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Magnetosonic waves propagation in a magnetorotating quantum plasma
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Employing the quantum magnetohydrodynamic (QMHD) model, the basic properties of magnetosonic waves
were investigated in a magnetorotating quantum plasma. The contemplated system considered a combined
effects of quantum tunneling and degeneracy forces, dissipation influence, spin magnetization, in addition
to the Coriolis force. Fast and slow magnetosonic modes were obtained and examined in the linear regime.
Their frequencies are significantly modified due to the rotating parameters (frequency and angle) in addition to
quantum correction effects. The nonlinear Korteweg–de Vries–Burger equation was derived using the reductive
perturbation approach in a small amplitude limit. The aspects of magnetosonic shock profiles were explored
analytically by applying the Bernoulli equation approach and numerically using the Runge-Kutta method. The
regarded plasma parameters due to the investigated effects were found to play major roles in specifying the
nature of monotonic and oscillatory shock waves’ structures and their features. Our results may be applicable in
magnetorotating quantum plasma in astrophysical environments such as neutron stars and white dwarfs.
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I. INTRODUCTION

It is well known that the dynamics of charged particles in
dense plasmas (which are characterized by very high number
density and very low temperature) are quite different from
those in ordinary plasmas (i.e., plasma with low number
density and high temperature). In dense plasmas, electrons
become degenerate and the thermal de Broglie’s wavelength
becomes large compared with the average interparticle dis-
tance. Accordingly, such dense plasma acts like a Fermi gas
and the quantum effects play a significant role in the charged
particle’s dynamics [1–4]. In fact, interest in quantum plasmas
as an important research field of plasma physics dates backs
to the 1950s, focusing on quantum electron gas in a metal
in the framework of quantum kinetic equations [5–7]. Nowa-
days, quantum plasma has become one of the most important
branches of plasma physics that has attracted the interest of
many researchers due to its main role in understanding var-
ious astrophysical and cosmological systems like planetary
interiors, compact astrophysical objects (such as, particularly,
in the interior of Jupiter, white dwarfs, magnetar, superdense
neutron star, black holes) [8–12], in addition to its appli-
cations in many industries such as semiconductor devices,
micromechanical systems [13], ultracold plasmas [14,15], in-
tense laser-plasma interaction experiments, quantum x-ray,
and free-electron lasers [16].

Recently, there has been an increasing interest in study-
ing magnetohydrodynamic waves in quantum magnetized
plasmas that is based on a quantum magnetohydrodynamic
(QMHD) approach [17–30]. Marklund and Brodin [17,18]
extended the QMHD approach, including spin-1/2 effect of
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degenerate electrons in strongly magnetized quantum plas-
mas. Later on, quantum tunneling and electron spin influences
were studied by many authors to investigate arbitrary [19,26]
and small magnetosonic solitons in two and multicomponent
quantum plasmas [20,21,29] either in one- [24] or two-
dimensional systems [22–24]. Moreover, both spin-up and
spin-down states of degenerated electrons were explored in
linear and nonlinear regimes [28–30].

On the other hand, the rotational impacts were investi-
gated in various magnetized plasmas, including the Coriolis
force effect. Most studies neglected quantum effects. How-
ever, quantum effects have an important role in many real
situations in magnetized quantum plasmas. Sahu et al. [31]
investigated linear and nonlinear ion acoustic waves in quan-
tum plasma considering the Coriolis force effect in addition
to the effects of Fermi pressure and the Bohm potential. Other
authors studied heavy nucleus-acoustic shock waves [32,33]
in a relativistic quantum magneto-plasma under Coriolis force
impacts and studied the features of small [32] and large ampli-
tude [33] getting waves. Recently, Hussain et al. [34] studied
the magnetized quantum plasma system under the effects of
Coriolis force, quantum corrections, and spin polarization by
employing the QHD model.

