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In many practical scenarios, a flying insect must search for the source of an emitted cue which is advected
by the atmospheric wind. On the macroscopic scales of interest, turbulence tends to mix the cue into patches of
relatively high concentration over a background of very low concentration, so that the insect will detect the cue
only intermittently and cannot rely on chemotactic strategies which simply climb the concentration gradient. In
this work we cast this search problem in the language of a partially observable Markov decision process and use
the Perseus algorithm to compute strategies that are near-optimal with respect to the arrival time. We test the
computed strategies on a large two-dimensional grid, present the resulting trajectories and arrival time statistics,
and compare these to the corresponding results for several heuristic strategies, including (space-aware) infotaxis,
Thompson sampling, and QMDP. We find that the near-optimal policy found by our implementation of Perseus
outperforms all heuristics we test by several measures. We use the near-optimal policy to study how the search
difficulty depends on the starting location. We also discuss the choice of initial belief and the robustness of
the policies to changes in the environment. Finally, we present a detailed and pedagogical discussion about the
implementation of the Perseus algorithm, including the benefits—and pitfalls—of employing a reward-shaping
function.
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I. INTRODUCTION

Certain flying insects depend on a remarkable ability to
use olfactory cues to locate distant sources. Two salient,
well-studied examples are female mosquitoes, which use a
combination of carbon dioxide and other cues such as odors
and heat [1,2] to find their human hosts, and moths, which
track potential mates using emitted sex pheromones to which
they are extremely sensitive.

In experiments, mosquitoes immediately begin flying up-
wind in the presence of fluctuating CO2 plumes [3–5] from
a distance of up to tens of meters away from the source
[6], from which distances visual cues are not useful [7,8].
Male moths exhibit similar upwind search behavior when
exposed to pheromones from females [9,10], and their max-
imum effective search range is even farther, on the order of
100 m [11]. Thus the relevant length scales for the search are
macroscopic. On such length scales, effects due to turbulence
dominate the transport of passive scalars; the turbulent trans-
port induces a wildly fluctuating, intermittent concentration
landscape. A fixed location tens of meters from a source
may go long times—tens of seconds—without a detectable
increase in local concentration [12]. Therefore, the insect can-
not quickly estimate the concentration gradient, and simple
search strategies like chemotaxis which rely on moving up
the local gradient have minimal efficacy. A searching insect
must then make effective use of the limited information it can
glean from intermittent detections [13]. Information-theoretic
studies suggest that the insect is best served by measuring
concentrations as coarsely as possible, i.e., a binary low or
high signal relative to some threshold [14,15].

In addition to insects, many mammals, such as dogs and
rodents, alternate between sniffing the ground and sniffing
the air when performing olfactory navigation [16–19]. This
behavior implies that the mammals integrate airborne cues
into their search and that they may depend in part on the same
fundamental strategies as insects.

Both moths and mosquitoes exhibit similar behavior during
their upwind flight, including a tendency towards zigzagging
motion across the mean wind [20] or “casting”; fruit flies
also exhibit similar behavior in response to attractive odor
stimuli [21,22]). This suggests that good strategies for olfac-
tory search are universal and above all depend on the physics
underlying the dispersal of the attractant cues. Inspired by
this observation, Balkovsky and Shraiman [23] proposed cast-
and-surge, a simple heuristic policy for olfactory search.
Cast-and-surge combines cross-wind casting, which helps to
locate the downwind axis of the source where detections are
most probable, with “surging,” direct upwind motion immedi-
ately after a detection.

The cast-and-surge decision-making algorithm depends
only on the detection history. Another class of policies are
model-based, in the sense that they take as input some hard-
wired model for the statistics of detection, which one can
imagine may be instinctual to an insect. An important example
is infotaxis [24], which chooses actions by maximizing the
information about the source location which, based on the
information the agent currently has, is expected to be gained.
Trajectories generated using infotaxis encompass a number of
behaviors, including casting.

While a zoology of model-based heuristics exists, when
one has an exact or approximate expression for the detection
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probability, a natural question to ask is what kind of policy
is optimal—that is, results in a minimum mean arrival time—
given the statistics? What behaviors are seen in this optimal
policy? And how do the various heuristic policies compare?

The mathematical language of partially observable Markov
decision processes (POMDPs) allows us to formalize the
search problem and specify the optimal strategy as the solu-
tion to the Bellman equation, a nonlinear functional equation.
However, solving for the optimal policy in a POMDP is
known to be a difficult computational challenge, and scalabil-
ity to large problem sizes is a key issue. Recently, a promising
effort [25] was made to solve the problem using a variant of
deep reinforcement learning to obtain an approximate solution
of the Bellman equation; however, it was left uncertain how
effectively this approach scaled to large problem sizes, and
the authors did not include a mean wind.

In this work, we use a POMDP algorithm called Perseus
[26], coupled with reward potential shaping [27], to ap-
proximate the solution to the Bellman equation and obtain
near-optimal policies for olfactory search on a large grid
with thousands of points. Perseus was previously used for the
search problem in Ref. [13], but the results presented were
limited and purely qualitative. Presently we build model en-
vironments with three different characteristic emission rates,
compute near-optimal policies for each environments, and
compare the arrival-time statistics of the near-optimal policies
with those of a few interesting heuristic policies (including
two versions of infotaxis). We find that the near-optimal policy
found by our implementation of Perseus successfully out-
performs all the tested heuristics in each environment. This
establishes a reasonably scalable baseline for the POMDP
solution of this problem, allows for the study of the behaviors
and statistics which characterize optimal search, and opens
the possibility to apply the same algorithm to more complex
search problems, for example, the case of multiple sources.
We also suggest that the present work may have applications
to robotics for the purpose of detection of hazardous chemi-
cals or explosives; previous studies saw the design of robots
for olfactory search using reactive policies [28,29] and using
infotaxis [30,31].

The paper is organized as follows. In Sec. II we detail the
search problem and its assumptions, and we introduce the sim-
ple mathematical model for detections which we use in this
work. In Sec. III we review the POMDP formalism, cast the
search problem in this language, and describe both the heuris-
tic policies and the methods used to solve the POMDP di-
rectly. Important details include the choice of initial condition
and the use of a reward-shaping function to accelerate conver-
gence. In Sec. IV we present example trajectories and arrival
time statistics for the various policies, including mean arrival
times for several test problems and detailed probability den-
sity functions (pdfs). We also test the robustness of the poli-
cies under changes in the model environment and use the near-
optimal policies to obtain the approximate best mean arrival
time as a function of starting position. Finally, in Sec. V we
summarize our results and discuss avenues for future research.

