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Intensity of focused waves near turning points
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A wave near an isolated turning point is typically assumed to have an Airy function profile with respect to
the separation distance. This description is incomplete, however, and is insufficient to describe the behavior of
more realistic wave fields that are not simple plane waves. Asymptotic matching to a prescribed incoming wave
field generically introduces a phase front curvature term that changes the characteristic wave behavior from
the Airy function to that of the hyperbolic umbilic function. This function, which is one of the seven classic
“elementary” functions from catastrophe theory along with the Airy function, can be understood intuitively as
the solution for a linearly focused Gaussian beam propagating in a linearly varying density profile, as we show.
The morphology of the caustic lines that govern the intensity maxima of the diffraction pattern as one alters
the density length scale of the plasma, the focal length of the incident beam, and also the injection angle of the
incident beam are presented in detail. This morphology includes a Goos-Hänchen shift and focal shift at oblique
incidence that do not appear in a reduced ray-based description of the caustic. The enhancement of the intensity
swelling factor for a focused wave compared to the typical Airy solution is highlighted, and the impact of a finite
lens aperture is discussed. Collisional damping and finite beam waist are included in the model and appear as
complex components to the arguments of the hyperbolic umbilic function. The observations presented here on
the behavior of waves near turning points should aid the development of improved reduced wave models to be
used, for example, in designing modern nuclear fusion experiments.
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I. INTRODUCTION

Basic wave physics is central to the development of con-
trolled thermonuclear fusion. Indeed, a key component to the
fusion milestones recently obtained at the National Ignition
Facility (NIF) [1,2] was leveraging the basic nonlinear optical
process of cross-beam energy transfer (CBET) to maintain
drive symmetry [3,4]. That said, there still remain open ques-
tions regarding waves in fusion-relevant plasmas. One such
question is the amount of reflection losses (i.e., glint) of an
incident laser beam off the ablating hohlraum wall, an issue
that was the focus of a recent experimental campaign on NIF
[5] for its possible connection to explaining the drive-deficit
problem [6]. Being able to predict glint is paramount to fu-
ture experimental performance because at sufficiently high
intensities, the glint light may get nonlinearly amplified via
CBET with lasers incident from the opposite entrance hole
[7] or even with light from the original laser [8,9] to increase
the amount lost. Moreover, researchers have recently begun to
wonder [10] whether the reflection physics might be modified
by the speckle hot spots that are necessarily introduced to the
NIF laser by the smoothing phase plates [11], since these are
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not currently accounted for in many in-line laser modules.
Hence, understanding the intensity profile of general wave
fields near turning points has a renewed importance in fusion
research.

For a plane wave incident on an isolated turning point (or
turning plane in multiple dimensions), the intensity profile is
well known to be given by Airy’s function [12]. For nonpla-
nar wave fields, one can sometimes perform an asymptotic
matching onto the Airy function and its derivative [12,13],
but this can often obscure some of the key properties of the
true solution. Indeed, the Airy function is merely the sim-
plest member of a large hierarchy of functions (the so-called
diffraction integrals of catastrophe theory [13–15]) that can
be used to describe wave behavior near critical points; since
all members of this hierarchy contain the Airy function as
a limiting behavior, it stands to reason that more general
behavior might be more accurately and compactly captured
by using higher order catastrophe functions.

Here it is shown that the behavior of a general wave field
near an isolated turning point can be compactly expressed as
an integral mapping whose kernel is the hyperbolic umbilic
function. The integral mapping takes the form of a convolution
at normal incidence. As anticipated, the hyperbolic umbilic
function is a higher member of the catastrophe hierarchy that
allows non-plane-wave behavior near turning points (specif-
ically, phase front curvature) to be concisely described. By
itself, the hyperbolic umbilic function also describes the solu-
tion for a Gaussian focused beam incident on a turning point.
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FIG. 1. The plasma dielectric function is assumed to be linear in
x, with vacuum-plasma boundary at x = 0, and cutoff at x = L, and
homogeneous in y, which, as noted, points into the page of the figure.

Since this function is not common in plasma physics, con-
siderable space is dedicated to describing the morphology of
the hyperbolic umbilic function as parameters of the problem
are altered. The effects of dissipation and finite aperture width
are also discussed. Due to their general nature, the results
presented here will have applications beyond laser fusion
experiments; for example, they may be useful for magnetic
fusion researchers attempting to heat overdense plasmas via
mode-conversion methods [16–19], or attempting to measure
turbulent fluctuations via Doppler backscattering [20,21].

This paper is organized as follows. In Sec. II the basic prob-
lem is set up. In Sec. III the general solution for an arbitrary
incident wave field is obtained, which can be considered the
main result of this work. In Sec. IV the special cases of a
plane wave and a focused Gaussian wave (with and without
aperture) are studied in detail as a means of understanding
the general result presented in the previous section. Lastly, in
Sec. V the main results are summarized. Additional discus-
sions are provided in appendices.

