numbers, magnetic helicity remains approximately
conserved during the decay. In Sec. II, we saw that this leads
to a conservation of the form EbL ∼ const [see Eq. (4)]. We
also mentioned the analogous conservation predicted recently
for nonhelical flows, which is of the form E2

b L5. In Fig. 11,
we show the evolution of these quantities in time for runs in
Table III. We note that the helical case shows an approximate
conservation in both cases, with EbL ∼ t−0.16 and E2/5

b L ∼
t−0.10 for Pm= 1.

The conservation is not exact, but there is a slow decay
over time. We can assume that the decay follows a power
law Eβ

b L ∼ t−δ . For δ = 0, it is possible use a Kolmogorov-
like argument and show that, in the Sweet-Parker regime, the
energy decay is given by ∂t Eb ∼ E (6β+5)/4

b [31]. This regime
is typical in most DNS simulations of MHD turbulence, as

FIG. 11. Time evolution of Eβ

b Lb/[Eβ

b (0)Lb(0)] for runs in Table III, where β = 1 for helical runs and β = 2/5 for nonhelical runs.
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FIG. 12. Evolution of pb(t ) for nonhelical (left) and helical
(right) flows at Pm = 1 and varying Re. Darker shades correspond
to higher Re.

the Lundquist number is high but not enough to reach the
fast-reconnection regime [81]. The Sweet-Parker regime is
characterized by a balance between the resistive and inductive
terms in Eq. (6b) [82,83]. This gives a slower timescale for the
reconnection than in the ideal case where the inductive term
dominates. For δ �= 0, we get

∂t Eb ∼ E (6β+5)/4
b t−δ, (10)

Eb ∼ t−4(δ+1)/(6β+1). (11)

This would produce a slight change in the predicted values
of pb = (−6β − 1)/4), such that the corrected values are now
p′

b = pb(1 + δ). For a value of δ ≈ 0.1, the decay is slightly
steeper by a factor of 10%. This is slight but significant
when it comes to compare different theoretical predictions. In
Fig. 10(a), we saw that pb was close to 10/7, but if we take this
correction into account, then the actual value would indicate
that pb gets closer to the predicted values of 1.18 or 1. Once
again, we remark the importance of these kind of details when
comparing theoretical predictions.

VII. VARYING REYNOLDS NUMBER

We study the behavior of the decay at varying Re with
fixed Pm = 1. This analysis is similar to the one done in
Ref. [28], in which the the same eddyBurgh code and same
initial conditions were implemented. The only difference is

TABLE IV. Helical and nonhelical runs for varying Re and fixed
Prandtl number Pm = 1 and kp = 40. Darker shades correspond to
higher Re. All runs are initially in equipartition.

Run Pm ν Re kp N

H/NHRe5 1 0.0003125 129 40 2048
H/NHRe4 1 0.000625 64.5 40 2048
H/NHRe3 1 0.00125 32.4 40 1024
H/NHRe2 1 0.0025 16.2 40 1024
H/NHRe1 1 0.005 8.09 40 1024

the range of Reynolds numbers explored and the scale separa-
tion. In Ref. [28], the authors find pb ≈ 0.47 + 13.9Rλ, where
Rλ refers to the Taylor scale Reynolds number.

We run a set of five helical and five nonhelical simulations
to observe the behavior of the decay at varying Re with the
parameters shown in Table IV.

The plot in Fig. 12 shows the evolution of pb(t ). All curves
show a small but consistent growth that seem to approach an
asymptotic value, except from the helical ones with lower Re
in which the growth is still considerable. The measurements
are taken using a linear fit in a log-log scale between t/T =
40-50.

The measured values of p and q are shown in Fig. 13,
where only the helical pb and pu seem to approach an asymp-
totic value for large Re. We find that these have a dependence
of the form pb(Re) = ph∞ + ph0/Re, with measured values of
ph∞ = 0.6 and ph0 = 14. The asymptotic value is different to
the one measured in Ref. [28], possibly due to the wider range
of Re explored in this work. This is essential to determine
the asymptotic behavior. We can see that the value of pb is
close to different predictions pb ≈ 0.5–0.66, and a similar
behavior is observed for the kinetic decay, which is not in
agreement with the prediction that pu ≈ 1 for helical flows in
equipartition [31].

For the nonhelical case, in principle one can propose a
similar dependence of the form pb(Re) = pnh∞ + pnh0/Reα .

