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Bolgiano-Obukhov spectrum and mixing efficiency in stably stratified turbulence
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In this paper, using a shell model, we simulate highly turbulent stably stratified flow for weak to moderate
stratification at unitary Prandtl number. We investigate the energy spectra and fluxes of velocity and density
fields. We observe that for moderate stratification, in the inertial range, the kinetic energy spectrum Eu(k) and
the potential energy spectrum Eb(k) show dual scaling—Bolgiano-Obukhov scaling [Eu(k) ∼ k−11/5 and Eb(k) ∼
k−7/5] for k < kB, where kB is the Bolgiano wave number, and Kolmogorov scaling (∼k−5/3) for k > kB. In
addition, we find that the mixing efficiency ηmix varies as ηmix ∼ Ri for weak stratification, whereas ηmix ∼ Ri1/3

for moderate stratification, where Ri is the Richardson number.
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I. INTRODUCTION

Stably stratified turbulence (SST) is a common phe-
nomenon in geophysical and astrophysical fluid flows [1–6].
The presence of stabilizing density gradients in these flows,
primarily due to the ubiquity of the vertical temperature
gradients in the atmosphere and the vertical salinity and tem-
perature gradients in the oceans [7,8], plays a vital role in
controlling the vertical transfer of heat and the concentrations
of a pollutant [9–12]. Thus, it is essential to understand the
dynamics of stably stratified flows. Some of the recent review
papers which detail several important features of stratified
flows are by Riley and Lelong [13], Gregg et al. [14], and
Caulfield [15].

Stably stratified turbulent flows are classified into three
different regimes [2,16]—(i) weakly SST (Ri � 1 and Re �
1), (ii) moderately SST (Ri ≈ 1 and Re � 1), and (iii)
strongly SST (Ri � 1 and Re � 1), where Ri and Re are the
Richardson number and Reynolds number, respectively, and
are defined as follows [17]:

Ri = gρ ′
rmsL

ρmU 2
, Re = UL

ν
,

where ρ ′
rms is the root mean square (rms) of the density fluc-

tuations and ρm is the mean density, U is the rms velocity,
L is the integral length scale, g is the acceleration due to
gravity, and ν is kinematic viscosity. It is customary to define
the density fluctuations ρ ′ in the dimensions of velocity by
employing the following transformation [1,2,18,19]:

b = g

N

ρ ′

ρm
,
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where b is the density fluctuation in velocity units and N is the
Brunt-Väisälä frequency (defined in Sec. II). We express Ri in
terms of b and N as follows:

Ri = NbrmsL

U 2
.

Stratification strength is also quantified by the Froude number
Fr = U/(NL). The Froude number and the Richardson num-
ber are closely connected: Ri ≈ Fr−2 (Rosenberg et al. [18],
Verma [2]). Another important parameter which provides a
relative measure of inertial and viscous forces in stratified
flows is the buoyancy Reynolds number Reb [1,20–22],

Reb = εu

νN2
,

where εu = 2ν〈Si jSi j〉 is the kinetic energy dissipation rate
and Si j is the strain rate tensor. Note that the three parameters
Reb, Re, and Fr are not independent since Reb ≈ ReFr2 [1,22].

Bolgiano [17] and Obukhov [23] formulated a phe-
nomenology for moderately SST, which is commonly known
as the Bolgiano-Obukhov (BO) phenomenology. The BO phe-
nomenology assumes that a substantial amount of the supplied
kinetic energy is transformed into potential energy by generat-
ing density fluctuations, which then ultimately diffuse through
molecular effects, i.e., εb ≈ εinj, where εinj is the kinetic en-
ergy injection rate and εb = κ〈|∇b|2〉 is the potential energy
dissipation rate; κ is density diffusivity. Only a small portion
of the injected kinetic energy is dissipated through viscous
dissipation, i.e., εu � εinj. In addition, the BO phenomenol-
ogy assumes that the potential energy flux �b(k) ≈ const in
the inertial range, and it equals the dissipation rate of the
potential energy, i.e., �b(k) = εb. Using these assumptions
and balancing the buoyancy and nonlinear terms in the mo-
mentum equation (since Ri ≈ 1), Bolgiano [17] and Obukhov
[23] predicted that the kinetic energy (KE) spectrum Eu(k)
and the potential energy (PE) spectrum Eb(k), respectively,
exhibit k−11/5 and k−7/5 scalings for small wave numbers
(kL < k � kB), where kB and kL ≈ 2π/L are the Bolgiano
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and integral-scale wave numbers, respectively. These scalings
are collectively known as BO scaling. For k > kB, buoyancy
weakens and both the spectra follow Kolmogorov scaling. We
refer to the simultaneous existence of BO and Kolmogorov
scalings in the inertial range as the dual scaling of the BO phe-
nomenology. The Bolgiano wave number kB ≈ N3/2ε−5/4

u ε
3/4
b

[2,17] is the wave number at which the KE spectrum shows
demarcation from k−11/5 to k−5/3 scaling. For k < kB, Eu(k)
is steeper than the Kolmogorov spectrum because buoyancy
converts a significant part of KE into PE that leads to the atten-
uation of the KE flux �u(k), which varies as k−4/5 in the BO
phenomenology. However, the PE flux �b(k) is assumed to
be constant. Bolgiano [17] and Obukhov [23] also argued that
for k > kB, buoyancy becomes negligible. Consequently, both
the fluxes are constant and both spectra show Kolmogorov
scaling for kB < k < kDI , where kDI is the wave number at
which the transition from the inertial range to the dissipation
range occurs.

Several studies have been conducted to verify the phe-
nomenology, but they failed to observe dual scaling. Kimura
and Herring [24], and Kumar et al. [25] performed direct
numerical simulation (DNS) of moderately SST at Re ≈ 500
and observed only BO scaling without a transition to the
Kolmogorov scaling. Subsequently, the shell model results of
Kumar and Verma [26] at Re = 1000, theoretical analysis of
Bhattacharjee [27,28], and scaling theory of Basu and Bhat-
tacharjee [29] also showed only k−11/5 scaling for the KE
spectrum for moderate stratification. Large eddy simulation
results of Agrawal and Chandy [30] also showed only the
BO spectrum at moderate stratification. Note, however, that
Rosenberg et al. [18] conducted a computational study of de-
caying rotating stratified turbulence at high Reynolds number
and strong stratification (Re = 5.4 × 104, Ri = 1700), and
reported both the scaling regimes of the BO phenomenology
in the inertial range.