II. PROBLEM DESCRIPTION

We will consider the problem of a model insect, or agent,
searching for a stationary source located somewhere upwind,

using some olfactory cue. We will constrain the motion of
the agent to a two-dimensional plane, and we will discretize
space into a rectangular grid (see Fig. 1). While this constraint
is primarily made for computational ease (since very large
POMDPs are extremely difficult to solve), it also models the
fact that for problems of interest the source will typically
be close to the ground. We will assume the agent begins its
search after a detection event (see Sec. III B for more details
on the initialization) and stops when it reaches the grid point
corresponding to the source location. The goal is to find a
search strategy which minimizes the mean arrival time to the
source.

At each time step, the agent will make either a detection
or a nondetection of the cue, which may be interpreted as
the insect observing a concentration above threshold. Due to
the random nature of turbulent mixing, detection will occur
with some space-dependent probability, which will be small
far enough downwind from the source and nearly vanishing
upwind of the source [32]. We assume the Markov property:
the detection events are independent in time and space. In
principle, we could allow for multiple detections per time step,
but in the most interesting case, detections are rare enough that
more than one detection in a small time interval is exceedingly
unlikely (unless the agent is very close to the source).

Physically, the discretization may be understood as assum-
ing the agent flies at a fixed speed v and measures the local
concentration by integrating over a characteristic sampling
time �t (the decision time step). The grid spacing is then
�x = v�t .

We seek an expression for the mean rate of detections in
a statistically steady turbulent flow, as a function of spatial
position. We model the turbulent environment with an effec-
tive turbulent diffusivity D (assumed to be much larger than
the collisional viscosity). We impose a mean wind V x̂ and
fix a source with emission rate S at the origin, r0 = 0. The
advection-diffusion equation is then

∂t c + V ∂xc = D∇2c + Sδ(r) − c/τ, (1)

where c is the concentration field and τ is a particle lifetime
that can be identified as a turbulent mixing time or coherence
time. A simple dimensional estimate for the turbulent diffusiv-
ity is D ∼ �ṽ, where ṽ is the rms fluctuation velocity and � is
the turbulent mixing length. In this framework, we then have
τ ∼ �/ṽ. In three spatial dimensions, the stationary solution
of Eq. (1) is

c(r) = S

4πD|r| exp

(
V r · x̂

2D
− |r|

λ

)
(2)

with λ ≡
√

Dτ/(1 + V 2τ/4D). Using Smoluchowski’s ex-
pression for the rate of encounters of a sphere of radius a
with molecules diffusing with diffusivity D [33], we obtain
an estimated number of encounters in a time interval �t ,

h(r) = 4πaD�t c(r), (3)

where a is a characteristic length scale of the searcher. We then
imagine that the animal, which is constrained to the plane of
the source, treats the number of detections per time step as a
Poisson variable with rate h.
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FIG. 1. Basic schematic of the search POMDP. The model insect searches for the source (red X) on a 2D grid, in the presence of a mean
wind. At each time step, it either detects the cue (red circle with “!”) or makes no detection, with a specified probability; these observations
are used to update the belief of where the source is. It then moves to an adjacent grid point. The search terminates when it finds the source or
when some maximum search time is exceeded.

In this work the agent will search in a toy environment
wherein the detections are generated artificially, drawn from
the distribution specified by the diffusive model. (Understand-
ing the robustness of policies trained using the present model
when applied to more realistic environments remains one open
important problem that goes well beyond the scope of this
paper.) But, of course, the model is a simplification of the
turbulence physics; see, for example, [32] for a more sophisti-
cated treatment. In reality, the dynamics of the odor molecules
will be neither purely diffusive nor purely ballistic, and more-
over detection events will have a nonzero spatiotemporal
correlation. On the other hand, the present diffusive model
has seen significant use in past work (e.g., [24,25,34]) and in
any case leads to a good benchmark search problem which
is far from trivial to solve. Above all, the model captures
the key phenomenological features that make the problem
difficult and interesting [32]: detections are stochastic (with
some space-dependent probability) and rare enough that fine-
grained information about the local concentration field is not
very useful. As long as correlations are neglected, differences
between the toy model and real data will be quantitative rather
than qualitative.

After one introduces a grid spacing �x, the model can be
parametrized by three nondimensional quantities: the nondi-
mensional emission rate S̄ ≡ aS�t/�x, the nondimensional
mean wind V �x/D, and the nondimensional coherence time
V 2τ/D. The values we use for these quantities are shown in
Table I.

A final, important assumption is that the agent has knowl-
edge (say, through instinct) of the detection statistics implied

by Eqs. (2) and (3). This will be necessary to perform
Bayesian inference.

III. METHODS

A. POMDP setup

We now cast the search problem in the language of a par-
tially observable Markov decision process (POMDP) [35,36].
The fundamental ingredients of a POMDP are a state space
S, a set of actions A, a set of observations O, and a reward
function

R : S × A → R.

At each time step, the agent is in some state s ∈ S and selects
an action a ∈ A, which causes the agent to transition from
state s to s′ with a specified probability Pr(s′|s, a).

For our purposes, the agent is a model insect living on
an Nx × Ny grid with spacings �x and �y (see Fig. 1). The
source is fixed at a point r0. The state of the agent is its relative
position with respect to the source s ≡ r − r0, with r the
agent location. The actions are to simply to move to an adja-
cent grid point, A = {(�x, 0), (−�x, 0), (0,�y), (0,−�y)},
so that after taking action a the new state is s′ = s + a with
probability 1—unless it attempts to leave the grid, in which
case the agent is unmoved, or if it has found the source. The
state of occupying the same grid point as the source is treated
as an absorbing state, which is to say that no action will
change the state. (More details are given in the Appendix A 1.)

The agent also receives a reward R(s, a) for taking an
action, which is discounted by a factor 0 < γ < 1. We set the
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TABLE I. Parameters and hyperparameters, relating to the turbulence physics, the POMDP definition and grid, and the Perseus algorithm.

Category (Hyper)parameter Description Value(s) used

V �x/D Nondimensional mean wind 2
V 2τ/D Nondimensional turb. coherence time 150

S̄ ≡ a�tS/�x Nondimensional emission rate 0.25, 2.5, 25
Environment �x/�y Grid-spacing ratio 1

Nx Grid points along wind axis 81
Ny Grid points along cross-wind axis 41
r0 Source position (10,20) (grid spacing units)

|B| Number of Perseus beliefs 45 000
g(D) Reward-shaping function 0.001D2, 0.1D

POMDP solution πB Policy for belief collection Infotaxis
Twait Max. time to wait for first detection 1000
γ Discount factor 0.96, 0.98

reward to be unity for finding the source, and zero otherwise
(other choices are easily seen to be equivalent, provided γ <

1; see Appendix A 2). This sets up an optimization problem,
namely, to craft a policy for choosing actions which maxi-
mizes the expected total reward

E[Rtot] =
∞∑

t=0

γ tE[R(st , at )] = E[γ T −1], (4)

where T is the arrival time to the source. The discount fac-
tor helps to regularize POMDPs by reducing the influence
of times far in the future, and its value sets the extent to
which the agent should prioritize immediate rewards vis-à-
vis future rewards. This preference for short- or long-term
rewards is quantified by a characteristic time called the hori-
zon ∼1/ log γ −1 	 1/(1 − γ ). Rewards which are earned at
times in the future beyond the horizon are suppressed in the
decision-making process. We refer the reader to Appendix A 2
for further discussion.