From all the above works, we found the investigation
of magnetosonic waves considering quantum effects beside
Coriolis force and plasma rotation influences based on QMHD
theory was lacking. Thus, the basic aim of the present work is
to investigate the linear and nonlinear properties of magne-
tosonic modes in quantum plasma with the effects of Coriolis
force, quantum tunneling, quantum statistics, and spin mag-
netization contributions. The paper is organized as follows.
Section II is devoted to the formulation of the theoretical
model using basic equations from the QMHD theory, con-
sidering quantum corrections, magnetization, and rotation
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impacts. Section III, includes linearized perturbation equa-
tions and the modified dispersion relation is obtained and
discussed analytically and numerically. In Sec. IV, the
nonlinear properties of the shock magnetosonic waves are in-
vestigated by deriving Korteweg–de Vries—Burgers (KdVB)
equation. Further, analytical and numerical discussions are
presented in Sec. IV. Finally, we summarize our results in the
concluding Sec. V.

II. THEORETICAL MODEL AND QMHD EQUATIONS

We consider a two-component quantum magnetoplasma
system composed of degenerate electrons and nondegenerate
massive, positive ions fluids, including Bohm potential and
electron spin-1/2 effects. The plasma system is supposed to
be immersed in a uniform external magnetic field along the
z axis, i.e., B0 = B0êz where B0 represents the magnetic field
strength and êz is the unit vector along the z direction. The
quantum effects of ions are assumed negligible due to their
larger mass. Further, we assume here that the plasma system
is slowly rotating with a rotational frequency � around an axis
lying in the x-z plane due to the Coriolis force effect. The one-
fluid QMHD model for our plasma system can be developed
by starting with the usual hydrodynamic fluid equations for
the plasma species separately as follows.

The ion momentum equation is described as

nimi
Dui

Dt
= eni(E + ui×B) + 2nimi(ui×�) − Rei, (1)

and the ion continuity equation gives

∂ni

∂t
+ ∇ · (niui ) = 0. (2)

Since we consider low-frequency perturbations (in compar-
ison with electron gyrofrequency). Thus, the momentum
equation of degenerate electrons reads

neme
Due

Dt
= −nee(E + ue×B) − ∇PFe + FQ + Rei, (3)

and the electron continuity equation gives

∂ne

∂t
+ ∇ · (neue) = 0, (4)

where D
Dt = ∂

∂t + ui · ∇ is the convective derivation; mi is the
ion mass, e is the electron charge, ui (ue) and ni (ne) are
the velocity and number density of ions (electrons), and E is
the electrostatic field. Here, Rei = nmeνei(ui − ue) = en0ηJp

[35] is the rate of the transfer of momentum from ions to
electrons by collisions where Jp is the current density and
η = meνei/e2n0 is the plasma resistivity in which νei denotes
electron-ion collisional frequency, me is the electron mass, and
n0 is the unperturbed number density of particles. With the
quasineutrality condition ne ≈ ni = n, the current density Jp

is thus given by

Jp = eniui − eneue ≈ en(ui − ue). (5)

The Fermi’s pressure for degenerate electrons (PFe) can be
expressed as [36,37]

PFe = 2

5
εFen0

(
ne

n0

)5/3

, (6)

where εFe = (3π2n0)2/3h̄2/2me is the Fermi energy of a de-
generate electron. The FQ term shown in Eq. (3) would be
[19]

FQ = h̄2ne

2me
∇

(∇2√ne√
ne

)
+ neμB tanh

(
μBB

εFe

)
∇B. (7)

The first term in the above equation represents the Bohm
potential gradient force due to the quantum tunneling ef-
fect while the second one is the electron spin magnetization
force, μB = eh̄/2me denotes the Bohr’s magneton and B =
|B|. The tanh(μBB/εFe) function in Eq. (7) represents the
Langevin function due to the magnetization of an electron
spin 1/2. In the most dense plasma systems, the condition
μBB � εFe is satisfied, and thus we can use the approximation
tanh(μBB/εFe) ≈ μBB/εFe.