Additionally, Alam et al. [31] and Bhattacharjee [32] stud-
ied moderately SST using the constancy of total energy flux
[�u(k) + �b(k)] under inviscid conditions. They observed
Eu(k) ∼ k−5/3 and Eb(k) ∼ k−1/3 for k � 1, and Eu(k) ∼
k−11/5 and Eb(k) ∼ k−7/5 for k � 1, in their theoretical anal-
ysis. This observation shows that the regime of k−5/3 scaling
occurs at lower wave numbers than that for the k−11/5 regime
in the KE spectrum, which is in contrast to the predictions
by Bolgiano [17] and Obukhov [23]. Therefore, the scaling
regime of k � 1 needs to be investigated.

Alam et al. [31] also argued that the Kolmogorov scal-
ing regime of the BO phenomenology could be observed in
the numerical simulations when kd � kB, where kd is the
Kolmogorov wave number. Earlier numerical studies [24–26]
did not have large enough Reynolds numbers, due to which
kd/kB � 2. Thus, the dissipation effects become significant
even at wave numbers only slightly larger than kB (k � kB)
and the k−5/3 spectrum regime was not observed. Substitution
of kB and kd = (εu/ν

3)1/4 in the constraint kd � kB yields the
following condition [31]:

εu � Ri√
Re

U 3

L
. (1)

In this paper, one of our objectives is to demonstrate that SST
flows indeed exhibit the dual scaling when the condition of
Eq. (1) is fulfilled. However, the above condition requires a
very large Re and Reb, which are difficult to achieve in DNS.
Therefore, we employ a shell model for simulating high Re
flows.

For weak stratification, Wunsch and Kerstein [33], Kumar
etal. [25], and Kumar and Verma [26] obtained k−5/3 scaling
in this regime. They argued that the k−5/3 spectrum, akin to
passive scalar turbulence, is a direct consequence of the fact
that the buoyancy is negligible in comparison to the nonlin-
earity in weakly SST.

Nocturnal atmospheric flows are largely strongly stratified.
In these flows, buoyancy suppresses the vertical motion of
the fluid to a great extent; hence, the flow becomes quasi-
two-dimensional and highly anisotropic [1,2,34,35]. In the
absence of externally imposed vertical length scales, using
theoretical arguments, Billant and Chomaz [36] proposed that
the vertical integral length scale is of the order of the buoy-
ancy length scale Lb, i.e., Lv ≈ Lb ≈ U/N ; this proposition
has been verified in many experimental [37–39] and numeri-
cal studies [22,40–42]. The buoyancy length scale represents
the thickness of vertical shear layers [40], which is smaller
for stronger stratification. Maffioli and Davidson [42] and
Brethouwer et al. [22] reported that the horizontal integral
length scale Lh ≈ U 3/εu. These results show that

Lv

Lh
= U

NLh
= ε1/3

u

NL2/3
h

= Frh, (2)

where Frh ≈ Fr is the horizontal Froude number. In the limit
of strong stratification, Frh � 1, so Lv/Lh � 1. Thus, the
vertical length scale is much smaller than the horizontal length
scale for strongly stratified turbulence. Another fundamental
length scale is the Ozmidov length scale LO =

√
εu/N3. For

scales smaller than LO, flow is weakly affected by stratifica-
tion and hence is isotropic. The ratio of Lv and LO, and that of
LO and the Kolmogorov scale LK = (ν3/εu)1/4, give

Lv

LO
= Fr−1/2

h ,
LO

LK
=

( εu

νN2

)3/4
= Re3/4

b . (3)

So, as per Eq. (3), Lv and LO are largely separated in the limit
of Frh � 1. Also, in order to ensure the scaling regime of
isotropic turbulence for scales smaller than LO, Reb � 1 is
needed.

For Frh � 1 and Reb � 1 concurrently, Billant and
Chomaz [36] and Brethouwer et al. [22] predicted that the
vertical KE and PE spectra should follow k−3

v scaling for the
length scales in the range (Lv, LO), where kv is the verti-
cal wave number. For Reb ≈ 1, DNS [22,43] and large-eddy
simulation (LES) [30,44] studies obtained scaling that is con-
sistent with the theoretically predicted k−3

v scaling. However,
the spectra were reported to be steeper [22,45] than k−3

v for
Reb < 1 and shallower [7,19,41,43,46] for Reb > 10. Augier
et al. [46] and Maffioli [7], however, obtained k−3

v scaling
for Reb > 10 when considering the contribution of only large
horizontal scales for computing the vertical spectra. For hori-
zontal KE and PE spectra, a large body of literature [19,22,41–
43,47–50] reported k−5/3

h scaling, where kh is the horizon-
tal wave number, in agreement with the classical Nastrom
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FIG. 1. Phase diagram of Ri vs Re for indicating the regimes of
stably stratified turbulence.

and Gage spectra (Nastrom and Gage [51], Nastrom et al.
[52]). Depending on Ri and Re, following Brethouwer et al.
[22], we have shown the weakly, moderately, and strongly
stratified regimes of SST in Fig. 1. The solid straight line
corresponds to Reb ≈ ReFr2 ≈ Re/Ri = 1, which separates
the viscosity-affected and strong turbulence regimes of SST.
The weakly and moderately stratified regimes are separated
by Ri = 1. Legaspi and Waite [53] showed that flow becomes
anisotropic for Fr < 0.1. So, based on Ri ≈ Fr−2 and account-
ing for some safety margin, we have selected Ri = 20 as the
threshold value for the demarcation between the moderately
and strongly stratified regimes.

The above DNS studies focus on only the buoyancy-
affected regime of strongly SST (Frh � 1). But, the si-
multaneous existence of both buoyancy-affected and three-
dimensional isotropic turbulence regimes requires Reb � 1,
which is difficult to achieve in DNS with the current com-
putational capacity. In this context, large-eddy simulation
(LES) offers a promising alternative for simulating stratified
flows at very high Reynolds numbers. In their LES results,
Khani and Waite [54,55] showed the k−5/3

h spectra and re-
ported that a resolution up to the buoyancy length scale
was enough to sufficiently resolve the important proper-
ties of stratified turbulence. Scaling of the energy spectra
has also been successfully reproduced in many other LES
studies [30,44,56,57], and pancakelike structure and Kelvin-
Helmholtz instabilities have also been observed.