II. PROBLEM SETUP

Let us consider a beam propagating in two dimensions [22]
in a plasma that varies only in one direction, which we take to
be x, with y being the remaining spatial direction. Since we are
interested in the wave field behavior near a turning point, we
adopt a linear approximation of the plasma dielectric function
(see Fig. 1):

ε(x � 0) = 1 − x

L(1 + iν)
, (1)

where L is a constant length scale and ν � 0 is a constant
dimensionless damping coefficient. (Note that all numeri-
cal plots will have ν = 0.) Hence, x = 0 corresponds to the
vacuum-plasma interface [although it can be made to cor-
respond to a more general boundary condition by setting
ε(0) = ε0 > 0 rather than unity]. Lastly, let us assume the
beam oscillates monochromatically in time and the plasma
profile is stationary. Hence, we can partition the total wave
field E as

E(x, y, t ) = ψ (x, y) exp

(
−2π i

ct

λ

)
ê + c.c., (2)

where c is the speed of light in vacuum, λ is the vacuum wave-
length of the launched beam, and ê is the polarization vector.
We shall further take E to be s-polarized such that ê plays no
role in the propagation dynamics and can be discarded [23].

III. GENERAL SOLUTION

A. Local solution near the turning point

Near the turning point for x � 0, the wave field satisfies the
Helmholtz equation(

∂2
x + ∂2

y + Lc − x

δ3
a

)
ψ (x, y) = 0, (3)

where we have introduced the complex length scale

Lc
.= L(1 + iν), (4)

along with the complex Airy skin depth

δa
.= 3

√
Lcλ2

4π2
. (5)

The conditions L > 0 and ν � 0 restrict Lc to the first quad-
rant of the complex plane, i.e., arg(Lc) ∈ [0, π/2).

To proceed, let us apply a shifted Fourier transform (FT) in
y. Our FT convention is as follows [24]:

f̃ (ky) =
∫

dy√
2π

f (y) exp

[
−iy

(
ky + 2π

λ
sin θ

)]
, (6a)

f (y) =
∫

dky√
2π

f̃ (ky) exp

[
iy

(
ky + 2π

λ
sin θ

)]
, (6b)

where we have transformed out the mean wave vector
2π sin θ/λ, which is assumed to be the predominant direction
of ky for oblique propagation. Applying Eq. (6) to Eq. (3) then
yields [

δ2
a∂

2
x − C

(
x, ky + 2π

λ
sin θ

)]
ψ̃ (x, ky) = 0, (7)

where we have introduced the cutoff function

C(x, ky)
.= δ2

a k2
y + x − Lc

δa
. (8)

Note that Re(C) = 0 defines the turning point for a plane
wave propagating obliquely with transverse wave vector ky.
The solution to Eq. (7) which remains regular as x → +∞ is
given by [25]

ψ̃ (x, ky) = Ai
[
C

(
x, ky + 2π

λ
sin θ

)]
Ai

[
C

(
0, ky + 2π

λ
sin θ

)] ψ̃ (0, ky), (9)

where Ai is the Airy function [12]. The general solution for
x � 0 can then be obtained by performing an inverse FT.

B. Asymptotic matching at plasma-vacuum boundary

Computing Eq. (9) requires knowing the total wave field
ψ (0, y), which includes the interference between incoming
and reflected components. This is difficult to construct when
the reflected wave field is itself the object of inquiry. An anal-
ogous equation to Eq. (9) that depends only on the incoming
field can be obtained via asymptotic matching as follows.
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Suppose that the inverse-FT integral to obtain ψ (x, y) from
Eq. (9) is negligible beyond some characteristic maximum
wave vector kmax [26]. If the input plane x = 0 is located
asymptotically far from the turning point for the maximum
wave vector, i.e.,

−Re

[
C

(
0, kmax + 2π

λ
sin θ

)]
� 1, (10)

then C at x = 0 is large and negative for all |ky| � kmax, and
we can use the asymptotic approximation [27]

Ai[C(0)] ≈ cos
{

2
3 [−C(0)]3/2 − π

4

}
√

π 4
√−C(0)

, (11)

where here and in the following we have suppressed the
second argument to C for brevity; it is understood to be
ky + 2π

λ
sin θ . Using Eq. (11) in Eq. (9) allows the incoming

component to be isolated as

ψ̃ in(0, ky) = exp
{−i 2

3 [−C(0)]3/2
}
ψ̃ (x, ky)√−4π i 4

√−C(0)Ai[C(x)]
. (12)

Note that the asymptotic matching condition (10) can also
be understood as a paraxial requirement on the incoming field
(but not necessarily the entire field), as anticipated by the
shifted FT used in Eq. (6):

0 � kmax � 2π

λ

(√
1 − δa

L
− sin θ

)
. (13)

The necessary condition

sin θ �
√

1 − δa

L
(14)

then places a limit on the maximum angle of incidence de-
scribable by our model. Physically, these two conditions (13)

and (14) arise because oblique propagation with transverse
wave vector ky shifts the turning point closer to the input
plane by δ3

ak2
y , as seen from Eq. (8). Equations (14) and

(13) therefore state that the turning points for the mean wave
vector 2π sin θ/λ and for all deviations from the mean wave
vector contained within the incoming wave spectrum are also
located far from the input plane. Note also that for shallow
incidence (θ large) when our matching scheme fails, one can
instead perform the asymptotic matching spatially rather than
spectrally because at such angles the overlap region between
the incoming and reflected wave fields is small. At sufficiently
shallow incidence, one might even be able to propagate ψ

according to the paraxial wave equation, with the general
solution for a linear density gradient provided in Ref. [28].
We shall not pursue such generalizations here.

