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Occam’s razor on the mechanism of resistive-wall-mode-induced β limits in diverted tokamaks
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External kink modes, believed to be the drive of the β-limiting resistive wall mode, are strongly stabilized by
the presence of a separatrix. We thus propose a novel mechanism explaining the appearance of long-wavelength
global instabilities in free boundary high-β diverted tokamaks, retrieving the experimental observables within
a physical framework dramatically simpler than most of the models employed for the description of such
phenomena. It is shown that the magnetohydrodynamic stability is worsened by the synergy of β and plasma
resistivity, with wall effects significantly screened in an ideal, i.e., with vanishing resistivity, plasma with
separatrix. Stability can be improved by toroidal flows, depending on the proximity to the resistive marginal
boundary. The analysis is performed in tokamak toroidal geometry, and includes averaged curvature and essential
separatrix effects.
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I. INTRODUCTION

Maximizing β, the ratio of plasma pressure over kinetic
pressure, is of crucial importance for an economically viable
tokamak reactor, allowing a larger fraction of bootstrap cur-
rent and higher fusion power yield. The maximum achievable
β, however, is limited by the onset of global macroscopic
magnetohydrodynamic (MHD) instabilities. Experimental ev-
idence shows that this macroscopic pressure driven activity
(i) has an external component, (ii) grows on time scales of the
order of tens of milliseconds [1], (iii) rotates slowly compared
to the bulk plasma [2], (iv) is stabilized by plasma rotation
(even modest in some cases) [2–4], and (v) is triggered when β

crosses a threshold which is smaller than the one predicted by
ideal MHD stability analyses with a close fitting ideal wall [2].

The general consensus for this β-limiting instability in-
vokes a special form of the external kink (XK) mode, i.e., a
free boundary ideal perturbation [5], enhanced by β effects as
its most likely cause, with the magnetic flux diffusion through
the resistive wall surrounding the plasma slowing down the
fast growth of the XK [2]. This is known as the resistive wall
mode (RWM). Several theories have been proposed to explain
such MHD phenomenon; see, e.g., [2,6–10]. Most of those
have been developed in cylindrical geometry, and generally
neglect plasma inertia and pressure effects [8] apart from few
works which account for localized finite β corrections [7].
Only few analyses deal with proper toroidicity [9–12],
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although using peculiar equilibrium profiles and allowing
mode resonances in the vacuum region.

For the RWM, viewed as a form of an XK, a fundamental
role is played by the free energy contribution of the vacuum
region. However, although external kinks are certainly possi-
ble in limited toroidal plasmas, extra care has to be taken when
dealing with diverted geometries. With an x point, the safety
factor profile q diverges at the separatrix. This constrains any
mode of helicity m/n > qmin (m and n are the poloidal and
toroidal mode numbers and qmin is the minimum value of
the safety factor) to resonate within the plasma. Therefore,
in an ideal diverted plasma the contribution to the free energy
of the mode drive due to the free boundary XK is expected
to be suppressed, and wall effects strongly reduced [13]. In
numerical modeling (see, e.g., [14,15]) a cutoff in the simu-
lation domain is often introduced in order to avoid the edge
singularity in q. The choice of this cutoff is usually such that
q at the edge corresponds to the value of q at 95% of the
normalized poloidal flux (q95). Unfortunately, this introduces
a degree of arbitrariness since results may depend strongly
on the choice of q95 [16,17]. In particular, it is found that the
largest displacement at the boundary is the one associated with
the harmonic of helicity m/n closest and slightly less than q95,
and hence highly sensitive to the cutoff of the edge safety
factor [16,18–21]. Finally, discrepancy was found between
numerical analyses and experiments, where ideal MHD sim-
ulations predicted an unstable mode whereas the experiment
was stable [22].