Additionally, an important feature of stratified flows is the
mixing across the stable density interfaces. Turbulent mix-
ing has been studied extensively [12,39,42,43,58–60], but its
accurate parametrization is still a major challenge in environ-
mental fluid mechanics (Dauxois et al. [61]). Stratification
affects the stirring and mixing processes, which are important
in various phenomena such as dispersion of the pollutants,
nutrients, and heat in the environment. According to Viller-
maux [62], turbulent mixing is the irreversible change of the
physical properties of fluid parcels, specifically the scalar den-
sity. Since it is irreversible, mixing is associated with diffusive
processes [15]. Recently, Jiang et al. [63] conducted an exper-
imental study in a stratified inclined duct and explained the
role of vortical motions in enhancing mixing by employing the
recently developed “rortex-shear” decomposition [64,65] for

splitting the vorticity vector into its pure rotational and shear
components. They described how vortices stir the unmixed
fluid into the mixing layer, generating strong small-scale
density gradients. These gradients are then smoothed out by
molecular diffusion (also, see Riley [66]). Mixing is quantified
using mixing efficiency (ηmix), defined as [67,68]

ηmix = εb

εu + εb
. (4)

In oceans, Osborn [67] reported a nearly constant mixing
efficiency ηmix ≈ 0.17 using oceanic measurements. Using
numerical simulations, Venayagamoorthy and Stretch [68]
and Portwood et al. [69,70] reported a similar value for mixing
efficiency in sheared SST for Ri ≈ 0.16. In addition, the above
authors [68–70] estimated mixing efficiency using theoretical
arguments and proposed that ηmix ∼ Eb/Eu at sufficiently high
Reynolds number, where Eu and Eb are KE and PE, respec-
tively.

Experimental studies by Turner [71], Kato and Phillips
[72], and Holford and Linden [39], and computational study
by Maffioli and Davidson [42], observed ηmix ∼ Fr−2 for
homogeneous weakly stratified flows. Maffioli and Davidson
[42] obtained similar scaling using theoretical arguments. For
Re � 1, they argued that

εu ∼ U 3

L
, εb ∼ Ub2

rms

L
, −FB ∼ NUbrms, (5)

where −FB is the mean buoyancy flux or the rate at which
KE gets converted to PE due to buoyancy. Under the steady
state, −FB = εb, which yields brms ∼ NL, so εb ∼ N2UL. For
weak stratification, εb � εu, and hence, ηmix ≈ εb/εu ∼ Fr−2.
However, the mixing efficiency is observed to be constant for
strongly stratified flows [42,59,73,74]. Mukherjee and Bala-
subramanian [75,76] also reported that the mixing efficiency
for strongly stratified lock-exchange gravity currents is con-
stant for Reb > 10. The above studies focus on the weakly
and strongly stratified regimes for the mixing efficiency. In
this paper, we present the scaling of ηmix for the moderately
stratified turbulence regime, which is the intermediate regime
between the weakly and strongly stratified regimes.

Shell models are useful for simulating isotropic flows.
Waite and Bartello [45], Kumar et al. [25], and Bhattachar-
jee et al. [77] have shown that the flows belonging to the
weakly and moderately stratified regimes remain approxi-
mately isotropic. Therefore, in this paper, we present results
in these regimes using a shell model.

In a shell model, the spectral space is divided into concen-
tric shells, the radii of which increase exponentially (Ditlevsen
[78]). The spectral velocity field, which is the mean velocity
of all the modes present in a shell, is represented by a single
complex variable. In the beginning, these low-dimensional
models were extensively used to study the properties of homo-
geneous and isotropic hydrodynamic turbulence. Shell models
reproduce interesting features, e.g., the Kolmogorov spectrum
and the experimentally observed intermittency corrections for
hydrodynamic turbulence [79–88]. Later, many shell models
were developed to study buoyancy-driven flows [26,89–94]
and magnetohydrodynamic turbulence [95–101]. Kumar and
Verma [26], Brandenburg [89], Mingshun and Shida [90],
Lozhkin and Frick [91], Olla [92], and Ching and Cheng
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[93] constructed shell models for thermal convection and
reported Kolmogorov-like scaling despite the differences in
the formulations of nonlinear terms in their respective shell
models. However, Suzuki and Toh [94] reported BO scaling
for thermal convection. Kumar and Verma [26] also developed
a shell model for stably stratified flows following the same
formulations for nonlinear terms as that in thermal convection.
In the present study, we adopt the shell model of Kumar and
Verma [26] for simulations.

The outline of the paper is as follows: we describe the
governing equations and shell model in Sec. II and present
the simulation details in Sec. III. We discuss the temporal
intermittency in KE and PE dissipation rates in Sec. IV. In
Sec. V, we describe the transition from weak to moderate
stratification and determine the critical Richardson number
which separates the two regimes. In Sec. VI, we present the
numerical results of the energy spectra and fluxes, and verify
the BO phenomenology. We discuss the results for the scaling
behavior of the mixing efficiency in Sec. VII. Finally, we
conclude in Sec. VIII.

II. GOVERNING EQUATIONS

The evolution of velocity [u = (ux, uy, uz )] and density
fluctuations (b) for stably stratified flows under the Boussinesq
approximation are described by the following set of equa-
tions [1,2,19,102,103]:

∂u
∂t

+ (u · ∇)u = − 1

ρm
∇σ − Nbẑ + ν∇2u + Fu, (6)

∂b

∂t
+ (u · ∇)b = Nuz + κ∇2b, (7)

∇ · u = 0, (8)

where σ is the pressure field, Fu is the external force, ẑ is the
vertical unit vector, uz = u · ẑ is the vertical component of the
velocity field, and N is the the Brunt-Väisälä frequency, which
is defined as

N =
√

g

ρm

∣∣∣∣d ρ̄

dz

∣∣∣∣, (9)

where |d ρ̄/dz| is the background density gradient. Note that
N is the natural frequency of internal gravity waves. Also,
Eqs. (6) and (7) are coupled by buoyancy.