The relevant Maxwell equations are

∇×B = μ0(Jp + Jm), (8)

∇×E = −∂B
∂t

, (9)

∇ · B = 0, (10)

where μ0 is the permeability of free space and Jm = ∇×M
is the spin magnetization current density of electrons. M is
the mean magnetization. For εFe � μBB, the magnetization
increases linearly with B, so it can be approximated as

M = neμB tanh

(
μBB

εFe

)
b̂ ≈ ne

(
μ2

BB

εFe

)
b̂,

where b̂ = B/B is the unit vector in the B direction. The
displacement current was removed from Eq. (8) owing to its
small effect in the conducting plasma medium in comparison
to the total current density. Now, substituting ue from Eq. (5)
into Eq. (3) and neglecting the electron inertia because its
mass is much smaller than the ion mass (i.e., me/mi → 0).
Then, we obtain the generalized form of Ohm’s law as

E + ui×B = 1

en
(Jp×B − ∇PFe + FQ + Rei ). (11)

Eliminating E between Eqs. (11) and (1), and substituting
from Eq. (8) to eliminate Jp, we obtain

nmi
Dui

Dt
= 1

μ0
(∇×B)×B − (∇×M)×B − ∇PFe

+ FQ + 2nmi(ui×�), (12)

Eliminating again E between Eqs. (9) and (11) and uti-
lizing Eq. (8) to eliminate Jp, then the magnetic induction
equation can be obtained as

∂B
∂t

= ∇×(ui×B) − 1

μ0
∇×(η∇×B). (13)

Here, we used the fact that the divergence of a curl always
vanishes and neglects the Hall effect where the ion gyrofre-
quency is assumed to be much higher than the wave frequency.
Now, we introduce the following dimensionless variables:
r̃ = rωci/VA, u = ui/VA, B̃ = B/B0, t̃ = ωcit , ñ = n/n0, M̃ =
μ0M/B0, and �̃ = �/ωci where ωci = eB0/mi is the ion
gyrofrequency and VA = B0/

√
μ0n0mi is Alfvén speed. The
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magnetization normalized as M̃ = μ0M/B0. Consequently,
the normalized QMHD equations become

∂ ñ

∂ t̃
+ ∇ · (ñu) = 0, (14)

ñ
Du
Dt̃

= (∇×B̃)×B̃ − ε2
0β(∇×ñB̃)×B̃ − 1

3
βñ

2
3 ∇ñ

+ H2

2
ñ∇

(
∇2

√
ñ√

ñ

)
+ ε2

0βñB̃∇B̃ + 2ñ(u×�̃), (15)

∂B̃
∂ t̃

= ∇×(u×B̃) + γ∇2B̃, (16)

where we use M̃ = ε2
0βñBb̂ in Eq. (15) and the vector identity

∇×(∇×B̃) = ∇(∇ · B̃) − ∇2B̃ with ∇ · B̃ = 0 in Eq. (16).
The ∇×(u×B̃) term in Eq. (16) represents the flow term,
which dominates for larger plasma conductivity, while the
γ∇2B̃ term is called the magnetic diffusion term, with γ =
ηωci/μ0V 2

A denoting the dimensionless plasma dissipative pa-
rameter (normalized magnetic diffusion coefficient). Here,
ε0 = μBB0/εFe is the ratio of the Zeeman energy to the
Fermi energy, β = C2

s /V 2
A is the plasma beta factor, Cs =

(2εFe/mi )1/2 is the quantum ion sound speed, and H =
h̄ωci/

√
memiV 2

A is a dimensionless quantum diffraction pa-
rameter.