Our aim is to reconcile theoretical predictions with experi-
mental observations, removing possible artificial ambiguities.
Hence, in this work a new mechanism, featuring both internal
and external characteristics, which explains the appearance of
low-frequency long-wavelength macroscopic instabilities in
a high-β diverted tokamak avoiding the arbitrariness of the
choice of the edge q is presented. This change in perspective
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on the mode drive, somehow similar to the problem of peeling
modes in x-point geometry [23,24], is a radical shift compared
to previous models (see, e.g., [25] and the above-mentioned
references), reflected by the strict boundary conditions to be
imposed at the respective mode resonant surfaces which are
now forced to occur within the plasma. This framework re-
trieves all experimentally observed features associated with
RWMs phenomena, although being significantly simpler than
most of the models commonly employed for the interpreta-
tion of such dynamics. The analysis, performed in toroidal
geometry within the infernal model framework [26,27], nat-
urally identifies pressure as the key driving player, with
plasma resistivity both deteriorating stability and allowing
the perturbation to have external-like features. Contrarily to
the toroidal derivations of Refs. [9,10], coupling occurs well
inside the core region far from the innermost resonance and
no modes are allowed to resonate in the vacuum. Our model
accounts also for favorable averaged curvature effects, namely
a negative Glasser-Greene-Johnson (GGJ) interchange param-
eter [28], and a sheared toroidal flow. Mode suppression can
be achieved with modest rotation values if the resistive plasma
is not too far from its marginal stability boundary.

II. PHYSICAL MODEL

We analyze a circular tokamak plasma of major and minor
radii R0 and a, respectively, in the limit of large aspect ratio
(ε = a/R0 � 1). The ordering β = 2μ0 p/B2

0 ∼ ε2 is adopted,
where p is the plasma pressure and B0 the magnetic field
strength on the axis. A right-handed straight field line coordi-
nate system (r, ϑ, φ) is introduced with r a flux label with the
dimensions of length, and ϑ (counterclockwise in the poloidal
cross section) and φ the poloidal-like and toroidal angles
respectively. The equilibrium magnetic field in the plasma
is B = F∇φ − ∇ψ × ∇φ where ψ is the poloidal flux. The
plasma is described by the resistive MHD equations [29] (we
normalize μ0 = 1) whereas the absence of currents in the
vacuum region implies that ∇ × B = 0. We denote with ρ and
η the mass density and resistivity, respectively, both assumed
to be constant. The temperature is taken to be a decreasing
function of the radius with Ti = Te = T .

We adopt a magnetic separatrix so that q → ∞ logarith-
mically at the edge (q is the safety factor) and assume that
this divergence is well localized in an infinitesimally nar-
row region about the boundary. Far from the plasma-vacuum
boundary region, q is piecewise continuous, constant for 0 <

r < r0 (core region) with value q0 = m/n − δq > 1. We take
q0 strictly above unity to avoid m = n infernal-type perturba-
tions developing [27]. For r > r0 (external region) we choose
q = q0(r/r0)2, extending into the vacuum region up to the
ideally conducting wall located at r = b [cf. Fig. 1(a)]. The
presence of a separatrix forces any perturbation of helicity
m/n to resonate within the plasma. In order to model this
effect, we constrain the maximum width of the current channel
r0 so that for a given m and n we impose (m + 1)/n < q(a).

A sheared equilibrium toroidal MHD flow u = R2
(r)∇φ

is allowed under the assumption of being sufficiently weak
not to induce centrifugal corrections to equilibrium pressure
and mass density profiles [30]. Both pressure and rotation
profiles are parametrized by a Heaviside step function H

FIG. 1. Safety factor (a), and pressure and toroidal rotation pro-
files (b) used in the following analysis. In panel (b), the units of the
y axis are arbitrary.

[cf. Fig. 1(b)]:

p/p0 = H (rp − r), 
/
0 = H (r
 − r), (1)

with 0 < rp < r0 and r1 < r
 < r2. This captures the rotation
shearing at the two resonances. Here p0 and 
0 are the axis
values of pressure and rotation, respectively. Without loss of
generality we take 
0 > 0.