So far, we have described only a basic Markov decision
process (MDP). The challenge of partial observability is that
the agent does not have access to its state, and instead main-
tains a probability distribution over S called a belief, b(s). This
is of course relevant to the present search problem because the
agent does not know where the source is. The belief lives in
a |S| − 1-dimensional simplex: the set of vectors in S with
nonnegative components summing to one. At each time step,
after taking its action, the agent makes an observation o ∈ O
which is used to update the belief using Bayes’ rule

bo,a(s′) = Pr(o|s′, a)
∑

s b(s)Pr(s′|s, a)∑
s,s′ Pr(o|s′, a)b(s)Pr(s′|s, a)

, (5)

where bo,a denotes the updated belief after taking action a and
making observation o. Note that in our problem the transition
probability is deterministic and, excluding the aforementioned
edge cases where the agent has already found the source
or tries to exit the grid, we can write Pr(s′|s, a) = δs′,s+a.
Also, the observation likelihood is independent of the previous
action taken by the agent and depends only on its relative
displacement from the origin, Pr(o|s, a) = Pr(o|s). However,
we will usually give expressions pertaining to POMDPs in a
general form when possible.

The likelihood is set by the diffusive model of Sec. II as
follows. We define three possible observations. First, the agent
may discover that it has found the source, which occurs with
probability ps = δs,0, where δ is a Kronecker function. Other-
wise, the agent may observe either a detection with probability

Pr(o = det|s) = {1 − exp[−h(s)]}(1 − ps) (6)

or a nondetection with probability

Pr(o = nondet|s) = exp[−h(s)](1 − ps). (7)

That is, the number of detections in a time step is treated as
a Poisson process with rate h, and any number of detections
�1 is considered equivalent. The factor 1 − ps enforces the
fact that the agent observes the source if it finds it. Note that
the observations are defined so that

∑
o∈O Pr(o|s, a) = 1. The

detection likelihood for our choice of model parameters, with
S̄ = 2.5, is shown in Fig. 2.

Now, the problem becomes that of finding a good policy
π : b 
→ a mapping each belief to an action which yields
a maximal expected total reward (i.e., a short mean arrival

FIG. 2. Plot showing the grid world (blue dots) overlaid with the
log detection likelihood for our choice of model parameters when
S̄ = 2.5. The source, in red, has zero detection likelihood because
it triggers a special observation. The agent always starts its search
within two selected likelihood isocurves, shown in yellow.
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time), conditioned on that belief. Explicitly, under a given
policy π , we may define the value Vπ of a belief as the total
expected reward that can be accrued by following π :

Vπ (b) = E

[ ∞∑
t=0

γ t
∑
s∈S

R(s, π (bt ))bt (s)

∣∣∣∣b0 = b

]
. (8)

We will define V ∗ as the value function under the optimal
policy π∗. V ∗ can be shown to satisfy the Bellman equation

V ∗(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|b, a)V ∗(bo,a)

]
,

(9)
where Pr(o|b, a) = ∑

s∈S Pr(o|s, a)b(s). Once a solution to
the Bellman equations is found, the optimal policy consists
in a greedy selection of the action that maximizes the r.h.s.
of (9). The argument of the maximum of the r.h.s. of (9) is
simply the sum of the immediate expected reward for taking
the action a and the discounted expected reward for all future
actions. Many solution methods for POMDPs are based on
“value iteration” on the Bellman equation, which is to say one
computes

V n+1(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|b, a)V n(bo,a)

]

(10)
until V n converges. However, due to the large size of the
belief simplex, it is challenging to obtain an approximation
which is good on a sufficiently large subspace of the belief
simplex, and convergence may be slow. This is the “curse of
dimensionality” and the fundamental issue making POMDPs
hard.

B. Initial belief

While Bayesian inference suffices to specify the evolution
of the agent’s belief, we still need to set the initial belief
b0 that the agent holds when it starts searching (the prior).
A naive choice, common for many POMDPs, would be to
start from a uniform belief on the grid. However, we argue
this is unphysical, as insects in nature generally do not start
searching unless they have detected a cue. Moreover, when we
have tested a uniform prior, we find that the resulting policies
have the agent tending to explore the full extent of the box in
order to locate the boundaries.

A second idea, then, is to bias the uniform prior by enforc-
ing artificially a detection at time t = 0. This approach was
taken in, for example, Ref. [25]. However, for our choice of
parameters, detections are relatively rare except very close to
the source. Thus, under this prescription, the agent will have
the strong initial impression that it is within a few grid points
away from the source, which is far from the ground truth.

Instead, we have elected to use a third approach, wherein
the agent starts with a uniform prior and then waits in place for
up to Twait time steps, continually updating its belief, until it
makes a detection. Only after this detection does the agent be-
gin searching. Thus the agent’s initial belief is itself a random
variable which carries some amount of useful information
about where the source might be. This is intended to model
the reasonable hypothesis that the insect knows the source is

FIG. 3. Plot showing a typical initial belief in an environment
with emission rate S̄ = 2.5. The agent location is indicated with a
red square and the source location is indicated with a red X, and
positions are measured in units of the grid spacing.

unlikely to be very close when it receives its first detection
signal. A typical initial belief is shown in Fig. 3.

To be clear, our choice of the initial belief is nothing more
than a physical model, and it is not obvious that it should be
preferred to the second approach (with a detection at time
t = 0). We will briefly explore this alternate initialization in
Appendix C.

C. POMDP solution

POMDPs are in principle exactly solvable by dynamic
programming [37], but due to the curse of dimensionality such
an approach is usually so computationally expensive as to
be intractable. Instead, approximation methods are generally
preferred.

In this work, we use the Perseus algorithm [26] to find
near-optimal policies which approximately solve the Bellman
equation. Perseus is a point-based value iteration algorithm
[38,39] for POMDPs, which means it involves collecting an
initial large sample of beliefs B and then performing value
iteration on those beliefs in order to obtain an approximation
to the optimal policy. At each stage n in the value iteration [cf.
Eq. (10)], V n is approximated by a piecewise-linear and con-
vex function, represented by a collection An of hyperplanes in
the belief simplex called α-vectors. We have

V n(b) = max
α∈An

α · b, (11)

where the dot product is over the states s ∈ S. Each α-
vector has an action associated with it, such that the
(near-)optimal action for each belief is that associated with the
maximizing α.