Assuming that the magnetosonic waves are propagated
along the x-direction and the magnetic field and spin mag-
netization are supposed to be along the z direction as B̃ =
B̃(x̃, t̃ )êz and M̃ = M̃(x̃, t̃ )êz, respectively; the plasma rotates
slowly around an axis making the θ angle with the z axis.
Thus, in a one-dimensional Cartesian coordinate system, ∇ =
(∂ x̃, 0, 0) and �̃ = (�0 sin θ, 0,�0 cos θ ). Then, one can re-
duce the normalized Eqs. (14) to (16) to

∂ ñ

∂ t̃
+ ∂

∂ x̃
(uxñ) = 0, (17)

ñ

(
∂ux

∂ t̃
+ ux

∂ux

∂ x̃

)
= (

2ε2
0βñ − 1

)
B̃

∂B̃

∂ x̃
+ ε2

0βB̃2 ∂ ñ

∂ x̃

− β

3
ñ2/3 ∂ ñ

∂ x̃
+ H2

2
ñ

∂

∂ x̃

(
1√
ñ

∂2
√

ñ

∂ x̃2

)

+ 2�0ñuy cos θ, (18)

∂uy

∂ t̃
+ ux

∂uy

∂ x̃
= 2�0(uz sin θ − ux cos θ ), (19)

∂uz

∂ t̃
+ ux

∂uz

∂ x̃
= −2�0uy sin θ, (20)

∂B̃

∂ t̃
+ ∂

∂ x̃
(uxB̃) − γ 2 ∂2B̃

∂ x̃2
= 0. (21)

III. LINEAR ANALYSIS

To analyze the linear features of the magnetosonic
waves, we deduce their linear dispersion relation. For
this purpose, we assume first that all variable quanti-
ties (i.e., n, ux, uy, uz, B) are separated into a two-term,
namely, the equilibrium quantity ( f0) and perturbed quantity

( f1) such as f = f0 + f1, where f = (n, ux, uy, uz, B), f0 =
(1, 0, 0, 0, 1) and f1 corresponds to small perturbations i.e.,
f1 = (n1, ux1, uy1, uz1, B1). Second, we consider all perturbed
quantities are proportional to exp i(kx − ωt ), where k is the
wave number and ω represents the wave frequency. Lineariz-
ing Eqs.(17) to (21) using ∂/∂ t̃ = −iω and ∂/∂ x̃ = ik, the
following linearized equations are obtained:

ωn1 − kux1 = 0, (22)

ωux1 = (
1 − 2ε2

0β
)
kB1 − kε2

0βn1 + β

3
kn1

+ k3 H2

4
n1 + 2i�0uiy1 cos θ, (23)

ωuy1 − 2i�0uz1 sin θ + 2i�0ux1 cos θ = 0, (24)

ωuz1 + 2i�0uy1 sin θ = 0, (25)

(ω + iγ k2)B1 − kux1 = 0. (26)

Solving the set of linear system of Eqs. (22) to (26), we obtain
the following dispersion relation:

ω(ω4 − a1k2ω2 − a2k2) + iγ k2(ω4 − b1k2ω2 − b2k2) = 0,

(27)
in which the coefficients a1, a2, b1, and b2 are defined as

a1 = 1 − b1 − 2βε2
0,

a2 = b2 + 4�2
0 sin2 θ

(
2βε2

0 − 1
)
,

and

b1 = 1

4
k2H2 − 1

3
β
(
3ε2

0 − 1
) + 4

�2
0

k2
,

b2 = �2
0 sin2 θ

3

[
4β

(
3ε2

0 − 1
) − 3H2k2

]
.

Equation (27) describes the magnetosonic wave propagating
perpendicular to the ambient magnetic field. It is modified
by the presence of rotating and dissipation effects as well as
quantum effects. Ignoring the rotating effect (via �0 = 0),
we get a2 = b2 = 0, and Eq. (27) turns into the same result
given in Refs. [26] and [38]. It is noted that the imaginary
part of Eq. (27) reflects the energy dissipation associated with
plasma resistivity (via γ parameter). In the case of perfect
conductivity, γ ≈ 0, then Eq. (27) reduces to

ω4 − a1k2ω2 − a2k2 = 0, (28)

whose solution takes the following form:

ω = k√
2

(a1 ±
√

a2
1 + 4a2/k2)1/2, (29)

where the condition (a2
1 + 4a2/k2) � 0 must be satisfied for

real values of ω. Clearly, Eq. (29) indicates that there are two
magnetosonic waves that may exist in the current quantum
plasma system, namely, fast magnetosonic waves (ω f ) and
slow magnetosonic waves (ωs). The wave with the plus sign
in Eq. (29) is comparable to the fast magnetosonic wave,
while that with the minus sign is comparable to the slow
magnetosonic wave. To investigate the modified features of
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FIG. 1. Dispersion relation of (a) fast and (b) slow magnetosonic
waves against the wave number k for different values of �0 with n0 =
2×1032 m−3, B0 = 0.6×106 T, θ = 5◦, H = 0.00018, ε0 = 0.028,
and β = 0.28.

the fast and slow magnetosonic waves, we illustrate the dis-
persion characteristics in Figs. 1 and 2 for various plasma
coefficients. Our investigation is based on suitable and real
situations in magnetized quantum plasma systems found in
dense astrophysical objects such as neutron stars and white
dwarfs. Thus, the parameters used for β, H , and ε0 are
expressed numerically in terms of their exact relations as
β = 1.47×10−43(n5/3

0 /B2
0), H = 5.44×10−31(n0/B0), ε0 =

1.59×1014(B0/n2/3
0 ). Such systems’ suitable parameters are

n0 = 1032 − 1035 m−3 for the plasma densities and for mag-
netic field strength B0 = 105 − 1010 T.

Figure 1(a) shows how the fast magnetosonic wave fre-
quency is modified due to the wave number k and rotation
speed �0. It is found that, due to an increase in rotation speed
and wave number, the fast magnetosonic wave frequency ω f

increases. The rotation speed �0 has a significant effect for
small k and the influence becomes weaker as k is increased.
Figure 1(b) indicates that increasing the rotation speed �0

increases the frequency of the slow magnetosonic wave ωs.
It is initially demonstrated by a nearly linearly increase for
small k, and then when k > 0.2 it increases as �0 increases.
Figure 2 clarifies the impact of the rotational angle θ on the
magnetosonic wave frequency. It is clear from Fig. 2(a) that
ω f is slightly regressed as θ is increased; the effect is very
weak for smaller k values. Moreover, a deviation behavior
is noted in Fig. 2(b) for the slow mode, as θ increases ωs is
getting larger. The figure shows a linear relation with k which
changes to be invariant as the wave number becomes higher.

FIG. 2. Dispersion relation of (a) fast and (b) slow magnetosonic
waves against the wave number k for different values of θ with n0 =
2×1032 m−3, B0 = 0.6×106 T, �0 = 0.5, H = 0.00018, ε0 = 0.028,
and β = 0.28.

IV. NONLINEAR ANALYSIS

A. KdVB equation derivation

The dynamics of the nonlinear propagation of small am-
plitude magnetosonic shock waves can be examined by
employing the reductive perturbation technique in the rescaled
stretched space and time coordinates as

ξ = ε1/2(x − λt ), τ = ε3/2t, (30)

where λ is the wave phase velocity normalized by Alfvén
speed VA, ε is a small parameter measuring the nonlinearity
strength. The dynamical-dependent variables are expanded in
terms of ε such as⎛

⎜⎜⎝
ñ
ux

uz

B̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ + ε

⎛
⎜⎜⎝

n1

ux1

uz1

B1

⎞
⎟⎟⎠ + ε2

⎛
⎜⎜⎝

n2

ux2

uz2

B2

⎞
⎟⎟⎠ + · · · , (31)

while uy can be expanded as

uy = ε3/2uy1 + ε5/2uy2 + · · · , (32)

along with the resistive term expansion γ = ε1/2γ0 [39]. In-
serting Eqs. (30) to (32) into Eqs. (17) to (21), we obtain a set
of equations for each order in ε. By solving the lowest-order
equations, we obtain the following relations:

n1 = B1 = ux1

λ
, (33)

uz1 = λ cot2 θB1, (34)

uy1 = λ2 cot2 θ

2�0 sin2 θ

∂B1

∂ξ
, (35)

where the normalized phase velocity λ is expressed by

λ =
√

3 + β − 9ε2
0β

3(1 + cot2 θ )
. (36)