III. PERTURBATION EQUATIONS

Let us fix the toroidal mode number n. In region 0 < r < r0

we allow for toroidicity driven coupling between a main mode
ξm and its satellite harmonics ξm±1 with ξm±1 ∼ εξm [26,27].
Higher order harmonics are ignored. Hereafter ξ denotes
the perturbation and any other quantity takes its equilibrium
value. In this region plasma inertia is neglected and it is
assumed that (δq/q)2 ∼ εα with α = −(2R0 p′q2)/B2

0 being
the ballooning parameter. By solving for ξm+1 in the region
0 < r < r0 and imposing smooth matching across r0 and reg-
ularity of the sidebands at the magnetic axis, an equation for
ξm is found [27,31,32]:

[r3Qξ ′
m]′ − r[(m2 − 1)Q + DM]ξm + α(1 + m)

2

× r1+m

r2+2m
0

(
2 + m + c

m − c

)∫ r0

0
r1+mαξmdr = 0, (2)

where Q = (δq/q)2, DM = α(1 − 1/q2)r/R0, and
c = r0ξ

′
m+1(r0)/ξm+1(r0). Note that the coupling effectively

involves only two harmonics, namely ξm and ξm+1. Within
this model ξm(r > a) = 0 to leading order, so that couplings
due edge localized pressure gradients are prevented, thence
corroborating the choice of the pressure in Eq. (1). Moreover,
since our choice of the pressure profile yields core mode
coupling, we do not assume a high β ∼ ε as in [9], and field
line bending stabilization is not strongly reduced compared
to [10]. Toroidal rotation modifications to Q and DM , as the
ones reported in Ref. [30], are neglected due to the weak flow
assumption. If shaping effects are allowed, DM is modified
according to Ref. [31], and the last term in Eq. (2) weakened
by an elongation dependent factor [31].

With the safety factor given above, the two resonances
q = m/n and q = (m + 1)/n occur at r1 = r0(m/nq0)1/2 and
r2 = r0[(m + 1)/nq0]1/2, respectively. No mode coupling oc-
curs for r0 < r < a because of the large shear and the absence
of strong pressure gradients [cf. Eq. (1)]. Moreover, ξm must
remain finite at r1 to leading order and has to vanish at either
the ideal wall or infinity. This forces ξm = 0 in the region
r > r1 [3]. If pressure gradients are allowed at r1, then ξ ′

m+1 is

055203-2



OCCAM’S RAZOR ON THE MECHANISM OF … PHYSICAL REVIEW E 107, 055203 (2023)

discontinuous at this point [3,33]. We notice that even in the
case ξm ∼ ξm+1, coupling is of higher order. Thus we envisage
that this reduced spectrum is sufficient to capture the key
physical effects. Far from the resonances, ξ ( = m, m + 1)
obeys the equation [34],

Lξ ≡ [r3(/q − n)2ξ ′
]′ − r(2 − 1)(/q − n)2ξ = 0,

(3)
with general solution ξ ∝ (r−1 + Nr−−1)/(/q − n) where
N is a constant. This form of ξ also solves (2) in region
0 < r < rp and rp < r < r0 with the pressure profile given
by (1) [10,31]. We call the solution of Eq. (3) the outer
solution.

The asymptotic behavior of ξm when the resonance r1 is
approached is ξm ∝ 1

x ∓ �±,m for x ≷ 0 with x = (r − r1)/r1

where �±,m are the logarithmic jumps of the outer solution.
The sideband ξm+1 behaves similarly at r2 with the obvious
replacements x → (r − r2)/r2 and �±,m → �±,m+1.

The layer response, associated with the parameter �R,

( = m for the main mode and  = m ± 1 for the sidebands),
is obtained by matching the solution far from the resonance
(outer) with the layer one, yielding π�R, = −[�−, +
�+,]. This is used to express �−, as a function of wall
(�+,) and layer (�R,) responses. Wall physics is contained
in the term �+,, which is obtained from the smooth matching
of the solution of (3) with the vacuum one [5,35],

�+, = −1

2
− 

(rs,/b)2 + 1 + 1/γ τw

(rs,/b)2 − 1 − 1/γ τw

, (4)

having employed the thin wall approximation [36], with
τw denoting an effective wall diffusion time, rs,m = r1 and
rs,m+1 = r2. Note that �+, remains bounded unless rs, → b,
and for b → ∞ its expression coincides with the one obtained
letting τw finite and γ → 0. This indicates that the stability
limit computed with a resistive wall conforms to the one with
the wall at infinity.