FIG. 13. Scaling exponents p (a) and q (b) for the following cases: Magnetic helical (blue squares), magnetic nonhelical (orange triangles),
kinetic helical (blue crosses), and kinetic nonhelical (orange crosses). Dashed colored curves correspond to the fits ph(Re) (blue) and pnh(Re)
(orange for α = 1/2 and green for α = 1/8), and dashed horizontal lines correspond to some typical scaling values observed in literature p = 1
for nonhelical flows and q = 1/2 for helical flows. All runs are initially in equipartition.
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FIG. 14. Spectra evolution of runs NHRe5, and NHRe5Z, for times t/T = 0, 0.2, 0,8, 3, 13, and 52. Solid curves represent the magnetic
energy spectra and dashed curves represent the kinetic spectra.

Nevertheless, the range of Re explored does not show a clear
asymptotic behavior, and as a consequence, different fits with
different values of α fit the data, giving quite different values
of pnh∞. For instance, pnh∞ = 1.2 for α = 1/2 and pnh∞ =
−0.6 for α = 1/8, which is unphysical. Both fits are shown in
the plot of Fig. 13(a).

Even obtaining a clear asymptotic behavior, these results
depend strongly on the measurement methods. The lack of
accuracy makes it difficult to distinguish between different
theoretical predictions. For instance, between the Eb ∼ t−1.11

and t−1.18 scalings given by the fast and slow reconnection
regime respectively. Also, an ensemble average using different
initial conditions would give a better estimation of the error.

Last, we consider the run NHRe5, that has the largest Re,
and we run another with the same initial magnetic field but
with the velocity field initialized to zero. Figure 14 shows the
spectra evolution in both cases.

We see that for the magnetically dominated case, the ki-
netic spectra has a pronounced inverse transfer and ends up
with more energy at large scales than the run that starts in
equipartition.

FIG. 15. Time evolution of the large-scale magnetic energy
Eb3 (t )/Eb3 (0) for runs NHRe5, and NHRe5Z.

The comparison of the magnetic spectra is less clear. For
that reason, we look at the large-scale energy up to k = 7. This
is shown in Fig. 15. The magnetically dominated case shows a
slightly larger growth of magnetic energy at large scales. This
is, at least qualitatively, in line with the analysis in Ref. [30].

VIII. VARYING kp

Now we perform a study at varying kp. We can think
of a set of simulations in which we keep the initial energy,
viscosity and resistivity constant, but we vary the value of
kp. If we choose a value of kp � 1, then we obtain enough
scale separation to allow inverse energy transfer without being
affected by the box size, the setback is that by doing this, most
of our energy will be close to the dissipative scales, hence,
most of the decay will be dissipative and no inertial range
will develop. If we choose kp � 1, then we will get a wider
inertial range, but without enough scale separation to allow
inverse transfer and avoid box size effects. For this section we
concentrate only in the nonhelical case.

To establish a fair comparison between runs, we perform
a set of six simulations with kp ranging from 5 to 80 and
choosing ν such that the Reynolds number is constant for all
runs. Simulations parameters are shown in Table V.

We start by taking a look at the spectra evolution in Fig. 16.
We focus on the behavior for wave numbers k < kp. We note
that the small growth of energy in the low-k region keeps the
initial k4 form in cases with kp � 40. Instead, for kp < 40,
box size effects start to become noticeable, and saturation

TABLE V. Nonhelical runs varying kp at fixed Reynolds number
Re(0) ≈ 32.

Run Pm ν Re kp N

NHkp5 1 0.01 32.2 5 256
NHkp10 1 0.005 32.2 10 512
NHkp20 1 0.0025 32.2 20 512
NHkp40 1 0.00125 32.2 40 1024
NHkp80 1 0.000625 32.2 80 2048
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FIG. 16. Spectra evolution for times t/T = 0, 1 and 20 for kp =
20, 40, and 80. Keeping Pm = 1 and Re ≈ 32.

tilts the k4 spectra towards shallower slopes. Still, it is worth
noticing that in every case, the decay produces a small growth
of energy at large scales.

We measured the decaying exponents and we find no
drastic differences for all values of kp, with pb ≈ 1.7–1.9.
Nevertheless, when we compare the evolution of p(t ) (shown
in Fig. 17), we note that the cases with kp � 20 show a rather
erratic behavior, whereas those with greater scale separation
are practically indistinguishable and show a smoother behav-
ior. This shows the importance of scale separation to obtain a
smooth evolution of p(t ) independent of box size effects. In
principle, the independence of pb on kp may be valid only in
this range and higher Re, but the situation could be different
for lower Reynolds numbers, where a large portion of the
energy decay is dissipative.