Now, with the aid of Eqs. (33) to (35), the second-order (ε2)
equations give

uz2 = ux2 cot θ − λ3 cot θ

4�2
0 sin2 θ

∂2B1

∂ξ 2
. (37)

In a similar manner, the higher order (ε5/2) gives the following
equations:

∂n1

∂τ
− λ

∂n2

∂ξ
+ ∂ux2

∂ξ
+ ∂ (ux2n1)

∂ξ
= 0, (38)

∂ux1

∂τ
− λ

∂ux2

∂ξ
+ ux1

∂ux1

∂ξ
+ (

1 − 2ε2
0β

)∂B2

∂ξ

− λn1
∂ux1

∂ξ
+ (

1 − 2ε2
0β

)
B1

∂B1

∂ξ
+ β

3

(
1 − 3ε2

0

)∂n2

∂ξ

− 2ε2
0β

∂n1B1

∂ξ
+ 2β

9
n1

∂n1

∂ξ
− H2

4

∂3n1

∂ξ 3

− 2�0uy2 cos θ − 2�0uy1n1 sin θ = 0, (39)

∂uz1

∂τ
− λ

∂uz2

∂ξ
+ ux1

∂uz1

∂ξ
+ 2�0uy2 sin θ = 0, (40)
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∂B1

∂τ
− λ

∂B2

∂ξ
+ ∂ux1B1

∂ξ
+ ∂ux2

∂ξ
− γ0

∂2B1

∂ξ 2
= 0. (41)

Solving Eqs. (38) to (41) with the help of Eqs. (33) to (35),
the following equation is obtained:

∂B1

∂τ
+ QB1

∂B1

∂ξ
+ R

∂3B1

∂ξ 3
− D

∂2B1

∂ξ 2
= 0. (42)

Equation (42) is called the KdVB equation, in which the
coefficients of nonlinearity Q, dispersion R, and dissipation
D, respectively, are given by

Q = 18λ2(1 + cot2 θ )2 + 9 − 54ε2
0β + 2β

18λ(1 + cot2 θ )
, (43)

R = 1

8λ(1 + cot2 θ )

(
λ4 cot θ

�2
0 sin2 θ

− H2

)
, (44)

D = γ0
[
3λ2(1 + cot2 θ ) + 3ε2

0β − β
]

6λ2(1 + cot2 θ )
. (45)

Clearly, all of the coefficients Q, R, and D are modified by
rotation angle, whereas the rotating speed (via �0) and quan-
tum diffraction (via H parameter) are found only to modify
the dispersion coefficient R. The dissipation coefficient D is
altered due to quantum effects and plasma resistivity (via γ0

parameter).

B. Analytical solution of KdVB equation

To solve the KdVB Eq. (42) analytically, we define the
transformed coordinate χ = −(ξ − U0τ ) of the comoving
frame with U0 speed. Using this transformed into Eq. (42) and
integrating over the variable χ with applying the boundary
conditions B1 = dB1/dχ = d2B1/dχ2 → 0 as χ → ±∞,
we find

R
d2B1

dχ2
+ D

dB1

dχ
+ Q

2
B2

1 − U0B1 = 0. (46)

If the plasma is perfectly conductive (i.e., γ → 0), the dissi-
pation term is ignored D = 0, and then Eq. (42) reduces to the
KdV equation, and therefore Eq. (46) takes the form