To simulate stably stratified turbulence, we employ a shell
model [26,89–94] in which the governing equations are mod-
eled as

dun

dt
= Mn(u, u) − Nbn − νk2

nun + Fn, (10)

dbn

dt
= Pn(u, b) + Nun − κk2

nbn, (11)

where un and bn are the Fourier transforms of the velocity
field and the density fluctuation, respectively, for the nth shell,
kn = koλ

n is the wave number for the nth shell (where λ > 1 is
the shell spacing), Fn is the external forcing term, and Mn(u, u)
and Nn(u, b) are the nonlinear terms. We take λ = 2 for the
present simulations. We employ the Sabra-based shell model

(L’vov et al. [87]) developed by Kumar and Verma [26] for
stratified flows in which the nonlinear terms are modeled as

Mn(u, u) = −i[a1knu∗
n+1un+2 + a2kn−1u∗

n−1un+1

− a3kn−2un−1un−2], (12)

Pn(u, b) = −i[kn(d1u∗
n+1bn+2 + d2b∗

n+1un+2)

+ kn−1(d3u∗
n−1bn+1 + d4b∗

n−1un+1)

+ kn−2(d5un−1bn−2 + d6bn−1un−2)], (13)

where {a1, a2, a3} and {d1, d2, d3, d4, d5, d6} are constant. Un-
der the inviscid limit (ν = κ = 0) and in the absence of the
external force (Fn = 0), the total energy (Eu + Eb) and kinetic
helicity are conserved for vanishing or periodic boundary
condition [4,5]. These conservation laws yield the following
conditions [26]:

Re

[∑
n

u∗
nMn(u, u)

]
= 0, (14)

Re

[∑
n

(−1)nknu∗
nMn(u, u)

]
= 0, (15)

Re

[∑
n

b∗
nNn(u, b)

]
= 0, (16)

where Re stands for the real part. Constraints (14) and (15),
respectively, lead to

a1 + a2 + a3 = 0, (17)

a1 − a2λ + a3λ
2 = 0, (18)

and constraint (16) yields

d4 = −d2, d5 = d1, d6 = d3. (19)

In our simulations, in order to satisfy all the above conditions,
we choose following values of the constants:

a1 = λ

λ − 1
, a2 = −1.0, a3 = − 1

λ − 1
, (20)

d1 = 5λ, d2 = −5λ, d3 = −5λ

2
. (21)

To supply energy into the system, we use the random
external forcing Fn = ηneiθn , where θn is the phase for the nth
shell, which takes a random value in the interval (0, 2π ), and
ηn is the forcing magnitude chosen in such a way that the
KE supply rate εinj remains constant. This formalism of the
forcing is motivated by the formulations of Maffioli [7] and
Stepanov and Plunian [101]. The expression for ηn is given by

ηn = 1

dt

[
−An ±

√
A2

n + 2εinjdt

n f

]
, (22)

where An = Re(une−iθn ), dt is the time step, and n f is the total
number of shells to be forced. Of the two values of ηn given
by Eq. (22), we use the one with lower |ηn| in our simulations
so that the power input to the system is always positive [7].
The derivation of the expression is provided in the Appendix.
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The dynamical equations for the total kinetic energy [Eu =
(1/2)

∑
n |un|2] and potential energy [Eb = (1/2)

∑
n |bn|2]

are derived using Eqs. (10) and (11) as

dEu

dt
= FB(t ) − Du(t ) + Fu(t ), (23)

dEb

dt
= −FB(t ) − Db(t ), (24)

where Du(t ) and Db(t ) are, respectively, the KE and PE dis-
sipation rates, Fu(t ) is the KE injection rate by the external
force, and −FB(t ) is the rate of conversion from KE to PE by
buoyancy:

Du(t ) = ν

[∑
n

k2
n |un|2

]
, (25)

Db(t ) = κ

[∑
n

k2
n |bn|2

]
, (26)

Fu(t ) =
[∑

n

Re(Fuu∗
n )

]
, (27)

FB(t ) = −N

[∑
n

Re(unb∗
n)

]
. (28)

Under the statistically steady state (dEu/dt = 0 and
dEb/dt = 0), Eqs. (23) and (24) simplify to the following
(Verma [5,103]):

εu − FB = εinj, (29)

εb = −FB, (30)

where εu = 〈Du〉, εb = 〈Db〉, εinj = 〈Fu〉, and FB = 〈FB〉 are
mean quantities. Note that 〈·〉 denotes the time averaging.
Equations (29) and (30) lead to

εu + εb = εinj. (31)

Using Eq. (4), we write the mixing efficiency as

ηmix = εb

εinj
. (32)

It represents the fraction of the externally supplied kinetic
energy that is used for the diffusion of the density fluctuations.

III. SIMULATION DETAILS

We perform simulations at different combinations of the
energy supply rate and viscosity. At ν = κ = 10−5, we sim-
ulate for εinj = {0.25, 0.50, 0.75, 1.0, 1.75, 2.5}, and at εinj =
1, simulations are carried out for Prandtl number Pr = ν/κ =
1 with ν = κ = {10−5, 10−6, 10−7}. For each combination,
we carry out numerical runs for various levels of stratification;
N varies in the range (0.1, 5.0). We also perform one run
at larger viscosity (ν = κ = 10−3) and εinj = 1, N = 5. In
total, we carry out 174 simulations and all are forced at n = 0
and n = 1, so n f = 2. We employ the following boundary
conditions:

u−2 = u−1 = b−2 = b−1 = 0, (33)

uNT = uNT +1 = bNT = bNT +1 = 0, (34)

t
0

20

40

D
u
(t

)

(a)

1000 1500 2000
t

0

20

40

D
b
(t

)

(b)

FIG. 2. For ν = κ = 10−6, εinj = 1, and N = 5, plots of the time
evolution of the (a) kinetic energy dissipation rate Du(t ) and (b) po-
tential energy dissipation rate Db(t ). The figures show extremely high
intermittency.

where NT is the total number of shells. We divide the wave-
number space into NT = 40 shells. For time marching, we use
the fourth-order Runge-Kutta (RK4) method with dt = 10−5.
We run each simulation for 2000 eddy turn over times, and
average all computed quantities for 10 000 time frames of the
last 1000 eddy turn over times. For each set of parameters, the
computed quantities are further averaged over 16 independent
simulations started with random initial conditions [104,105].