At r1 we assume an ideal response,

�R,m = − ω1

γ − i
0
ω1 = ωAs1n/m√

1 + 2m2/n2
, (5)

where ωA = B0/R0
√

ρ and s1 the magnetic shear at posi-
tion r1. Notice that inertia at r1 is enhanced by a factor
∼√

2(m/n)2. In our model s1 = 2, however, if δq is suffi-
ciently small, one could approximate s1 ≈ nδq/m which is
more appropriate for a smooth current profile.

We let �R,m � �+,m, i.e., sufficiently small γ , 
0, and
(r2/b)2m. Since T (r2) < T (r1), we allow for plasma resistivity
at r2. Equation (3) is augmented by a Glasser-Greene-Johnson
(GGJ)-like term ν [28], that is, (Lm+1 − r2s2ν)ξm+1 = 0 with
0 < ν � 1, and solved far from r2 via a WKB expansion
for small 1/(m + 1) [37]. The resulting expression is joined
asymptotically with the perturbative (in ν) solution of the
equation above about r2. The latter is finally matched with
the layer solution [38]. In the limit of ν sufficiently small, this
yields [28,39]

�R,m+1 = �(3/4)

2�(5/4)

c1/2
0 S3/4

m + 1

(
γ

ωA

)5/4[
1 + πν

4M

]
, (6)

where c0 =
√

1 + 2(m + 1)2/n2/(ns2) with s2 the magnetic
shear at r2, S = a2ωA/η is the Lundquist number, � is
the Gamma function, and M = c0(γ /ωA)3/2S1/2. It is easily
shown that with the choice of the safety factor given above,
the tearing stability index of the mode m + 1 is negative for an
ideal wall at infinity. This guarantees that the system is stable
against classical tearing modes [40].

IV. ANALYSIS OF THE DISPERSION RELATION

We shall focus on the n = 1 mode. With the pressure
profile given by (1), the dispersion relation is obtained by
integrating (2) across rp [30,31], and joining smoothly at r0

the core and external region solutions for ξm and ξm+1. This
yields to first order in 1/�R,m,

λH + B

�R,m
+ A

�R,m+1 − �′
T

= 0. (7)

λH measures the magnitude of the ideal growth rate and is
well approximated by

λH ≈ (1 + m)β̄2

2ε2
p

(r2/r0)2+2m − 2 − δq

1 + δq(r2/r0)2+2m

(
rp

r0

)2+2m

− β̄
(
1 − 1/q2

0

) − 2m(m − 1)Q

m − 1 + (m + 1)(rp/r0)2m
,

with β̄ = 2p0q2
0/B2

0 and εp = rp/R0. The quantities A and B,
both positive, are defined as

A = (m + 1)β̄2

πε2
p

(1 + δq)2
(
r2rp/r2

0

)2+2m

[1 + δq(r2/r0)2+2m]2
,

B ≈ 16m3(rp/r1)2m/
(
πq2

0

)
[m − 1 + (m + 1)(rp/r0)2m]2

,

having neglected the weak dependence upon δq in q2
0B (this

holds if rp/r0 is not too close to unity). It is worth noticing
that for m = 2 the factor q2

0 appearing in the expression of B
above, cancels out with the one contained in the definition of
r1. Finally, �′

T is written as

π (m + 1)�′
T =m + 1/2 − (m + 3/2)δq(r2/r0)2+2m

1 + δq(r2/r0)2+2m

− �r,m+1,

which recovers the tearing mode stability index of mode m +
1 at r2 for δq sufficiently large. Notice that �′

T � 0 for δq > 0
in the ideal wall limit, i.e., τw → ∞. Thus, in order to extend
the range of applicability of (7), we may regard �′

T as a free
parameter, letting it vary from −∞ to 0.