The assembly of the belief set B can in principle be per-
formed using any policy. We use infotaxis (see Sec. III D) in
this work.

We also accelerate the convergence of the algorithm us-
ing a reward-shaping function [27]. One can show (see
Appendix A 3 for details) that adding a shaping function

F (s, a) = φ(s) − γ
∑

s′
p(s′|s, a)φ(s′) (12)

to the reward will not change the optimal policy, for any state-
dependent function φ(s). We will take

φ(s) = −g[D(s)], (13)
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where g is some monotonically increasing function [with
g(0) = 0] and D is the distance to the source, according to
the metric induced by the state and action spaces—here the
Manhattan distance. The point of this choice is to incentivize
the agent to move closer to the source. We tested several
such g in this work and found that, on problems of this size,
a good choice of the shaping improves both the speed of
convergence of Perseus and the performance of the resulting
policies (see the Appendix B for more details). In particu-
lar, we are unable to achieve comparable performance in the
absence of reward-shaping function. In contrast, on smaller
problems with O(100) points, we found that reward shaping
was unnecessary and even counterproductive.

D. Heuristic strategies

As an alternative to trying to find a (near-)Bellman-optimal
policy, one can instead propose a heuristic policy for a
POMDP. Whereas solving the POMDP directly is a “black-
box” approach that tries to directly maximize the reward over
the entire horizon via (approximate) dynamic programming,
a heuristic policy prescribes a simple, interpretable rule to
choose an action, often by considering only a single time
step in the future. Somewhat remarkably, there are a number
of heuristics which can be effective for the search problem,
despite its difficulty; here we present a few (see [40] for a
review).

1. QMDP

Every POMDP has an underlying (fully observable) MDP,
for which the optimal policy π∗ is generally much easier to
specify. One can then calculate the value of taking action a in
state s, the so-called Q-function

Q(s, a) = E

[
r(s, a) +

∞∑
t=1

γ t r(st , π
∗(st ))

]
. (14)

For our search problem, the MDP-optimal policy is just to
take the path of minimal distance to the source, so we have
QMDP(s, a) = γ D(s′ ), where s′ is the state resulting from taking
action a in state s and D(s) is again the gridwise distance to
the source (Manhattan distance). This observation motivates
the QMDP policy, which selects the action which maximizes
the expectation of QMDP (conditioned on the belief):

πQMDP(b) = arg max
a∈A

∑
s∈S

QMDP(s, a)b(s). (15)

Because it tries to directly minimize the expected time to
reach the source, the QMDP policy tends to be exploitative.
We will see that it is effective for this problem only when the
emission rate is relatively high.

2. Infotaxis and space-aware infotaxis

The fundamental challenge of a POMDP is to make good
action choices when faced with uncertainty. If the belief were
perfectly informative (a δ distribution), then we would have
a fully observable MDP, and the problem would be relatively
trivial. This motivates an approach that tries to directly max-
imize the information content in the belief, or equivalently to

minimize the Shannon entropy. Let

H[b] = −
∑
s∈S

b(s) log b(s),

with the logarithm expressed in some units of choice. Then
we can craft a policy which chooses the action maximizing
the immediate expected information gain,

πinfo(b) = arg min
a∈A

∑
o∈O

Pr(o|b, a)H[bo,a]. (16)

In the context of olfactory search, this policy is called infotaxis
in analogy to chemotaxis [24].

Since one of the possible observations is to find the source,
which would collapse the belief into a δ distribution, the
infotactic policy naturally balances the immediate reward of
finding the source with longer-term rewards associated with
exploration. However, the probability of finding the source
immediately is usually small, so the explorative component
tends to dominate; indeed, we will see that infotaxis has an
often excessive tendency towards safety. Thus, a number of
variations and improvements have been proposed. One recent
and promising variant, dubbed “space-aware infotaxis” (SAI),
essentially combines infotaxis with the QMDP policy [25].
Explicitly, the policy is

πSAI(b) = arg min
a∈A

∑
o∈O

Pr(o|b, a) log2

×
(∑

s∈S

D(s)bo,a(s) + 2H2[bo,a]−1 + 1

2

)
. (17)

We have chosen the base-2 logarithm and measured the en-
tropy in bits to be consistent with the original authors, but our
implementation differs very slightly in that we have reversed
the sign in front of 1/2, which ensures that the contribution to
the outer sum from finding the source is nonsingular.

The second term of the summand is a crude estimation of
the expected time to learn the location of the source (i.e.,
by checking 2H2 cells), so the SAI policy is an attempt to
directly minimize the total time to find the source. More
generally, it balances infotaxis’s tendency towards exploration
with QMDP’s tendency towards exploitation, and we will see
it performs quite well.

3. Thompson sampling

A classical heuristic for decision problems with partial
information is, at each time step, to estimate the true state
by sampling from the current belief (posterior) and then to
choose the action with maximal expected reward according to
that sample. This strategy is usually referred to as Thompson
sampling [41–43].

We adapt Thompson sampling to the search problem in the
following way. At each time step, we sample a possible source
location from the current belief, and then take the action which
brings the agent closest to that location (if there is more than
one such action, we choose from these at random).

We also find it useful to generalize this policy by intro-
ducing a persistence time τ � 1: rather than sample a new
location at every time step, the agent follows the sampled
location for τ time steps (or until it reaches the sampled
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FIG. 4. Comparison of performance of Perseus (using the same policies as those chosen in Sec. IV A) vis-à-vis heuristic policies on the
three environments tested. Problems P1–P4 represent starting from the single points (25, −4), (35, −4), (45,−4), and (55,−4) in order of
increasing distance from the source, and problem E is the ensemble of starting points described in Sec. A 6. The performance on each problem
is measured by the mean excess arrival time 〈T̃ 〉 ≡ 〈T 〉 − 〈TMDP〉, normalized by the minimum time 〈TMDP〉. Error bars are suppressed for
visual clarity; uncertainties on the means were at most 3.3%, as measured by the standard error. In the lower right corner, we show the test
problems: the ensemble E (for S̄ = 2.5) as green circles, and P1–P4 as blue squares.

location), and only then does it resample. The benefit of
pursuing a sample for an extended time rather than resam-
pling at every time step is linked to the need for “deep
exploration” when navigating problems with sparse reward
structure [43,44].

That Thompson sampling depends on moving towards ran-
dom locations suggests it should have a tendency towards
exploration. Indeed, we will see it is generally a safe policy
that, for sufficiently large τ, performs especially well in envi-
ronments with low emission rate and thus low information.