Further simplifications to Eq. (12) consistent with the
paraxial approximation (13) can be performed [29]. First, we
make a slow-envelope approximation such that

4
√

−C(0) ≈ 6

√
2πLc

λ
cos3 θ. (15a)

However, we shall retain the ky dependence in the phase:

[−C(0)]3/2 ≈ 2πLc

λ
cos3 θ − 3

2
Lcky sin 2θ

− 3λLc

4π
k2

y

cos 2θ

cos θ
. (15b)

Note that the approximations given by Eqs. (11) and (15)
only alter the initial conditions of the Fourier-space solution
(9) to the Helmholtz equation and hence preserve the “ex-
actness” of the solution. Said differently, the ψ̃ obtained via
Eq. (12) exactly solves Eq. (7) regardless of the functional
form of C(0). These approximations instead alter which exact
solution a given ψin is mapped to.

Performing an inverse FT to Eq. (12) and using Eqs. (15)
therefore yields the matched solution

ψ (x, y) ≈ N
∫

dy′ ψin(0, y′)UH

(
3
√

3
x − Lc

δa
,

(y − y′) cos θ − 2Lc sin3 θ
6
√

3 δa cos θ
,− λLc

2π
3
√

3 δ2
a

cos 2θ

cos θ

)
, (16a)

or equivalently in terms of ψ̃ in instead of ψin,

ψ (x, y) ≈ N
√

2π

∫
du dv ψ̃ in

(
0,

u
6
√

3 δa

− 2π

λ
sin θ

)
UH

(
u, v,

3
√

3
x − Lc

δa
,

y cos θ − 2Lc sin3 θ
6
√

3 δa cos θ
,− λLc

2π
3
√

3 δ2
a

cos 2θ

cos θ

)
, (16b)

where the single integral over y′ has been replaced by a double
integral over u and v (which may in fact be easier to solve at
times), the normalization constant is given as

N .=
6
√

3

2π
√

iπδa

6

√
2πLc

λ
cos3 θ exp

(
i
4πLc

3λ

2 − sin2 θ cos 2θ

2 cos θ

)
,

(17)

and we have introduced the function UH, defined as

UH(t1, t2, t3)
.=

∫
du dv UH(u, v, t1, t2, t3), (18a)

and the function UH, defined as

UH(u, v, t1, t2, t3)
.= exp(iu2 v + iv3 + it3 u2 + it2u + it1v),

(18b)

as the standard D+
4 hyperbolic umbilic catastrophe function

[14] and the hyperbolic umbilic density function, respec-
tively. UH is one of the famous seven elementary diffraction
catastrophes [30,31] (the simplest of which being the Airy
function). Note also that [UH(t1, t2, t3)]∗ = UH(t1, t2,−t3) and
UH(t1,−t2, t3) = UH(t1, t2, t3) when all parameters are real.
We shall discuss UH in more detail in the following sec-
tion and in Appendix A.
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Before doing so, however, it is worthwhile to emphasize
the advantages of introducing UH into the analysis. The main
advantage is the structural stability of UH. This feature both
justifies the dropping of higher-order terms in Eq. (15b) by
invoking strong 4-determinancy [14] and suggests that the
general phenomenon described by Eq. (16) will persist even
if the problem setup changes moderately, i.e., replacing the
linear plasma profile by an exponential profile more typical
of a freely expanding plasma. As is apparent from Eq. (16),
the structural stability of UH also manifests as an “invariance”
of sorts with respect to injection angle: The injection angle
appears simply as a parameter within the arguments of UH

that will cause the field profile to be translated, sheared, etc.,
but will not change the general functional behavior of the
solution. [In fact, the angle-dependent terms in Eq. (16) can
be identified as gradient-index analogs of the Goos-Hänchen
and focal shifts [32].] This is analogous to the “invariance”
of the Airy function (which is also structurally stable) to the
injection angle as implied by Eq. (9). However, as we shall
now show, the UH representation is superior over the standard
Airy representation due to its ability to compactly describe the
fields that result from incident beams instead of plane waves.

IV. SPECIAL CASES

A. Special case: Plane wave

As a sanity check, let us first confirm that Eq. (16) recovers
the correct solution when ψin corresponds to a plane wave.
Setting

ψin(0, y) = E0 exp

(
i
2πy

λ
sin θ

)
(19)

(with E0 a constant) in Eq. (16) yields

ψ (x, y) = 2πE0√
iπ

6

√
2πLc

λ
cos3 θ Ai

[
C

(
x,

2π

λ
sin θ

)]
× exp

(
i
2πy

λ
sin θ + i

4πLc

3λ
cos3 θ

)
, (20)

as desired. (Note that the constants ensure the incoming com-
ponent of Ai has amplitude E0.) Since max(Ai) ≈ 0.5 along
the real line, one can estimate the swelling factor for the
intensity of Eq. (20) when ν = 0 as∣∣∣∣ψmax

ψin

∣∣∣∣2

∼
(

2πL

λ

)1/3

π cos θ, (21)

which is in agreement with known results [33]. Importantly,
the power-law scaling of the swelling factor (21) with respect
to 1/λ (1/3) is equal to twice the singularity index of the fold
catastrophe function [12,15] (1/6), as expected.