To address this, we extend the previous study by varying kp

and Re simultaneously. We want to look at the Re dependence
of pb and see if this is independent of the scale separation,
even for kp ∼ 1, where box size effects are strongly notice-
able. For this, we choose three different values of kp = 5, 20,
and 100. This choice requires an extremely high resolution in
some cases, reaching a box with N = 4096. For each value of

FIG. 17. Evolution of pb(t ) for nonhelical runs with fixed Re ≈
32, Pm = 1, and varying kp = 5, 10, 20, 40, 80, and 160.

TABLE VI. Nonhelical runs for varying viscosity and kp at fixed
Prandtl number Pm = 1.

Run Pm ν Re kp N

NHkR1 1 0.009 35 5 1024
NHkR2 1 0.006 53 5 1024
NHkR3 1 0.003 107 5 1024
NHkR4 1 0.0009 358 5 1024
NHkR5 1 0.0004 805 5 2048
NHkR6 1 0.009 8 20 1024
NHkR7 1 0.006 13 20 1024
NHkR8 1 0.003 26 20 2048
NHkR9 1 0.001 80 20 2048
NHkR10 1 0.0009 89 20 2048
NHkR11 1 0.0004 201 20 2048
NHkR12 1 0.009 1 100 4096
NHkR13 1 0.006 2 100 4096
NHkR14 1 0.003 5 100 4096
NHkR15 1 0.001 16 100 4096
NHkR16 1 0.0009 17 100 4096
NHkR17 1 0.0004 40 100 4096

kp, we run a small number of simulations varying viscosity.
The parameters for these runs are shown in Table VI.

We measure the evolution of pb(t ) for all runs and study
its dependence on Re. We take a look at Fig. 18, and we
note the erratic behavior for the cases with small scale sep-
aration. We see that it is not straightforward to determine a
time interval to perform a fair measurement between all cases.
Despite the erratic behavior, cases with kp = 5 show a plateau
between t/T ≈ 15–25. During this time interval, some of the
cases with kp = 20 and kp = 100 show an increasing pb(t ),
approaching a possible plateau at later times. For the mea-
surements, we take a narrow interval t/T = 20–25 to prevent
as much bias as possible.

In Fig. 19, we show the scaling exponents measured for
varying Re. We find that pb follows a clear trend that only
depends on Re, without any dependence on the scale sepa-
ration. Even though an asymptote will be reached at higher

FIG. 18. Time evolution of pb(t ) for runs NHkR for different
values of Re and kp = 5 (blue dash-dotted lines), kp = 20 (green
solid lines), and kp = 100 (red dashed lines).
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FIG. 19. Scaling exponents pb measured in runs NHkR. Blue
squares correspond to kp = 5, green triangles to kp = 20, and red
circles to kp = 100.

values or Re, the range explored is not enough to determine
such a value. The increase in computational power is crucial
to show this asymptotic trend and to determine the value of pb.
Nevertheless, the trend seems to favor the prediction pb = 1
rather than pb = 10/7.

IX. HYPERVISCOSITY AND HYPERRESISTIVITY

In order to make a fair comparison with previous results in
the literature, we run three simulations using hyperviscosity,
initialized with the velocity field set to zero. Parameters are
reported in Table VII, and the spectra evolution in all three
cases are shown in Fig. 20.

In all hyperviscous runs we can observe a slightly stronger
inverse transfer than in our standard simulations but still not
enough for the peak to move beyond the initial k4 spectrum.
In Fig. 20(c) we see an inertial range slightly shallower than
the k−2 found in previous works, closer to the k−5/3 scaling.
Figures 20(b) and 20(a) show runs with the same hyperviscos-
ity but with different Pm. The case with higher Pm shows the
stronger inverse transfer, supporting the same trend that we
observe for standard viscosity.

X. COMPARISON WITH PREVIOUS LITERATURE

Some of the features of nonhelical decay that are ob-
served in previous work, namely, the inverse energy transfer
or the formation of a weak turbulent spectra k−2, are dif-
ferent to the ones found here. Those studies used different
codes with slightly different equations from the ones we
used in this work. For instance, the PENCIL code used in

TABLE VII. Nonhelical runs using hyperviscosity, initialized
with zero velocity field. The Prandtl number is defined as Pm =
ν2/η2.