With no rotation, the ideal marginal boundary (�R, → ∞)
is identified by λH = 0, and corresponds to the usual ideal-
wall β limit. We see that in an ideal plasma there is no wall
influence, neither ideal nor resistive, on the boundary due
to the fact that the resonances of the modes involved occur
within the plasma, leading to an effective screening of the wall
effects. This is a reflection of the strict boundary conditions to
be applied on each harmonic of the eigenfunction at its own
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FIG. 2. Ideal and resistive marginal boundaries for the n = 1
mode with a dominant m = 2 component with r0/a = 0.6, rp/a =
0.35, and εp = rp/R0 with ε = a/R0 = 1/3. The unstable regions
lie above each curve. The wall position of the stability curve of the
resistive mode with wall (res. mode w/ wall) is set at b/a = 1.05.

resonance. This holds true even if mode coupling is allowed
in the region r > r0 with ξm+1 dominant over ξm. Moreover,
the ideal marginal boundary is very weakly affected by non-
vanishing rotation at r2, if the flow is not too large, i.e., if the
condition �R, � 1 is fulfilled.

Allowing a tearing response at r2 (�R,m+1 ∼ γ 5/4) with
neither rotation nor GGJ effects, the stability limit is given
by the relation λH/A − 1/�′

T = 0, which occurs for λH < 0.
We call this stability limit the resistive β boundary. Stability
is increasingly worsened as �′

T → 0, pushing the marginal
boundary λH/A to −∞, that is, the mode is always unsta-
ble. The wall affects this boundary, and its effect becomes
more pronounced as r2 approaches b. This is because the
upper harmonic is allowed to have external-like features at
the boundary. This result can be generalized to the �′

T > 0
case [41], showing that no threshold is present if ν = 0. The
marginal boundaries for the ideal and resistive case discussed
above are shown in Fig. 2 in the βN − δq space with βN =
β[%]q(a)/(5ε) (computed in the cylindrical limit) and β =
β̄r2

p/(q0a)2. If ν = 0, GGJ effects are expected to stabilize the
resistive mode [28], effectively introducing an intermediate
threshold between the ideal and resistive ones. We point out
that a neoclassical drive must be added when the analysis is
extended to the nonlinear phase. Because of the dependence
(r/b)2m in Eq. (4), wall effects are expected to be small for
modes which have core resonances or large poloidal mode
numbers.

Let us now assume that λH < 0, i.e., we analyze an ideally
stable situation, and allow for a toroidal flow of the form given
by (1). Since we are mostly interested in the marginal stability
boundaries, we consider the case of wall at infinity (b → ∞).
We identify two roots: one which rotates with frequency close
to 
0 (fast-frequency root), and the other with |γ | � 
0

(low-frequency root). In the former case we write γ = i
0 + δ

with |δ| � 
0, and substitute into Eq. (7). It is immediate to
see that if |λH | and �R,m+1 are sufficiently large, i.e., large
Lundquist number, then Re(δ) < 0.

FIG. 3. Contours of the critical rotation required to stabilize the
resistive mode with the same parameters of Fig. 2 apart from b → ∞
here. The ideal instability region lies above the solid curve, and the
purely resistive mode is stable below the dashed one. Region I is
ideally stable-resistive unstable. Region II is stable thanks to GGJ
effects (here we take ν∗ = 10 × β5/6). Equation (9) holds between
regions I and II, below the A/|λH | + �′

T − ν∗ ≈ 1 level denoted by
the dot-dashed line. The colors in this region indicate the required
rotation for marginal resistive MHD stability. Smaller rotation fre-
quency may be needed for smaller values of s1.