B. Special case: Focused Gaussian beam

To develop more intuition for what UH is in Eq. (16), let
us also consider the case when ψin corresponds to a focused
wave with a Gaussian envelope:

ψin(0, y) = E0 cos θ√
fc/ f

exp

(
i
2πy

λ
sin θ − i

πy2

λ fc
cos2 θ

)
, (22)

which is the field behavior of a weakly focused Gaussian beam
within a Rayleigh range of the focal plane [34]. Here fc is the
complex beam parameter [34] (equivalently, a complex focal
length) whose real and imaginary parts are fc

.= f + i
 , with
f being the focal length and 
 � 0 parametrizing the beam
waist (with 
 = 0 being a focused plane wave). Equation (16)
then yields

ψ (x, y) = N UH

(
3
√

3
x − Lc

δa
,

y cos θ − 2Lc sin3 θ − fc tan θ
6
√

3 δa cos θ
,

λ
fc − 2Lc cos 2θ cos θ

4π
3
√

3 δ2
a cos2 θ

)
, (23)

where we have introduced the normalization constant

N .= E0

6
√

3
√

λ f

2π i
√

πδa

6

√
2πLc

λ
cos3 θ

× exp

(
i
4πLc

3λ

2 − sin2 θ cos 2θ

2 cos θ
+ i

π fc

λ
tan2 θ

)
. (24)

Importantly, one should keep in mind that the paraxial con-
dition (10) on the initial conditions requires that the complex
focal length be sufficiently large:

| f̃c| � 2π

�3/2
max

[
1, 4 tan2 θ,

cos2 θ

(
√

1 − �−1 − sin θ )2

]
, (25)

where �
.= L/δa and f̃c

.= fc/L. One also requires the neces-
sary condition (14) to be satisfied. The solution (23) for N =
1, ν = 0, 
 = 0, and θ = 0 is shown in Fig. 2. (Choosing
ν �= 0 and 
 �= 0 shifts the caustic into the complex domain;
see Ref. [35] for a detailed discussion of the analogous phe-
nomenon for the Airy function.)

Hence, we see that UH can be intuitively understood as the
field pattern that results when a focused plane wave of infinite
extent encounters a simple turning point [36,37]. This intuitive
understanding is aided by considering a ray-based description
of the wave field propagation (Appendix B). Figure 3 shows
ray trajectories that underlie UH for three cases: (i) f < 2L,
(ii) f = 2L, and (iii) f > 2L at θ = 0. Generally speaking,
the focused rays enter the plasma and refract off the density
profile according to their angle of incidence, which causes the
focal point to become aberrated. When f �= 2L, the rays either
focus before reflecting off the high-density region or after, in
accordance with the sign of f − 2L; for the special case of
f = 2L there is actually no aberrated focus, corresponding
to the critical point of the hyperbolic umbilic function. The
factor of two in the critical focal length is due to the enhanced
gradient-index focusing [38] of the inhomogeneous plasma
density profile—the incident beam must be focused nominally
beyond the cutoff to compensate. Also note that the ray equa-
tions are unable to describe the Goos-Hänchen and focal shifts
that occur at finite θ , which is typical for such phenomena
[39].

The caustic surfaces where local intensity maxima occur
are given by Eqs. (A7)–(A9), which read in the normal-
ized (x, y) variables (Appendix B) for the critical case f̃ =
2 cos(2θ ) cos θ as

x̃ � 1, ỹ = sin(2θ ) ± (x̃ − 1), (26)
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FIG. 2. The real part of the hyperbolic umbilic function, i.e., the
solution (23) with N = 1, ν = 0, 
 = 0, and θ = 0 that describes a
focused plane wave propagating in a linear plasma density profile
at normal incidence. The purple lines mark the caustics given by
Eqs. (26) or (27). For oblique incidence, the field pattern simply
shifts laterally in y by the amount 2L sin2 θ tan θ + f tan θ sec θ ,
where the first term is the Goos-Hänchen shift and the second term
corresponds to the shift in the launching point of the field compo-
nent with transverse wave number equal to zero [Eq. (B4)]. Note
that the spatial coordinates are normalized by L, and the distance
between x̃ = 1 and x̃ = 0.99 constitutes 20 Airy skin depths, i.e.,
L/δa = 2000.

and for the general case f̃ �= 2 cos(2θ ) cos θ by the parametric
curves

x̃(fold) = 1 − � cosh(s)
cosh(s) − 1

2
, (27a)

ỹ(fold) = sin(2θ ) + 2
√

� sin θ + � sinh(s)
cosh(s) + 1

2
,

(27b)

FIG. 3. Underlying ray trajectories (Appendix B) of the hyper-
bolic umbilic function shown in Fig. 2. Here, τ denotes the time
along a ray: Rays are launched at τ = 0 and propagate with increas-
ing τ . Hence, rays focus before reflecting off the critical density layer
at x = L when f < 2L, and focus after reflecting off the critical
density layer when f > 2L. Moreover, the density gradient causes
the focal spot to become aberrated as a cusp.

x̃(cusp) = 1 − � cosh(s)
cosh(s) + 1

2
, (27c)

ỹ(cusp) = sin(2θ ) + 2
√

� sin θ + � sinh(s)
cosh(s) − 1

2
,

(27d)

where s ∈ (−∞,∞) is the curve parametrization and the fold-
cusp separation distance � is given by

� =
[

f̃ − 2 cos(2θ ) cos θ

2 cos2 θ

]2

. (28)
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FIG. 4. Line-outs of the solution for ψ given by Eq. (23)
along the symmetry axis y = 0 for various values of f̃ . All cases
have the same initial field amplitude at x̃ = 0 given by E0 =√

iπ exp(−i 2
3 �3/2)/2π�1/4; the visible differences in the field am-

plitude at x̃ = 0.98 are due to the different swelling factors. The
solid color lines show the field envelope (given as the locus of all
local maxima) for a given value of f̃ , while the corresponding field
oscillations are shown in a lighter shade. Clearly, the swelling of the
field increases as the critical focusing condition f̃ = 2 is approached.
Note also that f̃ → ∞ recovers the standard Airy function solution
(red), whose swelling factor is paltry in comparison.