In the following sections, we discuss our simulation results.

IV. TEMPORAL INTERMITTENCY
IN THE DISSIPATION RATES

In Fig. 2, we exhibit the time history of the instanta-
neous KE dissipation rate Du(t ) and PE dissipation rate
Db(t ), for ν = κ = 10−6, εinj = 1, and N = 5. The figure il-
lustrates intermittent events of extremely strong dissipation.
This phenomenon is known as intermittency, which is one of
the significant characteristics of turbulent flows. The emer-
gence of the intermittent behavior is caused by the increasing
non-Gaussian nature of the velocity and density fluctuations
towards dissipation scales due to abrupt outbursts of massive
energy arriving at these scales that eventually gets dissipated
[78,88].

Intermittency can be quantified using the flatness of the
velocity field μu(k) and density field μb(k), which are defined
as (Biskamp [106], Biferale [88])

μu(kn) =
〈
u4

n

〉
〈
u2

n

〉2 , μb(kn) =
〈
b4

n

〉
〈
b2

n

〉2 . (35)
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FIG. 3. For ν = κ = 10−6, εinj = 1, and N = 5, plots of the flat-
ness of velocity μu(k) and density fluctuations μb(k). The black solid
line is the reference line indicating k0.18 scaling. The horizontal line
is μu(k) = μb(k) = 3 for Gaussian signals.

We plot μu(k) and μb(k) for N = 5, ν = κ = 10−6, and
εinj = 1 in Fig. 3. Note that flatness is 3 for a Gaussian sig-
nal and any deviation from 3 indicates non-Gaussianity. The
figure shows that μu(k) and μb(k) are less than 3 for k � 100
and greater than 3 for k � 100. Also, μu(k) and μb(k) increase
monotonically with wave number and follow k0.18 scaling.
This increase with wave number shows that the velocity and
density fluctuations exhibit an increased non-Gaussian nature
at smaller scales, which implies strong intermittency towards
the dissipation scales. In comparison, for hydrodynamic tur-
bulence, earlier investigations [83,107–110] reported scaling
of μu(k) from k0.10 to k0.16. Our result provides a slightly
steeper scaling in SST.

Using Du(t ) and Db(t ) time signals, we compute the mean
energy dissipation rates, εu and εb, by averaging the signals in
the time interval (1000, 2000). We find that the total energy
dissipation rate equals the energy supply rate, i.e., εu + εb

= εinj. The same is true for other simulations as well. Thus,
it shows that our simulations have attained a statistical steady
state.

In the next section, we discuss the transition from weak
to moderate stratification and compute the critical Richardson
number at which this transition occurs.

V. TRANSITION FROM WEAK TO MODERATE
STRATIFICATION: DETERMINATION OF CRITICAL

RICHARDSON NUMBER

In the limit of weakly stratified turbulence, Maffioli and
Davidson [42] analytically derived that brms ∝ N , where

brms =
〈∑

n

|bn|2
〉1/2

. (36)

In Fig. 4, we numerically verify that brms ∼ N holds up to a
certain N and then a transition occurs to nearly brms ∼ N1/2 on
further increase of stratification. The slowdown of the rate of
increase of brms with the level of stratification is also reported
by Mohapatra et al. [34,111]. The critical Brunt-Väisälä fre-
quency Nc, after which brms deviates from the linear scaling,
demarcates the weak and moderate stratification.

0.0

0.5

1.0

b r
m

s

(a)

εinj = 0.25

εinj = 0.5

εinj = 0.75

εinj = 1.0

εinj = 1.75

εinj = 2.5

0.0 2.5 5.0
N

0.0

0.5

1.0

b r
m

s

(b)Nc

ν = κ = 10−5

ν = κ = 10−6

ν = κ = 10−7

FIG. 4. Plots of the rms density fluctuations brms vs N (a) for dif-
ferent εinj at ν = κ = 10−5 and (b) for different ν = κ at εinj = 1.0.
brms depends upon N but not ν. The curves in both figures are the fit
to the data. For weakly SST, brms ∼ N , and for moderately SST, brms

nearly follow N1/2 scaling. The vertical line in (b) is N = Nc = 3.11.

Figure 4(a) shows that Nc increases with the increase of εinj.
We provide Nc and the scaling relations of brms for different
εinj at ν = κ = 10−5 in Table I. We also observe that for a
given εinj, brms remains unchanged as ν varies, as shown in
Fig. 4(b). It implies that Nc depends on εinj, but not ν or κ .
Using curve fitting, we find that Nc convincingly follows Nc =
3.13ε

1/3
inj , as shown in Fig. 5. In order to determine the critical

Richardson number Ric, we run simulations for different pairs
of Nc and the corresponding εinj (see Table I). We substitute

0.25 1.00 1.75 2.50
εinj

2

3

4

5

N
c
,

R
i c

Nc
= 3.1

3ε
0.3

3

inj

Ric = 4.0

ν = κ = 10−5
Nc Ric

10−7 10−6 10−5

ν = κ

3

4

5

R
i c

εinj = 1

FIG. 5. For ν = κ = 10−5, plots of the critical Richardson num-
ber Ric and critical Brunt-Väisälä frequency Nc vs εinj. Inset: Ric

vs ν = κ for εinj = 1. The black curve, Nc = 3.13ε0.33
inj , is the fit

to the data, and the horizontal lines in the figure and inset are
Ric = 4.0.
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TABLE I. For various εinj at ν = κ = 10−5, the critical Brunt-Väisälä frequency (Nc) and the scaling relations of brms for N � Nc and
N � Nc are shown.