Run Pm ν2 kp N

NHhy1 1 10−6 30 1024
NHhy2 12 10−6 30 1024
NHhy3 1 2 × 10−10 30 2048

Refs. [27,29,30,32] solves compressible MHD, whereas in
Ref. [33], relativistic MHD equations are implemented.

Most of the simulations in recent work are initialized with
small or zero kinetic energy. In all cases, the inverse transfer
of magnetic energy is stronger than the one we find in this
work. In Ref. [30], an initial kinetic dominated flow is also
studied, finding a decay similar to the one found in this work.

Some minor discrepancies can also be expected in the scal-
ing exponents due to the measurement methods. Additionally,
certain numerical aspects such as dealiasing rules, resolution
criteria and timestepping procedure can have some impact in
the results [84]. Other aspects such as the initial spectra have
a relevant influence in the subsequent evolution of the decay
[61]. Additionally, the use of hyperviscosity and hyperresis-
tivity, which gives a wider inertial range for limited resolution,
alters the dissipative mechanisms and the dynamics of the
decay [31].

In Refs. [27,29,30,32], the PENCIL code is used. The initial
magnetic spectra is the same as ours for k < kp, and the
kinetic spectra develops a k2 form. In most cases the flow
is magnetically dominated at t = 0 except from one run in
Ref. [30] where the magnetic field is subdominant and in
Ref. [32], where the nonhelical simulation was first driven
with a random forcing and relatively small scale separation.
In all these works an inverse transfer is observed in the non-
helical case. This transfer is especially strong in Refs. [27,29],
where the peak of the spectrum goes well past the initial k4

spectrum. This is possibly achieved because of the extremely
low values of viscosity, resistivity, hyperviscosity, and hyper-
resistivity. On the other hand, in Refs. [30,32], only standard
dissipative terms with moderate values of viscosity are used,
obtaining only a moderate inverse transfer. This suggests that
the use of hyperresistivity might have a stronger influence on
the strength of the inverse transfer than expected. Looking at
our results using hyperviscosity in Sec. IX, we note that this
trend is indeed observed. However, the strength of the inverse
transfer is not as great as in these other papers.

In Ref. [29], the results are benchmarked against Zeus-
MP2, where no inverse transfer is observed. It is argued that
this difference is caused by the different numerical integra-
tion schemes used (sixth-order finite difference for PENCIL
vs second-order finite difference for Zeus-MP2). The authors
suggest that the lower order in the numerical integration of
the latter, adds a numerical dissipation that might affect the
evolution of the magnetic field. A previous work studied the
differences between Snoopy, PENCIL, and Zeus-MP2 [85]. In
this work, the authors conclude that the transport properties
are not affected severely by numerical dissipation. No param-
eters are given for the Zeus-MP2, and hence the comparison
that we can do is limited. Nevertheless, in our simulations,
we find an opposite trend at increasing Pm and a much slower
growth of the magnetic coherence length Lb(t ) than that found
in Ref. [29]. Even though the numerical aspects might explain
some of the differences observed, we believe that these differ-
ences are substantial and need further exploration.

In any case, the discussions given in Ref. [31] and the argu-
ments and data presented in Ref. [30] suggest that the inverse
transfer of magnetically dominated flows should be stronger
than those initially in equipartition. That is also different to
what we observe numerically.
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FIG. 20. Spectra evolution of runs (a) NHhy2 and (b) NHhy1 for times t/T = 0, 0.63, 2.5, 10, and 40 and (c) NHhy3 for times t/T = 0, 0.63,
5, and 14. Solid lines indicate magnetic energy spectra and dashed lines indicate kinetic energy spectra. Brighter lines correspond to earlier
times.

In Ref. [33], the relativistic MHD code MARA was used
(see Ref. [86] for details, especially for the Godunov finite-
volume integration scheme used and the inherent numerical
dissipation). This code has some differences with the rest
of the codes mentioned in this section, but it also shows a
nonhelical inverse transfer with a noticeable growth of the
integral scale over time. It is not mentioned how the kinetic
field is initialized in this simulation.

Finally, in Ref. [31] the Snoopy code is used [87]. This
code is the most similar to the one we use, since it is a
pseudospectral code that solves incompressible MHD in a box
of size 2π with a 2/3 dealiasing rule. The only difference
with our code is that Snoopy uses a third-order Runge-Kutta
scheme for the timestepping procedure. In this work, the
authors implement viscosity and hyperviscosity. The kinetic
flow is initialized to zero and a clear inverse transfer is
observed in the nonhelical hyperviscous case. The scaling
exponents measured using the Snoopy code are in reasonable
agreement with ours. This is interesting to note, since the
authors use a measurement method where some biases of the
log-log fit are overcome.