IV. RESULTS

Once the Perseus algorithm has reached convergence, we
freeze the policy and test it against the heuristic baselines
described in Sec. III D. We present results for three dif-
ferent model environments, which have emission rates S̄ =
0.25, 2.5, and 25 but are otherwise identical. We suggest that
the most direct ways to change the character of the problem
are to either alter the emission rate or move towards the
windless, isotropic limit V λ/D → 0, which we will not study
here as it was examined thoroughly in Ref. [25] and will be
further studied in Ref. [45]. The windy case is also arguably
more relevant to insect behavior. The agent’s model for the
environment, by which it performs Bayesian updates, is exact,
and detection events are drawn at random from the distribution
defined by Eqs. (6) and (7). Results are shown for several
choices of the shaping function g[D(s)].

The discount factor is a very important hyperparameter,
and we find values in the range 0.95 � γ � 0.99 work best.
In the environment with S̄ = 0.25, we set γ = 0.96, and in the

other two cases we set γ = 0.98. Further optimization may be
possible but is not the goal of this study. For additional details
on γ dependence, as well as other convergence properties of
Perseus, refer to the Appendix.

The main results are summarized in Fig. 4, where the
performance of all policies are tested on both individual start-
ing points and an ensemble of starting points. The individual
points are Problems P1–P4 and represent starting from the sin-
gle points (25,−4), (35,−4), (45,−4), and (45,−4), where
the coordinates are relative to the source and given in units
of the grid spacing. Performance is measured by the excess
arrival time 〈T̃ 〉 ≡ 〈T 〉 − 〈TMDP〉, which we then normalize
by the minimum time 〈TMDP〉. For the single-point problems,
we exclude “failed” trials with T � 10 000 from the mean
(in no case, except for QMDP when S̄ = 0.25 or S̄ = 25,
was the failure rate significant), whereas, for the ensembles,
we include the case T � 1000 (which all are registered as
1000 due to the time limit imposed). Anecdotally, failures
are usually due to the agent somehow becoming trapped and
seem to be correlated with extremely rare events, i.e., when
the agent makes a detection in a region where the likelihood
is very low.

We see that Perseus clearly outperforms all tested heuris-
tics, and that the best-performing heuristic depends strongly
on the emission rate, making it difficult to select a priori an
optimal baseline. We can also conclude that space-aware in-
fotaxis is a strictly better policy than its “vanilla” counterpart,
that QMDP is inferior except when the emission rate is large,
and that Thompson sampling performs best with a persistence
time τ > 1 and when the emission rate is small. We briefly
remark that in certain cases, especially when S̄ = 25, the
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FIG. 5. Comparison of excess arrival time pdfs, in each envi-
ronment, from the point (45, −4) for a selected Perseus policy and
several heuristics. The insets show the same pdfs on a log-linear scale
to emphasize the tails.

normalized mean arrival time decreases with starting distance
from the source. This is not a contradiction and simply means
that the excess arrival time is increasing sublinearly with dis-
tance.

A. Excess arrival time pdfs from a single starting point

Perseus was run on each environment using several choices
of the reward-shaping function. We then chose, for each emis-
sion rate, one Perseus policy and performed 20 000 Monte
Carlo trials from a single starting point, P3, (45,−4). We did
the same for the heuristic policies. Here the agent was allowed
up to 10 000 time steps to reach the source, to better resolve
the tails of the distributions.

We selected for testing Perseus policies that (1) outper-
formed heuristics on the ensemble averaging, (2) outper-
formed heuristics on the four individual points, and (3) were
evolved for as many iterations as possible.

The resulting pdfs are shown in Fig. 5. Note that their
“wiggly” appearance is due to finite sample size effects. These
pdfs help illustrate the strengths and weaknesses of the heuris-
tic policies. We see that infotaxis clearly tends to be too

safe, with a tail that decays quickly for large arrival time but
with a relatively small probability of rapidly arriving to the
source. Infotaxis performs best at intermediate emission rate
but is clearly outperformed in all cases by SAI. SAI, too, is
especially good at intermediate emission rate and is closely
competitive with Perseus. In fact, for intermediate emission
rate, SAI’s arrival time pdf peaks at the minimum arrival time;
the Perseus policy achieves a lower mean arrival time only due
to having substantially less probability of a long arrival time
(T̃ � 60). QMDP is again seen to be inferior except when the
emission rate is large. The excessive greediness of this policy
can be seen by the very heavy, slowly decaying tails when
S̄ = 0.25 or 2.5. Finally, Thompson sampling shines at low
emission rate, achieving results competitive with Perseus, but
is otherwise relatively mediocre.

B. Sample trajectories and policy similarity for S̄ = 2.5

In Fig. 6 we show some sample trajectories in the
intermediate-emission-rate environment (S̄ = 2.5). In Fig. 7
we compare policies to Perseus in this environment by es-
timating the pdfs for angular differences in chosen actions.
To be precise, we let the agent search using the Perseus
policy, and at each time step we also compute the actions
which would have be chosen by the heuristic policies, given
the same belief. These actions are converted into a polar
angle θ ∈ {0, π/2, π, 3π/2}, and we record the angular dif-
ferences (modulo 2π ) �θ = θi − θPerseus between the Perseus
action and the heuristic actions for each policy i. The start-
ing points were selected randomly in the usual way, and
1000 Monte Carlo trials were performed. Unsurprisingly, of
the four heuristics tested, SAI was most similar to the near-
optimal policy, with more than 50% of the actions being
identical.

The trajectory plots are of course qualitative, and a careful
quantitative analysis of the behaviors which typify different
policies is beyond the scope of the present work. However, it
is worth commenting briefly on some of the observed features.
In general, each policy tends to result in a diverse set of
behaviors, and policies are not always easily distinguishable
by the naked eye. Nevertheless, a few traits are apparent.
The Perseus agents tend to prefer to move upwind initially
before beginning cross-wind motion. If some time passes
without a detection, there is often a tendency to return in the
downwind direction, a behavior which helps prevent the agent
from overshooting the source. Infotaxis agents often move in
broadly arcing trajectories, including outward-moving spirals.
Spiraling behavior under infotaxis is well known, having been
observed in the original paper [24] as well as subsequent work
[25,34,46], and it can be connected to the theory of search
games: one can show that the optimal minimax trajectory
for searching for a single point in a plane is an exponential
spiral [47]. SAI trajectories are often similar to the Perseus
trajectories, sharing the tendency to initially move upwind (a
consequence of the distance term in the objective function).
QMDP tends to be a greedier policy; QMDP agents have a
tendency to either strike downwind or search semiexhaus-
tively on small scales. Thompson sampling agents exhibit
meandering trajectories characteristic of the randomness of
the underlying policy; this randomness is also consistent with

055105-8



OPTIMAL POLICIES FOR BAYESIAN OLFACTORY … PHYSICAL REVIEW E 107, 055105 (2023)

FIG. 6. Sample trajectories from the same starting point using various policies in the S̄ = 2.5 environment. The source is indicated with a
black X, and the starting point with a red square. Detection events are indicated with black circles. We have deliberately chosen a trajectory
with an especially small arrival time (green), a trajectory close to the median (light blue-purple), and a trajectory with an especially long
arrival time (red-orange). The color gradients indicate the passage of time so that there is no ambiguity when the trajectories self-intersect.
The trajectories have been offset in space slightly for visual clarity. We show trajectories for the near-optimal Perseus policies, QMDP (with
γ = 0.98), infotaxis, SAI, and Thompson sampling (with τ = 10).

the relatively small observed probability that a Thompson
agent will chose the same action as a near-optimal Perseus
agent. As a final remark, we found that all policies tested in the
present work sometimes yielded behaviors which resemble
casting.