We see the caustic of UH typically consists of two parts: A
parabolic-like fold line that constitutes the locus of turning
points for the entire wave field, and a semicubical-like cusp
line that corresponds to a focal point aberrated by the plasma
density gradient. The hyperbolic umbilic caustic stabilizes this
fold-cusp network to perturbations in the problem setup, e.g.,
having a plasma density that deviates from the linear profile
assumed here, or having a finite injection angle (the stability
of which we have shown explicitly here).

When the incident wave field is focused far from the critical
density, the two caustic curves separate and the behavior near
the turning point is well described by an Airy function whose
level sets are approximately parabolic [Eq. (A12)]. The inten-
sity swelling factor would then be given by the usual formula
(21). More generally, though, the two caustic curves influence
each other to yield a field structure that is more sharply peaked
than either the Airy or Pearcey function would predict alone
[12,14,15,37]. Indeed, since the peak value of UH is approxi-
mately equal to 8 in the critically focused case (cf. Fig. 2), one
can estimate the swelling factor for the intensity of Eq. (23) as∣∣∣∣ψmax

ψin

∣∣∣∣2

∼ 32 f 3

√
12

Lλ2π4
cos θ. (29)

Again, the power-law scaling of the swelling factor (29) with
respect to 1/λ (2/3) is equal to twice the singularity index
of the hyperbolic umbilic catastrophe function [12,15] (1/3)
by definition. The enhanced swelling of UH compared to Ai
is demonstrated in Fig. 4, which shows line-outs along the
axis y = 0 for UH at various values of f̃ , including at f̃ → ∞
when UH reduces to Ai [i.e., Eq. (23) reduces to Eq. (20)].

FIG. 5. Comparison for various values of the normalized density
scale length � between the critical focal length f̃crit (black solid curve)
and the minimum value f̃min given by Eq. (25) that is required for the
validity of Eq. (23). At a given �, the critical focal length, and thus the
most singular behavior of UH (Fig. 2) with enhanced swelling given
by Eq. (29), is only achievable for the range of obliquity angles θ for
which the black line lies outside the region shaded by the respective
color. Note that the focal length is normalized by the density scale
length. For λ = 351 nm, the absolute length scales L shown in the
plot are given respectively as 0.002 mm (blue), 0.05 mm (orange),
and 1.7 mm (green).

That said, however, the paraxial constraint (25) on the
focal length means that one is not always able to realize
the full morphology of UH within our model, depending on
the injection angle and the density length scale. A comparison
between the critical focal length

f̃crit = 2 cos(2θ ) cos θ (30)

that would create the most singular behavior of UH and the
minimum focal length set by Eq. (25) is shown in Fig. 5 for
various values of �. Immediately, one makes the curious ob-
servation that the critical focal length crosses zero at θ = π/4
and becomes negative. This suggests that at large oblique
angles the density gradient introduces such strong focal aber-
rations that one must launch a defocused (expanding) beam to
obtain the critical behavior. Additionally, from the figure one
sees that our model is only applicable over a small range of θ

and f̃ when the normalized density length scale is relatively
short. As the length scale gets longer, the region of validity
increases, although the zero crossing at θ = π/2 always re-
mains outside this region. (Note that for the NIF laser [11]
with λ = 351 nm, the normalized length scales � = 10, 100,
and 1000 shown Fig. 5 correspond to absolute length scales of
0.002 mm, 0.05 mm, and 1.7 mm, respectively.)

It is interesting to then consider how our model can be
applied to present experiments. In particular, real experi-
ments have a density profile that evolves in time. Consider
the isothermal expansion of a laser-ablated hohlraum plasma
for example. In such a plasma, the density length scale will
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increase as L ∼ Cst with

Cs
.=

√
ZTe

mi
(31)

being the sound speed, and correspondingly, our model’s
region of validity will steadily expand in time. Using the nec-
essary condition (14) as means of a simple estimate, the NIF
outer versus inner beams (which respectively make angles
θ ∼ 40◦ and θ ∼ 60◦ with the hohlraum wall normal [11])
can then be described after time t � 1.8 ps and t � 6.4 ps,
respectively. (Note that we have taken Te ∼ 0.5 keV, Z ∼ 20,
and mi = mAu as typical early-time parameters for the ablating
plasma.) This necessary delay time before our model can
be applied to NIF-like parameters is negligible compared to
the nanosecond timescales of the experiments. Furthermore,
the steadily increasing Goos-Hänchen shift of the reflection
point (equal to 2L tan θ sin2 θ ) as time progresses suggests that
ray-tracing calculations (which do not contain this shift) may
become increasingly inaccurate at later times. This observa-
tion is particularly relevant because of the recent interest in
characterizing glint losses in hohlraums [5]; if the reflection
geometry is not specular but instead has angle-dependent
shifts, the interpretation for which lasers are responsible for
which glint signals may change (although the increased col-
lisional absorption that also occurs at large L may dominate
this effect in certain parameter regimes [40]).