R
d2B1

dχ2
+ Q

2
B2

1 − U0B1 = 0, (47)

which has a soliton solution in the form

B1 = Bmsech2
(χ

L

)
, (48)

where Bm = 3U0/Q and L = √
4R/U0 are the amplitude and

width of the magnetosonic soliton, respectively. Figure 3
shows the behavior of the magnetosonic soliton profile of
the KdV equation for different values of normalized rotation
speed �0. It is obvious from this figure that increasing the
parameter �0 leads to a decrease in the width of the mag-
netosonic soliton while its amplitude remains constant. The
effect of the rotational angle θ on the magnetosonic soliton
is exhibited in Fig. 4. It is seen that, as the rotational angle
θ increases, the magnetosonic soliton profiles become wider
with lower amplitude. We keep the physical parameters of
plasma density n0 and magnetic field strength B0 unchanged;
the same as that displayed in Figs. 1 and 2. Consequently,

FIG. 3. The variation of magnetosonic soliton B1 given by
Eq. (48) against χ for different values of �0 with, γ0 = 0, U0 = 0.1,
and θ = 5◦.

the quantum diffraction parameter H , Zeeman energy ε0, and
plasma beta factor β are also the same as in Figs. 1 and 2.

Now, to obtain the KdVB equation solution, Bernoulli’s
equation method [40,41] will be used. With that method, the
traveling wave solution of Eq. (46) is

B1(χ ) = a0 + a1G(χ ) + a2G2(χ ), (49)

where G(χ ) = σ/2{1 + tanh[(σ/2)χ ]} is the solution of the
following Bernoulli’s equation:

∂G(χ )

∂χ
= σG(χ ) − G2(χ ). (50)

FIG. 4. The variation of magnetosonic soliton B1 given by
Eq. (48) against χ for different values of θ with �0 = 0.2 and the
same physical plasma parameters in Fig. 3.
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FIG. 5. The variation of magnetosonic shock wave profiles
B1 against χ for different values of �0 with n0 = 2×1032 m−3,
B0 = 0.6×106 T, θ = 5◦, γ0 = 0.03, H = 0.00018, ε0 = 0.028, and
β = 0.28.

The coefficients a0, a1, a2, and σ are constants to be deter-
mined later. Accordingly, the derivatives of B1 with respect to
χ are

∂B1

∂χ
= (a1 + 2a2G)(σG − G2), (51)

∂2B1

∂χ2
= [a1(σ − 2G) + 2a2(2σG − 3G2)](σG − G2). (52)

Substituting Eqs. (49), (50), and (52) into Eq. (46) and col-
lecting all terms with the same degree of G, the coefficients
a0, a1, a2, and σ are obtained as

a0 = 2U0

Q
, a1 = 0, a2 = −12R

Q
, σ = − D

5R
,

where U0 is calculated to be U0 = 6D2/25R. Accordingly, the
localized solution of Eq. (42) is

B1 = 3D2

25QR

{
sech2

(
D

10R
χ

)
+ 2

[
1 + tanh

(
D

10R
χ

)]}
.

(53)

It is clear that the solution (53) is a combination of a soli-
tary wave (sech2) term and the Burger shock wave term (tanh).
It is worthwhile to note that the amplitude of the Burger’s
shock term is larger than that of the solitary term. Hence, the
Burger’s shock wave is dominant. The formation of the non-
linear shock wave structures are shown graphically as given
in Figs. 5–7. Figure 5 represents the variation of the mag-
netosonic shock wave profile B1(χ ) with rotation frequency
�0. It is clear from this figure that the normalized shock wave
amplitude is shifted to higher values with the increase of �0

while the normalized shock width becomes narrower. The
effect of the rotating angle θ on the shock profile is depicted
in Fig. 6. It is noticed that the larger rotating angle θ leads
to wider shocks with lower amplitudes. The effect of plasma
dissipating (via γ0 dissipative parameter) on the profile of
magnetosonic shocks is shown in Fig. 7. It is noticed that by

FIG. 6. The variation of magnetosonic shock wave profiles B1

against χ for different values of θ with �0 = 0.2, γ0 = 0.03 and
other parameters are the same as in Fig. 5.

increasing the value of γ0, the thickness (amplitude) of the
shock is reduced (enhanced).