C. Dependence of problem difficulty on starting point

How does the mean arrival time of a (near-)optimal policy
depend on the starting position? Trivially, the arrival time is

bounded below by the MDP optimum, which measures the
component of the problem difficulty due to the time needed to
reach the source. The mean excess arrival time 〈T̃ 〉 then mea-
sures, in a sense, the component of the difficulty due to partial
observability, or the time required to gather information and
determine where the source is. It is not immediately obvious
how 〈T̃ 〉 should depend on the starting position.

To help answer this question, in Fig. 8 we plot the mean
excess arrival time using Perseus, when S̄ = 2.5, as a function
of the downwind distance at fixed cross-wind distance, and
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FIG. 7. Pdfs for angular differences between Perseus policy and other policies, when S̄ = 2.5. Here the Thompson sampling policy used
τ = 10 and the QMDP policy used γ = 0.98.

vice versa. The averages were taken over 104 Monte Carlo
trials, and arrival times greater than or equal to 5000 were
suppressed from the calculation. Somewhat surprisingly, the
problem difficulty does not appear to depend strongly on
the starting cross-wind distance, as long as the agent starts
within a few cross-wind diffusion lengths from the symmetry
axis. Instead, the excess arrival time mostly depends on the

FIG. 8. Dependence of the mean excess arrival time on the initial
Manhattan distance from the source, using the near-optimal Perseus
policy, for S̄ = 2.5. We compare curves at fixed downwind distances
x − x0 to the curve at fixed y = y0 (i.e., where the agent starts on the
symmetry axis). The inset shows typical entropy values Htyp for the
fixed downwind distance curves.

downwind distance, scaling approximately linearly therewith.
From Fig. 8 it is clear that starting farther downwind from
the source generally makes the problem more difficult that
starting farther off-axis.

This behavior can be qualitatively explained by the fol-
lowing argument. The problem of finding the source can be
solved by locating the symmetry axis (say, by casting) and
then proceeding upwind. Assuming that τ is large, a detection
at (x, y) (measured with respect to the source) means that
y2 < 2λx with high probability, since outside of this parabola,
detections are exponentially suppressed with decay length
scale λ. The farther away from the source the agent starts,
the wider this parabola is, and the wider the agent must cast
in order to make a detection (which of course consumes more
time). On the other hand, the time spent locating the symmetry
axis in a casting-based strategy should not depend on its initial
cross-wind distance from the axis.

We also note a precipitous drop in the excess mean ar-
rival times with cross-wind distance starting around y = 10.
This can be explained by a drop in the entropy of a typi-
cal starting belief when one starts sufficiently far from the
symmetry axis. If the agent starts at ri, the time to the first
hit, call it k, obeys a geometric distribution with parameter
�0 = Pr(o = hit|ri − r0), and we have E[k] = 1/�0. If �(s) is
the probability of detection as a function of states, the belief
will then accrue, through Bayesian updates, k − 1 factors of
1 − �(s) (one for each nondetection) and one factor of �(s).
Thus a typical initial belief is

b(s) = [1 − �(s)]1/�0−1�(s)∑
s[1 − �(s)]1/�0−1�(s)

. (18)

055105-10



OPTIMAL POLICIES FOR BAYESIAN OLFACTORY … PHYSICAL REVIEW E 107, 055105 (2023)

FIG. 9. Arrival time pdfs from (45,−4) for the previously ob-
tained near-optimal policy for S̄ = 2.5 and for heuristics, but now
searching in environments which are less (top) and more (bottom)
turbulent than the agent believes.

The entropies of the typical beliefs corresponding to the start-
ing positions of the constant downwind distance curves of
Fig. 8 are shown in the inset of that figure. The reason for the
entropy drop is restriction of the support of the initial belief to
a progressively smaller area: as k gets larger, the initial belief
is confined to the maximum likelihood curve �(s) = 1/k with
increasingly narrow characteristic width w ∝ 1/

√
k − 1.

D. Robustness of policies to changes in environment

Because POMDP is a model-based approach, we have as-
sumed that the insect has some instinctual knowledge of the
turbulent environment. Up until now, this knowledge has been
an exact model of the detection statistics. In this section, we
relax this strong assumption and experiment with a scenario
where the agent has an imperfect model of the environment. In
particular, the true physical parameters will be different from
those the agent uses to update its belief and those which were
used to construct a near-optimal policy. We present results for
two cases: one, a more turbulent environment where D → 2D
and V → V/2, and two, a less turbulent environment where
D → D/2 and V → 2V , relative to the parameters we have
used previously. The agent will use the old parameters to
update its belief. In both cases, we set S̄ = 2.5.

In Fig. 9 we show excess arrival time pdfs obtained us-
ing the same methods as in Sec. IV A, but now for these
two scenarios. The mean excess arrival times are shown in
Table II, with the previous results where the model is exact
shown for comparison. In Table III we show failure rates for
the problems.

In the more turbulent environment, the Perseus policy per-
forms poorly compared to most other heuristics, in particular

TABLE II. Mean excess arrival times from (45, −4) (with stan-
dard error shown) for S̄ = 2.5 on three problems: the original
problem where the agent’s model for the environment is exact (E),
a scenario where the true detection statistics are reflective of a more
turbulent environment (MT) than the agent believes, and a scenario
where the true detection statistics are reflective of a less turbulent
environment (LT) than the agent believes.

Policy 〈T̃ 〉 (E) 〈T̃ 〉 (MT) 〈T̃ 〉 (LT)

Perseus 39.1 ± 0.3 349.1 ± 6.2 91.2 ± 1.6
QMDP 97.9 ± 1.4 1852.1 ± 11.1 231.4 ± 4.4
Infotaxis 75.5 ± 0.3 174.5 ± 0.9 120.1 ± 5.9
SAI 43.8 ± 0.3 179.4 ± 1.2 79.6 ± 0.6
Thompson (τ = 10) 77.0 ± 0.3 262.1 ± 1.3 105.2 ± 0.5

suffering a high rate of failure and a fat tail, leading to a large
mean arrival time. Infotaxis has the best performance here,
due to its rapidly decaying tail, which is consistent with its
being a “safe” policy. Moreover, whereas the failure rates were
negligibly small previously, Perseus and QMDP now have
substantial probabilities of failing (i.e., taking �104 time steps
to reach the source).