As the density evolves, the focusing of the incident wave
field will change even if the focal length of the lens remains
the same. This is because increasing L drives f̃ toward zero.
A qualitative understanding of this effect can be readily ob-
tained by viewing Fig. 5: When θ � π/4 a wave with initial
f̃ < 0 will get more focused but never critically focused since
it cannot cross f̃ = 0, while a wave with f̃ > f̃crit will be-
come critically focused and then defocus; conversely, when
θ > π/4 a wave with f̃ � 0 will become more focused but
never critically focused, while a wave with f̃ < f̃crit will pass
through critically focusing on its way to becoming defocused.
This generic behavior should be observable in other wave
applications too, for example, electron cyclotron resonance
heating on spherical tokamaks during the density ramp-up
phase [41]. Since ray-tracing codes are often used to opti-
mize such applications, this observation means that advanced
ray-tracing techniques such as etalon integrals [8,35,42] or
metaplectic geometrical optics [28,43–45] are needed to en-
able the accurate computation of the entire unfolding of UH.

C. Finite-aperture effects

Now let us consider how the presence of an aperture might
modify the results thus far obtained. This is accomplished by
letting [46]

ψin(0, y) = �in(0, y) rect
( y

W

)
, (32)

where rect(z) denotes the rectangular hat function, which
is everywhere zero except when −1/2 < z < 1/2 where it
equals unity. The shifted FT of ψ is then given by the usual
convolution formula

ψ̃ in(ky) = W

2π

∫
dκy sinc

(
W κy

2

)
�̃ in(ky − κy). (33)

In view of Eq. (16), if W is much larger than the characteristic
variations in � and UH, then one can take W → ∞ such that
ψ ≈ �, meaning that the aperture plays no role. Similarly, if
W is much smaller than the characteristic variations, one can
take W → 0 such that rect( y

W ) ≈ W δ(y) and one correspond-
ingly obtains

ψ (x, y) ≈ WN �in(0, 0)UH

(
3
√

3
x − Lc

δa
,

y cos θ − 2Lc sin3 θ
6
√

3 δa cos θ
,

− λLc

2π
3
√

3 δ2
a

cos 2θ

cos θ

)
, (34)

where N is given by Eq. (17). Hence, UH can also be un-
derstood as the point-spread function [47] for propagation in
a linear density gradient, since in this limit the signal that
passes through the aperture can be considered a point source.
Finite W will therefore generate a homotopic transformation
between the unapertured solution (16) and the hyperbolic
umbilic solution (34).

For an incident plane wave (Sec. IV A), the transformation
is given explicitly as

ψ (x, y) ∝
3
√

3W̃

2π2

∫
du dv sinc

(
W̃ u

)
× UH

[
u, v,

3
√

3 �(x̃ − 1),
�

6
√

3
ỹ,−

√
�

3
√

3

]
, (35)

where we have assumed θ = ν = 0 for simplicity. Also,
we have reintroduced the normalized coordinates defined in
Eqs. (B3) along with the normalized aperture width

W̃
.= W

2 6
√

3 δa

. (36)

One readily verifies that the hyperbolic umbilic solution (34)
is recovered in the limit W̃ → 0 and the Airy solution (20)
is recovered in the limit W̃ → ∞. This transition is shown in
detail in Fig. 6, in which Eq. (35) is numerically calculated for
various values of W̃ .

Similarly, for an incident focused wave (Sec. IV B), the
transformation is given explicitly as

ψ (x, y) ∝
∫

du dv
A(u)

2

× UH

[
u, v,

3
√

3�(x̃ − 1),
�

6
√

3
ỹ,

√
�

3
√

3

f̃ − 2

2

]
, (37)

where we have taken θ = ν = 
 = 0, and we have intro-
duced the aperture function

A(u)
.= erf

⎛⎝√
i f̃

2

4
√

�
6
√

3
u +

√
i

2
W̃

⎞⎠
− erf

⎛⎝√
i f̃

2

4
√

�
6
√

3
u −

√
i

2
W̃

⎞⎠. (38)
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FIG. 6. Progression of the diffraction pattern for an apertured
plane wave near a turning point located at x̃ = 1 as the aperture width
W̃ is varied. The pattern transforms from the standard Airy pattern at
large W̃ to the defocused hyperbolic umbilic function (34) at small W̃
according to Eq. (35), which is numerically solved using the method
outlined in Appendix C. Here L/δa = 200, so the distance between
x̃ = 1 and x̃ = 0.9 constitutes 20 Airy skin depths.

For convenience, we have also altered our normalization con-
vention for the aperture width such that now

W̃ =
√

π

λ f
W (39)

(which one also recognizes as simply the Fresnel number of
the aperture evaluated at the focal length [48]). Again, one
can verify that Eq. (34) is recovered from Eq. (37) in the limit
W̃ → 0, and that Eq. (23) is obtained in the limit W̃ → ∞.
The transformation between these two limiting cases is de-
picted in Fig. 7, where Eq. (37) is numerically computed for a
sequence of W̃ values.