C. Numerical solution

The discussed analytical solution of Eq. (42) introduced
a monotonic shock structures. To investigate more possible
structures and their features, we examine a numerical sim-
ulation solution of Eq. (42) with the help of MATHEMATICA

software. For this purpose, we express Eq. (46) in terms of
two separate first-order equations as

∂B1

∂χ
= Z,

∂Z

∂χ
= U0

R
B1 − Q

2R
B2

1 − D

R
Z. (54)

The above pair of equations has two fixed points, i.e., (0, 0)
and (2U0/Q, 0). Hence the dynamics of magnetosonic shock

FIG. 7. The variation of magnetosonic shock wave profiles B1

against χ for different values of γ0 with �0 = 0.2, θ = 5◦ and other
parameters are the same as in Fig. 5.
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FIG. 8. Magnetosonic shock wave profile for different values of
�0 where θ = 5◦, γ0 = 0.05 and other parameters are the same as in
Fig. 3.

waves can be investigated by solving the system of Eqs. (54)
numerically using the fourth-order Runge Kutta method for
different plasma configurations. Figure 8 depicts the influence
of the rotation speed �0 on the shock structure’s nature. It
can be seen that as �0 increases the wave strength and width
become smaller and tend to damp faster. Figure 9 illustrates
how the oscillation shock profiles are affected by rotation
angle θ . It is clear that, as θ increases, the wave oscillates with
less amplitude and tends to damp as χ progresses. The role of
the dissipative parameter on the oscillation shock profiles is
presented in Fig. 10. The wave profile oscillates more with
large amplitude for weak resistivity parameter (γ0 = 0.05),
whereas the damping is found more prominent with less am-
plitude corresponding to larger γ0 values (stronger dissipative
coefficient). Figure 11 explicates the effect of the rotation

FIG. 9. Magnetosonic shock wave profile for different values of
rotation angle θ where �0 = 0.3 and other parameters are the same
as in Fig. 8.

FIG. 10. Magnetosonic shock wave profile for different values of
γ0 where �0 = 0.3, and other plasma parameters are the same as in
Fig. 8.

frequency for the case of the perfect conductivity medium
(γ0 = 0.0001). It is clear that the wave profile oscillation is
periodic with the same amplitude whatever �0 value changes,
whereas its width decreases as �0 increases. This reflects the
same behavior of the magnetosonic soliton profile explored in
Fig. 3 when the dissipation term is ignored.

V. CONCLUSION

The current investigations are based on quantum mag-
netohydrodynamic theory to study the linear and nonlinear
features of magnetosonic waves in magnetorotating degener-
ate quantum plasma, taking into account quantum corrections
and rotational contributions for such plasma. It is found that
the frequencies of both fast and slow magnetosonic waves

FIG. 11. Magnetosonic shock wave profile for different values of
�0: �0 = 0.1 (solid curve), �0 = 0.2 (dashed curve), and �0 = 0.3
(dot dashed curve) with γ0 = 0.0001, and θ = 5◦, other parameters
are the same as in Fig. 8.
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are significantly enhanced with the variation of rotation fre-
quency and rotation angle. In the nonlinear regime, the KdVB
equation was obtained employing the reductive perturbation
technique. Bernoulli’s equation method was presented to de-
termine the characteristic of the shock wave solution nature.
We noticed that the structure of shock waves is monotonic
and its properties such as height and thickness depend on the
quantum parameters, expressed in terms of density concen-
tration and magnetic field, dissipation, in addition to rotation
frequency and angle. Furthermore, a numerical analysis is per-
formed to investigate the KdVB equation solution structures

using the Runge-Kutta method by variation of our investi-
gated plasma coefficients. We also explored their effects. It
is found that numerical solutions conduce oscillatory shock
wave profiles, higher values of dissipative parameter, and
rotation coefficients resulting in damped oscillation waves
with smaller amplitude. Such significant modifications of the
shock-like structures in our rotating quantum plasma are rel-
evant for strongly magnetized quantum plasma systems and
useful for a better understanding of wave propagation in
astrophysical environments, such as the magnetars, pulsars,
magnetic white dwarfs, and neutron stars.
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