The problem of searching in an environment that is less
turbulent than believed is evidently substantially easier. In
the less turbulent environment, the Perseus policy performs
very adequately, scoring the second best performance behind
SAI. Perseus also has a substantially smaller failure rate on
this problem than in the more turbulent environment. This
underscores an obvious drawback of training a policy to be op-
timal for a given environment: if the environment changes, the
policy may be too overtuned to perform adequately. However,
these results suggest that if the environmental parameters are
unknown, for the sake of robustness it may preferable to train
a policy to be optimal assuming a more turbulent environment.

V. DISCUSSION

We have studied a search problem relevant to the behavior
of a number of flying insects. We have shown that solving
for near-optimal search policies on a problem space with
several thousand points is feasible using an existing POMDP
algorithm, Perseus, when accelerated with a good choice of
reward shaping. This approach yielded policies which out-
performed all tested heuristics in terms of the mean arrival
time, over a wide range of emission rate regimes. We are thus
optimistic that more sophisticated search problems, such as

TABLE III. Same as Table II, but showing failure rates for the
problems.

Failure Failure Failure
Policy rate (E) rate (MT) rate (LT)

Perseus 5 × 10−5 0.0264 0.0017
QMDP 5 × 10−5 0.00935 0.0096
Infotaxis 0 10−4 0
SAI 0 0 0
Thompson (τ = 10) 0 0 0
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ones which take spatiotemporal correlations between detec-
tions into account, could be amenable to a direct POMDP
solution approach, despite necessitating a larger POMDP state
space. Future work will investigate such problems.

We also studied which heuristic strategies perform best
in environments with different characteristic concentration
levels (emission rates). In particular, we found a randomized
search algorithm—Thompson sampling—to be well suited for
very dilute environments, space-aware infotaxis to be excel-
lent at a somewhat higher concentration, and QMDP to be
effective only on the easiest problems with substantial detec-
tion rates. It should be noted, however, that these conclusions
may be sensitive to the choice of prior.

An advantage of certain heuristics, especially Thompson
sampling and variants of infotaxis, over a near-optimal policy
is their being more flexible when the agent’s model of the
environment is imperfect. Finding policies which are effec-
tive in a variety of environments is an interesting avenue of
future research; in that case, model-free approaches may be
preferable to POMDP.

We found that a variety of behaviors emerge from different
policies, but classifying these carefully is highly nontrivial
since behaviors depend on the observation history and reflect
correlations between actions over relatively long timescales.
For instance, we tried measuring the fraction of time each
policy spent moving cross-wind, upwind, or downwind as a
simple metric but did not find it informative. Thus, we defer a
serious quantitative study of behaviors to future efforts.

It should be noted that while we found increases to the
emission rate led to a reduction in typical arrival times, this
trend cannot continue indefinitely. If the emission rate is suf-
ficiently large, then the likelihood of detection will begin to
saturate near unity and a binary detection scheme will cease
to be informative or useful. Instead, in this regime one would
expect gradient-based (chemotactic) strategies to once again
be effective.

Finally, we used a near-optimal policy to study the spatial
dependence of the mean excess arrival time, a proxy for the
intrinsic problem difficulty as a function of starting point.
This dependence is strongly anisotropic: the mean excess
arrival time increases monotonically as the agent starts farther
downwind, but has a strongly nonmonotonic dependence on
cross-wind distance. Moving only a few λ off-axis has virtu-
ally no effect on the problem difficulty and may even make it
slightly easier, which may be related to why cast-and-surge is
an effective search strategy.

The approach proposed in this work can be extended in
several directions. First, and most importantly, it would be
extremely interesting to validate it on realistic data from direct
numerical simulations of emission from a point source in 2D
or 3D turbulent flows, where a Markovian model for obser-
vations will necessarily be incomplete. A study of this kind
is currently ongoing. Second, similar techniques can be used
to attack multisource problems and/or multiagent problems.
It is increasingly urgent to identify clear setup with high
quality and quantity of data for training and validations of
data-driven algorithms, and the one here studied is certainly
a good paradigmatic candidate.

In this work, we kept the discount factor γ as close to
one as possible and aimed to minimize the mean arrival time

T . Strictly speaking, however, we were actually maximizing
γ T ; in general the closer γ is to 1, the more we care about
optimizing the tail of the arrival time pdf, which is to say
avoiding very long arrival times. We have also noticed that
in the presence of a nonzero failure rate, it is not always
obvious which policy is “best”—depending on one’s tolerance
of failure, a lower mean arrival time with higher failure rate
may be preferable to a “safer” policy which almost always
finds the source. These ideas can be generalized by the notion
of risk-sensitive problems [48], where the objective function
is transformed in a way that reflects the agent’s aversion or
attraction to risky behavior. Obtaining optimal policies for the
search problem subject to risk sensitivity is another subject for
future study.

A forthcoming study [45] will compare the performance of
the deep-RL method proposed in [25] to the approach of the
present work on problems of this size.
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APPENDIX A: DETAILED METHODS

1. POMDP implementation

Defining the POMDP in a careful way is important to
keep the problem tractable and to avoid issues with boundary
artifacts. Hence, perhaps at the risk of seeming pedantic, we
will try to be precise as possible in what follows.

Let G be the Nx × Ny grid world. The POMDP state space
may be defined to be the Cartesian product of the possible
agent locations r and the possible source locations r0, G × G,
and we have a belief b on the G × G-simplex which is the joint
distribution of the agent location belief and the source location
belief. This belief simplex is intractably large, (|G|2 − 1)-
dimensional. However, we can exploit to our advantage (1)
the sparsity of the agent location belief, which is a δ distri-
bution since the agent knows where it is, and (2) the fact that
the observation likelihoods depend only on the displacement
s = r − r0 between the agent and source, and not on r or r0

independently.
We map the state (living on G × G) to a smaller state space,

the (2Nx − 1) × (2Ny − 1)-dimensional grid spanning −Lx �
x � Lx and −Ly � y � Ly, with spacing �x and �y, which
we call G′. G′ is the space of all possible displacements, given
that the agent and source are both on G. We thus form a new
belief b′ of displacements living on the G′-simplex. b′ is found
by embedding the belief of source locations (the nonzero slice
of the full belief) using the rule

b′(s) = b(r − s), r − s ∈ G
0, otherwise (A1)
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for all s ∈ G′, where, in a slight abuse of notation, b is the
belief of the source location. This embedding can be inverted
to recover b from a given b′ using the known agent location r.