FIG. 7. Same as Fig. 6 but for the apertured focused wave de-
scribed by Eq. (37) with critical focusing f̃ = 2. The transitions for
noncritical f̃ are qualitatively similar.

V. CONCLUSIONS

In this work a model is proposed to describe the diffraction
pattern of a general wave field incident upon a turning point.
Assuming that the incoming field has a bounded Fourier spec-
trum about the mean angle of incidence, the solution can then
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be expressed as an integral mapping of the initial wave field
whose kernel is the hyperbolic umbilic function, one of the
seven famous functions from catastrophe theory. At normal
incidence the integral takes the form of a convolution. It is
shown that the traditional Airy solution is subsumed as a spe-
cial case, and also that the hyperbolic umbilic function is itself
a solution when the incident wave field is Gaussian focused.
Also, when the initial field is passed through an aperture, the
solution generically transforms from the original aperture-free
case to a defocused hyperbolic umbilic function, and explicit
examples of this transformation are given for a plane wave and
a Gaussian wave.

Due to the ubiquity of focused waves near turning points,
the results presented here should have broad applications. In
fusion research, these observations may enable the develop-
ment of more accurate reduced models for lasers interacting
with and reflecting off the hohlraum wall. It also lays the
foundation for future studies to understand how the reflection
physics might be modified by the presence of speckles. Pre-
liminary work [10] suggests a speckled laser near a turning
point can be described by a random sum of the apertured
hyperbolic umbilic functions discussed here, although more
analysis is required to confirm this finding and also to explore
its consequences on modern ICF experiments. For certain phe-
nomenological speckle models, e.g., treating speckled lasers
as a sum of randomly focused Gaussian waves [49–51], these
results may be immediately applicable.
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APPENDIX A: HYPERBOLIC UMBILIC
CATASTROPHE FUNCTION

The standard D+
4 hyperbolic umbilic catastrophe function

is defined in Ref. [14] as

UH(t1, t2, t3)
.=

∫
du dv exp(iu2v + iv3 + it3u2

+ it2u + it1v). (A1)

By making the variable substitution

u =
√

3
ν − μ

22/3
, v = ν + μ

22/3
− t3

2
, (A2)

one can also transform UH into the form

UH(t1, t2, t3) =
√

3
3
√

2
exp

(
− i

2
t1t3 − i

8
t3
3

)
× Ũ H

(
3 t2

3 + 4 t1 − 4
√

3 t2
28/3

,

3 t2
3 + 4 t1 + 4

√
3 t2

28/3
,−3 t3

3
√

2

)
, (A3)

where Ũ H is the symmetrized hyperbolic umbilic catastrophe
function used by Ref. [12]:

Ũ H (τ1, τ2, τ3)
.=

∫
dν dμ exp(iν3 + iμ3 + iτ3 νμ

+ iτ2 ν + iτ1 μ). (A4)

Additionally, the integration over v in Eq. (A1) can be explic-
itly performed to yield the representation

UH(t1, t2, t3) = 2π
3
√

3

∫
du Ai

(
u2 + t1

3
√

3

)
× exp(it3u2 + it2u). (A5)

Similarly, one can perform the Gaussian integration over u
in Eq. (A1) and then make the variable transformation z =√

v + t3 to obtain the representation

UH(t1, t2, t3) = 2
√

iπ exp
(−it3

3 − it1t3
) ∫ ∞

i∞
dz

× exp

[
iz6 − 3it3z4 + i

(
3t2

3 + t1
)
z2 − i

t2
2

4z2

]
,

(A6)

where the integration contour passes from +i∞ on the imag-
inary axis toward the origin, passing to the upper right of the
essential singularity at z = 0, then continuing toward +∞ on
the real line. Equation (A5) is useful for numerical computa-
tion, as discussed further in Appendix C, while Eq. (A6) is
useful for understanding the (nontrivial) asymptotic behavior
of UH via steepest-descent methods, as discussed further in
Ref. [52].

Important for our purposes are the caustic surfaces of UH.
At fixed t3 �= 0, these caustics consist of one fold line and one
cusp line in the t1-t2 plane, given by the parametric equations

t (fold)
1 = −3

2
t2
3 cosh(s)[cosh(s) − 1], (A7a)

t (fold)
2 =

√
3

2
t2
3 sinh(s)[cosh(s) + 1], (A7b)

and

t (cusp)
1 = −3

2
t2
3 cosh(s)[cosh(s) + 1], (A8a)

t (cusp)
2 =

√
3

2
t2
3 sinh(s)[cosh(s) − 1], (A8b)

where the parametrization s ranges from −∞ to ∞. When
t3 = 0, the fold and cusp lines coalesce into the line segments

t1 � 0, t2 = t1√
3
, (A9a)

t1 � 0, t2 = − t1√
3
. (A9b)

For t2 ≈ 0 (equivalently, s ≈ 0) and t3 �= 0, the fold and cusp
lines are approximately represented as

t (fold)
1 ≈ −

(
t2
2t3

)2

, (A10a)

t (cusp)
1 ≈ −3t2

3 − 9

(
t2t3

2
√

3

)2/3

. (A10b)
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Hence, the characteristic fold-line width, cusp-line width, and
fold-cusp separation are respectively t3, 1/t3, and t2