We performed a last comparison with the Snoopy code,
given that our code uses only a second-order timestepping

procedure. We repeated runs NHp2 and NHhy1 with a timestep
ten times smaller than in the original runs, and we checked
that results were stable and that the choice of timestep did not
introduce any undesired effect. A possible source for disagree-
ment could be that other invariants such as cross-helicity are
set different initially. It has been shown in previous work that
cross-helicity can quench triadic interactions producing for-
ward transfer, creating asymmetries that favor inverse transfer
[62]. Even though net cross-helicity vanishes, differences in
the local structures can have an impact in the inverse transfer
and give place to a different phenomenology. More evidence
studying the influence of cross-helicity may clarify if this is
relevant to explain the discrepancies.

We can conclude that after an extensive check, the de-
caying rates we measured in this work are in reasonable
agreement with previous literature. This suggests that the dis-
crepancies we find in terms of the inverse transfer are not for
any obvious reasons such as coding errors. Since the under-
lying mechanisms for the inverse transfer in nonhelical MHD
are not yet clear, we believe that further analysis is needed.
Either numerical or physical aspects that might seem subtle,
could strongly affect the evolution of the magnetic field and in
particular, the inverse energy transfer in the nonhelical case.
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XI. DISCUSSION AND CONCLUSIONS

In this work we have explored the decay of helical and
nonhelical MHD turbulence using fully resolved DNS in a
wide range of parameters. We find a present but weak non-
helical inverse transfer of magnetic energy, compared to the
one found in recent literature [27,29,31,33]. Nevertheless, we
found that increasing Prandtl number enhances this inverse
transfer, especially in the kinetic field. This is opposite to the
trend found in Ref. [29], where increasing Pm turns the in-
verse transfer less efficient. This difference is possibly related
to the subtleties involved in different numerical implemen-
tations of the MHD equations that might affect strongly the
mechanisms of nonhelical inverse transfer.

We also measured the helical and nonhelical decay rate
Eb ∼ t−pb for different parameters. We note that a careful
numerical approach is necessary for measuring these values.
Especially, due to the closeness of the different theoretical
predictions ranging from pb ≈ 0.5–0.7 in the helical case
and pb ≈ 1–1.5 in the nonhelical case. We report the trends
observed for pb at varying Prandtl number, varying Reynolds
number and varying scale reparation kp. We find that pb

decreases for increasing Pm and increasing Re, producing a
shallower magnetic decay in both helical and nonhelical cases.
Furthermore we find that in the helical case, the decay follows
a functional form pb ≈ 0.6 + 14/Re.

We find that the behavior of the large scales is affected by
scale separation in the nonhelical case (the helical case is not
studied). A small scale separation shows an erratic evolution
of the scaling exponent and the evolution of the subinertial
spectra Eb ∼ k4. Nevertheless, our numerical results show that
the measured values of pb are not strongly dependent on kp.

In Refs. [30,31], the authors suggest that flows in equipar-
tition U ∼ B show a weaker inverse transfer and a steeper
magnetic decay. However, we do not find strong differences
between these two cases, either in the steepness of the de-
cay or the amount of inverse transfer. Still, the magnetically
dominated case shows a slightly stronger inverse transfer than

the case in equipartition, which is in line with the above
mentioned predictions, but not as strong as in other works in
literature.

Finally, we comment on the similarities and differences
between the observed nonhelical inverse transfer in our results
and those in recent literature. A strong inverse transfer has
been observed using three different codes that use different
equations, different numerical techniques, and different fields
initialization. We believe that further work is needed to under-
stand the reason for such differences. We made sure that our
simulations satisfy adequate spatial and temporal resolution
requirements. This is something these other studies were more
lenient in regards. Other properties such as the compressibility
present in the PENCIL code were also suggested in Ref. [29]
as a possible mechanism to enhance the inverse transfer due
to the form of the kinetic spectra at low wave numbers. Never-
theless, the strong inverse transfer observed in Ref. [31] using
incompressible turbulence indicate that the source of the dis-
crepancy might not be related to this. We argue that the initial
cross-helicity and its subsequent evolution can be the source
of the observed discrepancies. Last, we run a small number of
hyperviscous and hyperresistive runs, to verify if the inverse
transfer emerges when the inertial range is sufficiently wide.
The comparisons shows a slightly stronger inverse transfer but
not enough to see the peak of the spectrum moving past the
initial k4 slope.
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