εinj Nc Scaling relation for N � Nc Scaling relation for N � Nc

0.25 1.98 brms = (0.230 ± 0.001)N0.997±0.003 brms = (0.329 ± 0.004)N0.467±0.008

0.50 2.48 brms = (0.228 ± 0.001)N0.995±0.003 brms = (0.364 ± 0.021)N0.489±0.025

0.75 2.82 brms = (0.227 ± 0.002)N0.999±0.004 brms = (0.393 ± 0.021)N0.484±0.021

1.00 3.11 brms = (0.229 ± 0.001)N0.998±0.001 brms = (0.394 ± 0.022)N0.508±0.020

1.75 3.82 brms = (0.230 ± 0.001)N0.991±0.002 brms = (0.451 ± 0.065)N0.494±0.049

2.50 4.25 brms = (0.230 ± 0.001)N0.995±0.002 brms = (0.399 ± 0.073)N0.611±0.059

brms,

U =
〈∑

n

|un|2
〉1/2

and L = 4π

U 2

∑
n

[
Eu(kn)

kn

]
, (37)

in Eq. (1) to compute Ric. We plot the variation of Ric with
εinj in Fig. 5 and the variation of the same with ν = κ in the
inset. The figure shows that Ric ≈ 4.0 is almost independent
of εinj and ν (or κ , as Pr = 1). Thus, our numerical results
show that the transition from weak to moderate stratification
occurs at Ri = Ric ≈ 4.0. In Fig. 6, we plot instantaneous FB

[Eq. (28)] for various N (or Ri) at εinj = 1.0 and ν = κ =
10−6. The figure shows that for N � 3 (Ri � 3.75), FB < 0
most of the time. It shows that the net conversion of kinetic
energy to potential energy take place almost at every instant
of time, and the instances of net transformation of the potential
energy to kinetic energy are rare. However, in the case of
N = 4 (Ri = 5.55) or N = 5 (Ri = 6.84), the excursions of
FB > 0 are stronger and they occur more often, indicating that
the potential energy also gets converted into kinetic energy
quite often for these cases.

To support the above observation, we compute the prob-
ability P+(FB) of occurrence of the excursions of FB > 0,
which is defined as

P+(FB) = No. instances of FB > 0

Total no. instances
, (38)

where the total number of instances is 10 000. We plot
P+(FB) vs Ri for different εinj at ν = κ = 10−5 in Fig. 7.
The figure shows that P+(FB) for various energy supply rates

−100

0

100

N = 1 (Ri = 0.40)

−100
0

100 N = 2 (Ri = 1.66)

−100
0

100

F B
(t

) N = 3 (Ri = 3.75)

−100
0

100 N = 4 (Ri = 5.55)

1900 1950 2000

t

−100
0

100 N = 5 (Ri = 6.84)

FIG. 6. For εinj = 1.0 and ν = κ = 10−6, plots of the time evo-
lution of FB(t ) for various strengths of stratification.

collapse to a single curve. The figure also shows that for Ri �
Ric ≈ 4.0, P+(FB) is very small and constant, but increases
rapidly when Ri � Ric for all runs. As a result, it can be
deduced that the instances of net conversion of PE to KE are
insignificant in the limit of weakly stratified turbulence (for
Ri � Ric); however, the net transformation of both energies
into one another takes place more frequently for Ri � Ric.

In the next section, we show that the energy spectra and
fluxes satisfy the BO phenomenology for moderate stratifica-
tion.

VI. NUMERICAL VERIFICATION
OF THE BO PHENOMENOLOGY

We compute the averaged KE and PE spectra, and the
corresponding fluxes as follows (Verma [103]):

Eu(kn) = 〈|un|2〉
2kn

, (39)

Eb(kn) = 〈|bn|2〉
2kn

, (40)

�u(kn) = a3kn−1〈Im(u∗
n−1u∗

nun+1)〉
− a1kn〈Im(u∗

nu∗
n+1un+2)〉, (41)

�b(kn) = −d1kn〈Im(b∗
nu∗

n+1bn+2)〉
− d2kn〈Im(b∗

nb∗
n+1un+2)〉

− d1kn−1〈Im(b∗
n−1u∗

nbn+1)〉
− d3kn−1〈Im(u∗

n−1b∗
nbn+1)〉, (42)

0 4 8
Ri

0.00

0.15
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P
+
(F

B
)

Ric

εinj = 0.25

εinj = 0.5

εinj = 0.75

εinj = 1.0

εinj = 1.75
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FIG. 7. For ν = κ = 10−5, plots of the probability density func-
tions P+(FB) vs Ri for various energy supply rates.

055106-7



ALAM, VERMA, AND JOSHI PHYSICAL REVIEW E 107, 055106 (2023)

TABLE II. The parameters for varying Brunt-Väisälä frequency (N) at εinj = 1: kinematic viscosity (ν), Richardson number (Ri), Reynolds
number (Re), Bolgiano wave number (kB), Kolmogorov wave number (kd ), and εu/[(Ri/

√
Re)(U 3/L)]. We take Prandtl number Pr = ν/κ = 1.

N ν Ri Re kB kd εu/[(Ri/
√

Re)(U 3/L)]

1.0 10−6 0.40 ± 0.13 6.33 × 106 0.20 3.09 × 104 5.83 × 103

3.0 10−6 3.75 ± 1.18 5.51 × 106 11 2.51 × 104 2.99 × 102

5.0 10−6 6.84 ± 2.66 5.24 × 106 53 2.20 × 104 8.40 × 101

5.0 10−3 6.54 ± 0.36 5.04 × 103 76 1.17 × 102 2.25

where Im denotes the imaginary part. We also compute kB and
kd , and find that kB � kd for all the high Reynolds number
runs (Re ∼ 106), which implies that

εu/

(
Ri√
Re

U 3

L

)
� 1

(see Table II). Hence, the condition of Eq. (1) for the existence
of dual scaling is satisfied.

To verify the BO phenomenology, we plot the energy spec-
tra and fluxes in Fig. 8 for different levels of stratification
(N = 1, 3, 5), keeping ν = κ = 10−6 and εinj = 1. In the fig-
ure, the vertical lines depict kB and kd for the three values
of N . For N = 1, we find that kB < 1 and it is therefore
not indicated. Note that kB � kd for all the runs presented.
For N = 5, we observe that the energy spectra show evi-
dence for the existence of Eu(k) ∼ k−11/5, Eb(k) ∼ k−7/5, and
�u(k) ∼ k−4/5 for k < kB. However, as kB is only 53, which
is too small, the BO scaling is only present for a short wave-
number range. In this regime, the attenuation in �u(k) is due
to the conversion of KE to PE via buoyancy. Consequently,
the KE spectrum becomes steeper than that predicted by the

Kolmogorov theory. Also, Alam et al. [31], and Verma [4]
showed that �u(k) + �b(k) = const in the inertial range, so
the decrease of �u(k) with k yields a slight increase of �b(k),
as shown in Fig. 8(d). For k > kB, buoyancy becomes neg-
ligible, and the conversion of KE to PE is insignificant. As
a result, both spectra show k−5/3 scaling for kB < k < kDI ,
and the fluxes are constant. Thus, our numerical results show
some evidence of the validity of the dual scaling predicted
by Bolgiano [17] and Obukhov [23]. However, for attaining
a larger range of the BO spectrum, along with the condition
of Eq. (1), some other approaches needs to be explored. One
alternative is to consider the nonlocal transfer of energy by the
Fourier modes in the shell model, as studied by Stepanov and
Plunian [112] for magnetohydrodynamics. Rosenberg et al.
[18] also reported BO scaling for a very narrow wave-number
band in their numerical simulations of rotating stratified
turbulence.