3 .
Since the fold and cusp lines become increasingly sepa-

rated as |t3| increases, one expects that in the asymptotic limit
|t3| → ∞ the hyperbolic umbilic function can be approxi-
mately represented as an Airy function. Indeed, by completing
the square in Eq. (A5), one can represent UH as

UH(t1, t2, t3) = 2π
3
√

3
exp

(
−i

t2
2

4t3

)∫
du Ai

(
u2 + t1

3
√

3

)

× exp

[
it3

(
u + t2

2t3

)2
]
. (A11)

As |t3| → ∞, the integral will thus be dominated by the con-
tributions around the stationary point u = −t2/(2t3). Hence,
standard stationary phase methods yield the approximation

UH(t1, t2, t3) ≈ 2π
3
√

3

√
iπ

t3
Ai

[
t1 + (t2/2t3)2

3
√

3

]

× exp

(
−i

t2
2

4t3

)
. (A12)

Note that the argument to the Airy function is simply
the quadratic approximation to the fold line presented in
Eq. (A10a); hence, the basic structure of Eq. (A12) can be
anticipated from the principles of catastrophe optics.

APPENDIX B: RAY EQUATIONS FOR VISUALIZING
THE CAUSTIC SKELETON OF UH

In the following, we neglect the dissipation and finite beam
waist terms such that all physical parameters are real. For the
wave equation given in Eq. (3), the dispersion symbol [53]
that governs the propagation of the geometrical-optics rays is
calculated to be

D(x, y, kx, ky) = k2
x + k2

y + x − L

δ3
a

. (B1)

The rays then satisfy the dynamical equations

∂τ x(τ ) = 2kx(τ ), ∂τ kx(τ ) = − 1

δ3
a

, (B2a)

∂τ y(τ ) = 2ky(τ ), ∂τ kx(τ ) = 0. (B2b)

Let us normalize all wave-number-like quantities by the vac-
uum wave number 2π/λ, all distance-like quantities by the
density length scale L, and the ray propagation time (which
has units of length squared) by their product:

x̃ = x

L
, ỹ = y

L
, f̃ = f

L
, (B3a)

k̃x = λkx

2π
, k̃y = λky

2π
, τ̃ = 2πτ

λL
. (B3b)

Let us choose x̃(0) = 0 and ỹ(0) = ỹ0. The initial condition
(22) for UH implies that the rays have the corresponding initial
condition

k̃y(0) = sin θ − ỹ0

f̃
cos2 θ. (B4)

The condition D = 0 then determines the remaining initial
condition:

k̃x(0) =
√

1 − k̃2
y (0). (B5)

The normalized ray trajectories that satisfy Eq. (B2) subject
to the initial conditions are then given as

x̃(τ̃ ) = 2k̃x(0)τ̃ − τ̃ 2, k̃x(τ̃ ) = k̃x(0) − τ̃ , (B6a)

ỹ(τ̃ ) = ỹ0 + 2k̃y(0)τ̃ , k̃y(τ̃ ) = k̃y(0). (B6b)

Note that the ray equations (B6) only describe the hyperbolic
umbilic caustic pattern close to the critical point due to us
applying an asymptotic initial condition at a finite location.
Aberrations manifest farther from the critical point that cause
the ray envelope caustic to deviate from the true caustic, al-
though some authors choose to accommodate such aberrations
in their unfolding convention for UH (equivalently, generically
consider observations on curved surfaces rather than planes)
to simplify the process of identifying this caustic in real ex-
periments (see, for example, Figs. 4.4 and 4.5 in Ref. [54]).

APPENDIX C: NUMERICAL PROCEDURE FOR
COMPUTING UH AND RELATED FUNCTIONS

Here we provide a simple procedure for computing
UH(t1, t2, t3) and related integrals using the representation
provided by Eq. (A5). First, when t3 = 0 one can use results
from Ref. [55] to obtain the exact expression

UH(t1, t2, 0) = 2π2 6

√
16

3
Ai

(
t1 − √

3 t2
3
√

12

)

× Ai

(
t1 + √

3 t2
3
√

12

)
. (C1)

For general t3 �= 0, Eq. (A5) takes the form of an FT:

UH(t1, t2, t3) = 2π
3
√

3
Fu

[
Ai

(
u2 + t1

3
√

3

)
exp

(
it3u2

)]
(t2), (C2)

where Fu[ f (u)](k) denotes the FT of f (u), now considered a
function of k defined as

Fu[ f (u)](k)
.=

∫
du f (u) exp(−iku). (C3)

Equation (C2) can then be computed using standard FFT
routines, which is how Fig. 2 was produced.

The apertured formulas of Sec. IV C can be computed
similarly. Equation (35) is computed via FFT as

ψ ∝ W̃

π
Fu

[
sinc(W̃ u)Ai

(
u2 + t1

3
√

3

)
exp

(
it3u2)](t2), (C4)

where t1, t2, and t3 are the arguments for UH in Eq. (35), while
Eq. (37) is computed as

ψ ∝ π
3
√

3
Fu

[
A(u)Ai

(
u2 + t1

3
√

3

)
exp

(
it3u2)](t2), (C5)

where t1, t2, and t3 are the arguments for UH in Eq. (37).
Figures 6 and 7 are computed using these formulas.
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