The low-frequency root is analyzed recasting Eq. (7) by
means of (5) as

�R,m+1 = A
|λH | + iB
0/ω1

|λH |2 + B2(
0/ω1)2
+ �′

T ,

which is valid far from the ideal boundary, having approxi-
mated γ − i
 ≈ −i
 [11]. Using Eq. (6) in the limit of ν/M
small and far from the resistive β boundary, we get

Re(γ ) = γT

[
1 − πν

5c0S1/2

(
γT

ωA

)−3/2
]
, (8)

with the characteristic growth rate given by

γT

ωA
= S−3/5

[
Ĉ0

m + 1

c1/2
0

(
A|λH |

|λH |2 + 
2∗
+ �′

T

)]4/5

,

where 
2
∗ = B2(
0/ω1)2 and Ĉ0 = 2�(5/4)/�(3/4). This

root grows on slow time scales, of the order of tens of millisec-
onds with ωA of the order of megahertz. The S−3/5 dependence
of γT also makes the rotation frequency of the mode small
compared to the one of the bulk plasma. Core plasma rotation
provides a stabilizing effect and its critical value obtained
from Eq. (8) reads


0

ω1
= |λH |

B

√
A/|λH |
ν∗ − �′

T

− 1, (9)

with ν∗ ≈ 0.41 × ν5/6(s2S)1/3/(m + 1)4/3. Without rotation,
the stability boundary of the resistive mode modified by GGJ
effects at r2 is identified by A/|λH | − ν∗ + �′

T = 0. Close to
this boundary, the rotation values needed to stabilize the mode
can be of the order of a few percent of the Alfvén frequency as
shown in Fig. 3 (a linear dependence of ν upon β is chosen).
Although the results presented here assume s1 = 2 consistent
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with the step current profile of (1), and give a critical rota-
tion of the order of a few percent of the Alfvén frequency
suggesting no stabilization in the slow-flow regime, thanks to
the shear dependence in ω1 reduced values of the marginal 
0

can be found if s1 is smaller. In particular, for a smooth current
profile one can estimate s1 ∼ δq/m < 2.

As ν∗ is increased, the marginal curve approaches the ideal
one (λH = 0) and the eigenfunction ξm+1 changes its parity
from tearing to kinklike. It is worth stressing that the higher
the ν∗ the better the stability: This is because the resistive
γ = 0 curve (the dashed line in Fig. 3) approaches the ideal
marginal one as S in increased. Hence, with sufficiently low
resistivity, stability can be achieved at very small toroidal
flows as long as β is below the ideal marginal value. If �′

T >

0, the marginal stability curve can be expressed in a form
similar to (7) replacing A → Â > 0. Thus, stabilization occurs
at larger values of ν∗, i.e., for smaller resistivity, leading us
to infer a kink structure for the the marginal ξm+1. Moderate
plasma shaping can be expected to improve stability due to
a modification of DM and ν and mode coupling weaken-
ing [31,42].

Similar conclusions can be drawn on internally nonres-
onant cases with q0 > m/n, as long as r0/b remains small
enough, for which lower β limits are envisaged due to a
weakening of field line bending stabilizing terms [31,43].
For broader current profiles, the absence of the internal m/n
resonance can lead to more pronounced wall effects on the
stability.

V. CONCLUSIONS

In summary, we developed a simple model apt to describe
macroscopic β-driven instabilities in a diverted tokamak, with
proper toroidal toroidicity taken into account. It predicts a
slow growing, slow rotating mode driven unstable below the
ideal-wall β limit by plasma resistivity. The predicted struc-
ture of the eigenfunction, magnitude of the critical β, mode

frequency and growth rate, and the stabilizing effect of the
equilibrium flow conform to numerical and experimental find-
ings. Contrarily to previous models which focused on ideal
plasmas, the inclusion of resistivity is crucial in allowing the
mode to grow. This is because the presence of the separa-
trix forces the resonances to occur within the plasma, hence
preventing instability in the ideal case due to the restrictive
boundary conditions to be applied at these points [cf. Eq. (7)].
Stability is improved by the synergy of sheared toroidal rota-
tion and GGJ effects, the former of the order of a few percent
of the Alfvén speed. We found that wall effects in an ideal
plasma are screened by internal resonances, ruling out ideal
external kinks, viewed as an ideal plasma single harmonic
purely current driven mode resonating in the vacuum [5], as
a possible drive of mode instability. Moreover, as the insta-
bility is driven primarily by internal mechanisms, this model
removes the ambiguity on the arbitrarily chosen value of the
edge safety factor [16]. Although not described within our
model, further stabilization can be achieved by the inclusion
of kinetic effects [44,45].
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