Under weak stratification (N = 1), the effect of the density
field on the velocity field is negligible. In addition, kB < 1,
which is reported in Table II. Therefore, Eu(k) and Eb(k) fit
better with the Kolmogorov scaling, and �u(k) and �b(k) are
constant in the inertial range. However, at very large scales,
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FIG. 8. For various strengths of stratifications, plots of the (a) KE spectrum Eu(k), (b) KE flux �u(k), (c) PE spectrum Eb(k), and (d) PE
flux �b(k). For N = 5, the spectra and fluxes fit better with the the BO scaling for k < kB and with the Kolmogorov scaling for k > kB in the
inertial range. For N = 1, the spectra and fluxes fit better with the Kolmogorov scaling throughout the inertial range. The black solid lines are
for reference to visualize scalings. kB and kd for different values of N have been indicated by the vertical lines. For N = 1, kB < 1, so it is not
shown. Here, ν = κ = 10−6 and εinj = 1.0.
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FIG. 9. For N = 5, ν = κ = 10−3, and εinj = 1.0, plots of (a) the
KE spectrum Eu(k) and PE spectrum Eb(k), and (b) the KE flux
�u(k) and PE flux �b(k). The spectra and flux exhibit only the BO
scaling in the inertial range. The black solid lines are for reference
to visualize scalings. The vertical lines correspond to kB = 76 and
kd = 117.

Eb(k) is a bit shallower than the Kolmogorov spectrum, as
shown in Fig. 8(c). It is possibly due to a marginal increase in
�b(k) due to the transfer of kinetic energy to potential energy;
however, this transfer is very small as �b(k) � �u(k). Our
observations are consistent with those of Wunsch and Kerstein
[33], Kumar etal. [25], and Basu and Bhattacharjee [29].

In Fig. 8, we also plot the energy spectra and fluxes for
N = 3, close to Nc at which the transition from weakly to
moderately SST takes place. For this case, at large scales,
Eu(k) exhibits scaling between k−5/3 and k−11/5, and the
depletion of �u(k) is shallower than k−4/5. Also, �b(k) in-
creases marginally as the total energy flux is constant. But,
Eb(k) shows k−7/5 scaling. Thus, buoyancy is not negligible,
but at the same time it is not strong enough for the kinetic
energy to show the BO spectrum.

Now, to verify that the Kolmogorov scaling is absent for
moderately SST when the condition of Eq. (1) is not satisfied,
we simulate the flow at a smaller Reynolds number (last
simulation in Table II). We find that Re = 5.04 × 103 and

εu/

(
Ri√
Re

U 3

L

)
= 2.25.

Hence, following Eq. (1), we conclude that kB and kd are
of the same order. Figure 9 illustrates the energy spectra
and fluxes for this case. It is evident from the figure that
the energy spectra and fluxes show only the BO scaling;
Eu(k) and Eb(k) follow k−11/5 and k−7/5 scalings, respectively
[Fig. 9(a)], �b(k) is constant, and �u(k) fits quite well with
k−4/5, as shown in Fig. 9(b). However, there is no transition to
the Kolmogorov scaling because kd is not much bigger than
kB as the condition of Eq. (1) is not fulfilled. The DNS of

0 4 8
Ri

0.5

2.5

4.5

Ũ
,

L

Ũ = 0.93

L

FIG. 10. For ν = κ = 10−5, plots of integral length scale L and
normalized rms velocity Ũ = U/(εinjL)1/3 vs Ri for various εinj.
Legend is the same as that of Fig. 7. The straight line is L =
4.35 − 0.1Ri.

Kumar et al. [25], LES of Agrawal and Chandy [30], and
shell model of Kumar and Verma [26] for moderately SST at
Re ≈ 103 also show the existence of only the k−11/5 spectrum;
therefore, our results are in good agreement with their results.
We find that kB = 76 and kd = 117, and hence buoyancy is
active throughout the inertial range for this case. Therefore,
the dual scaling is not obtained for this case.

In the following section, we discuss the mixing efficiency.
We start with the variation of the rms velocity and integral
length scale with the strength of stratification.

VII. SCALING OF THE MIXING EFFICIENCY

We plot the integral length scale L and normalized rms
velocity Ũ = U/(εinjL)1/3 vs Ri in Fig. 10. As is evident from
the figure, both L and Ũ are independent of εinj. Lindborg
[19] and Maffioli [7] claimed that L ≈ 2π/k f , where k f is the
forcing wave number. We forced the system at k = 1, 2 with
equal energy for all the simulations, so k f ≈ 1.5 for all our
runs. Substitution of k f = 1.5 in L ≈ 2π/k f yields L ≈ 4.2.
The figure shows that L is approximately equal to 4.2 for very
small Ri’s, but it decreases linearly as Ri increases. In addi-
tion, as shown in the figure, Ũ ≈ 0.93 is almost independent
of the level of stratification, which implies that U varies as

U = 0.93(εinjL)1/3. (43)

In Fig. 11, we plot ηmix vs Ri and find that ηmix for different
εinj follow the same curve. We use curve fitting to derive the
scaling relation of ηmix. We observe that ηmix increases almost
linearly with Ri for weakly stratified turbulence as

ηmix = (0.221 ± 0.011)Ri0.960±0.012 for Ri � Ric, (44)

as shown in the figure, consistent with the earlier findings
[39,42,71,72]. For Ri � Ric (moderate stratification), ηmix de-
viates from the linear scaling and the rate of increase becomes
slower. Using curve fitting, we find that

ηmix = (0.398 ± 0.035)Ri0.344±0.03 for Ri � Ric, (45)

as shown in the inset of the figure. A possible reason for this
slowdown is the rapid increase of occurrence of the instances
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FIG. 11. For ν = κ = 10−5, plots of the mixing efficiency ηmix

vs Ri for various ηmix. Inset: the same plots for Ri � 3.5. The curves
represent the fits to the data. Legend is the same as that of Fig. 7.

of the net conversion of PE to KE for Ri � Ric (explained
in Sec. V), which effectively slows down the growth rate
of εb = FB, and hence ηmix. For strongly SST, many recent
studies [42,59,74] reported that ηmix = const. Unfortunately,
we cannot simulate the flow at strong stratification because
the flow then becomes anisotropic and our shell model needs
major modification.

In short, we observe that ηmix ∼ Ri for weakly SST, while
for moderately SST, it scales as ηmix ∼ Riα , with α ≈ 1/3. We
conclude the paper in the following section.

VIII. CONCLUSIONS

In this work, we perform shell model simulations for stably
stratified flow for various pairs of energy supply rate and
viscosity in weakly and moderately stratified regimes at uni-
tary Prandtl number. Here, we fulfill three objectives: (i) we
find the critical Brunt-Väisälä frequency Nc and Richardson
number Ric at which changeover from weak to moderate
stratification takes place, (ii) we present numerical results that
suggest the potential validation of the Bolgiano-Obukhov phe-
nomenology, and (iii) we obtain scaling relations for mixing
efficiency.

For finding Nc and Ric, we use the observation that density
fluctuations brms vary linearly with N for weakly stratified
turbulence [42], i.e., brms deviates from the linear scaling at
N = Nc (or Ri = Ric). These critical values demarcate weakly
from moderately stratified regimes of SST. We observe that
Nc increases with the energy supply rate εinj as Nc ∼ ε

1/3
inj , but

does not depend on viscosity ν, while Ric ≈ 4 is independent
of both εinj and ν. For weakly stratified turbulence (Ri � Ric),
we observe that instances of net conversion of the potential
energy to kinetic energy are rare. For Ri � Ric, the frequency
of such instances increases rapidly. Note, however, that the
time-averaged conversion is always from kinetic energy to
potential energy.

For moderately stably stratified turbulence, our numeri-
cal analysis provides some preliminary evidence in favor of
the dual scaling spectrum of the Bolgiano-Obukhov (BO)
phenomenology. The BO phenomenology predicts that the ki-
netic and potential energy spectra, respectively, follow k−11/5

and k−7/5 scaling for k < kB, where kB is the Bolgiano wave
number. For k > kB, the energy spectra follow k−5/3 scal-
ing. To date, however, the dual scaling is not observed.
Alam et al. [31] derived a condition for the existence of
k−5/3 scaling in the inertial range for k > kB. The condition
yields εu � (Ri/

√
Re)(U 3/L), which requires high Reynolds

number. In the present paper, we satisfy the above condi-
tion in our shell model simulations and observe that both
energy spectra exhibit the dual scaling. However, the range of
Eu(k) ∼ k−11/5 and Eb(k) ∼ k−7/5 spectra that we obtained is
not large enough and more investigation is needed to establish
a larger wave-number band for the BO scaling. Note that
the above condition is difficult to obtain in direct numerical
simulations.

Furthermore, we obtain the scaling relations for the mixing
efficiency. We observe that the mixing efficiency increases
linearly with Ri for Ri � Ric, but slows down to Ri1/3 for
Ri � Ric in moderately SST. This changeover of scaling is
possibly due to the slowdown of the transfer rate from the
kinetic energy to potential energy.

Nocturnal atmospheric flows experience strong stratifica-
tion that suppresses the vertical motion and makes the flows
highly anisotropic. Currently, our shell model does not have
the ability to capture the anisotropic effects. As a result,
the present study does not focus on strongly SST. However,
motivated by the shell models of Gürcan and Grappin [113]
and Carbone and Veltri [114], which incorporate angular de-
pendence to capture anisotropy, we plan to modify our shell
model solver to study strongly stratified turbulence in a future
study. Finally, we reiterate that the results presented in this pa-
per may not be applicable for very large Richardson numbers
and fluids of large Prandtl numbers for which stable density
layers with sharp interfaces form.
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APPENDIX: ENERGY SUPPLY RATE FROM
THE RANDOM FORCING

We use the random forcing (Fn = ηneiθn ) to supply the
kinetic energy into the system. We evaluate the expression
for ηn by considering the simplest form of the shell model
equation (excluding the nonlinear and dissipative terms) as

∂un(t )

∂t
= Fn(t ). (A1)

The corresponding discretization of Eq. (A1) for time evolu-
tion is

un(t + dt ) − un(t )

dt
= ηneiθn . (A2)
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Using Eq. (A2), we can easily arrive at the following
equation:

1

2

( |un(t + dt )|2 − |un(t )|2
dt

)
= ηnRe[u(t )e−iθn ] + 1

2
η2

ndt .

(A3)

If ε and n f are, respectively, the energy supply rate and the
number of shells to be forced, we can write

εinj

n f
= 1

2

[ |un(t + dt )|2 − |un(t )|2
dt

]
. (A4)

Equations (A3) and (A4) yield the following:

η2
n +

(
2An

dt

)
ηn −

(
2εinj

n f dt

)
= 0, (A5)

where An = Re[u(t )e−iθn ] and the solution of Eq. (A5) is

ηn = 1

dt

[
−An ±

√
A2

n + 2εinjdt

n f

]
. (A6)

The energy injection rate to the nth shell Fn due to the external
random force is Fn = Re(unF ∗

n ) = ηnAn [equal to the first
term on the right-hand side of Eq. (A3)]. However, some
artificial energy also gets injected into the shell because of the
discretization error. The artificial energy is equal to (1/2)η2

ndt
[the second term on the right-hand side of Eq. (A3)]. To
minimize the artificial energy injection and to ensure that Fn is
always positive, we use ηn which has a lower magnitude (|ηn|)
of the two values of ηn given by (A6) in our simulations [7].
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