Let us summarize the procedure. As the agent moves, it
maintains a belief of the location of the source location b. b is
updated after taking an action a and making an observation o
according to Bayes’ rule

b(r0|o, a) = b(r0)Pr(o|r′, r0)∑
r0

b(r0)Pr(o|r′, r0)
, (A2)

where r′ is the position of the searcher after previously being
at r and taking action a. Explicitly,

r′ = r, r + a /∈ G or r = r0

r′ = r + a, otherwise. (A3)

Finally, the belief is embedded into the G′-simplex to form
b′. The computed, near-optimal policies in this work use b′ as
input. For the purposes of computing policies, the boundaries
of G′ (which are generally not encountered by the agent) are
chosen to be doubly periodic for simplicity.

The primary reason for choosing this somewhat compli-
cated representation is that it avoids boundary artifacts while
maintaining a relatively compact dimensionality (many fewer
dimensions than the full belief on G × G). Naive implemen-
tations which depend on propagating the belief of the relative
position of the agent can introduce such artifacts when the
agent moves, causing probability mass to exit the domain and
be lost. In our representation, we propagate the belief of where
the source is; this propagation does not introduce artifacts
because the source is static, and therefore the transition matrix
for the source location is trivial: Pr(r′

0|r0, a) = δr0,r0
′ for any

a ∈ A.

2. Alternate reward structures

A more general way to model the search problem as a
POMDP would give a (discounted) penalty at each time step
until the agent finds the source, and then supply some onetime
reward R � 0 (in the case R = 0 then we are directly minimiz-
ing the arrival time). But as long as γ < 1, this is equivalent
to the reward we used in the present work. If we let the arrival
time be T , the reward is then

E

[
T −1∑
t=0

(−1)γ t + Rγ T

]
= E

[
−1 − γ T

1 − γ
+ Rγ T

]

= 1

1 − γ
[(1 + R)E[γ T ] − 1]. (A4)

Thus maximizing the expected reward for this reward struc-
ture is equivalent to maximizing the expected reward for the
structure with no penalty per unit time.

It is an important technical point that, while our ultimate
goal is to reach the source in a minimal time, we are not
directly minimizing the mean arrival time 〈T 〉, but rather
maximizing a proxy 〈γ T 〉. Note that in the limit γ → 1, the
two objectives are equivalent (provided that the typical T does
not diverge in this limit), as can be shown by simple Taylor
expansion of γ T .

We are thus effectively treating γ as a hyperparameter of
the algorithm, and we will simply select the one that yields the

best empirical performance, as measured by the mean arrival
time, on a given problem setup. In contrast, the more typical
viewpoint would be to consider γ to be a parameter which
reflects the environment and/or the agent and its priorities,
each value of which defines a separate problem with a differ-
ent optimal policy.

The basic reason for our choice to use γ < 1 is that most
available POMDP algorithms, Perseus included, require use
of a discount factor in order to converge. A key underlying fact
is that when γ < 1, the r.h.s. of the Bellman equation acts as a
contraction operator on the value function, which guarantees
the convergence of iterative solution techniques to a unique
fixed point [49].

The undiscounted case γ = 1 results in direct minimiza-
tion of the mean arrival time E[T ] and is thus an interesting
alternative problem. However, there are few algorithms which
can deal with the absence of the discount factor, the DRL
approach of Ref. [25] being a rare example. We have directly
verified [45] that introducing γ does not substantially increase
the mean arrival time, relative to that of the solution to the
undiscounted problem.

3. Reward shaping

In many (fully observable) MDPs, it is often possible to
speed up convergence to an optimal policy by adding a well-
chosen shaping function to the reward. In particular, there
exist potential shaping functions such that the MDP under
the transformed reward has precisely the same optimal policy
as the original MDP [27]. This idea can be generalized to
POMDPs in a straightforward manner.

We start by introducing the function Q(b, a) which ex-
presses the value (expected total reward) of taking action a
when the agent has belief b. In particular, we have

V ∗(b) = max
a∈A

Q(b, a) (A5)

and

π∗(b) = arg maxaQ(b, a). (A6)

Importantly, the optimal policy is unchanged under any
transformation Q → Q + ϕ(b). Intuitively, this means the
component of the value of a state which is intrinsic to the
state, independent of the choice of action, should not affect
the policy. Q satisfies its own Bellman equation

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|b, a) max
a′∈A

Q(bo,a, a′).

(A7)
Letting Q̂(b, a) = Q(b, a) + ϕ(b) and substituting, we have

Q̂(b, a) =
∑

s

b(s)R(s, a) + F (b, a)

+ γ
∑

o

Pr(o|b, a) max
a′

Q̂(bo,a, a′), (A8)

with

F (b, a) = −ϕ(b) + γ
∑

o

Pr(o|b, a)ϕ(bo,a), (A9)

which is a new Bellman equation for Q̂.

055105-13



R. A. HEINONEN et al. PHYSICAL REVIEW E 107, 055105 (2023)

As an important special case, we can restrict ϕ to a
linear functional ϕ(b) = ∑

s b(s)φ(s). (This special case is
especially useful for us because we seek a piecewise linear
approximation for V.) Then the introduction of the potential
is equivalent to modifying the reward R(s, a) → R(s, a) +
F (s, a), where

F (s, a) = φ(s) − γ
∑

s′
p(s′|s, a)φ(s′). (A10)

Thus, adding any function of this form to the reward in a
POMDP will not change the optimal policy. This flexibility
in defining the reward is akin to a kind of gauge invariance.
Note that if V̂ ∗ is the value function under the shaped reward,
we also have the simple identity

V̂ ∗(b) = V ∗(b) + ϕ(b). (A11)

How do we choose a good shaping function? One can
argue that the “best” potential, which would accelerate value
iteration as much as possible, would in fact be, up to an
additive constant, the (negative) optimal value function, which
is suggested by Eq. (A11). To see this, consider value iteration
in the presence of a generic shaping ϕ(b):

V n+1(b) = max
a∈A

[ ∑
s∈S

b(s)R(s, a) − ϕ(b)

+ γ
∑
o∈O

Pr(o|b, a)ϕ(bo,a)

+ γ
∑

o

Pr(o|b, a)V n(bo,a)

]
. (A12)

Suppose V 0(b) = 0 for some b (if γ < 1, we can always
define the reward in such a way that 0 is a safe choice for the
initialization of the value function), and suppose we choose
ϕ(b) = −V ∗(b). Then value iteration would yield

V 1(b) = max
a∈A

[ ∑
s∈S

b(s)r(s, a) − V ∗(b)

+ γ
∑
o∈O

Pr(o|b, a)V ∗(bo,a)

]
= 0, (A13)

where we have used the Bellman equation. The value at b has
already converged, and in particular the maximizing action is
none other than π∗(b). Thus, a single-value iteration would
instantly give the correct action in a neighborhood of b, which
would reduce the problem to simply sampling enough b.

Of course, we do not have access to the optimal value
function (this would defeat the purpose of value iteration!),
so we must make an inspired guess for the reward-shaping
function, which is structurally similar to the true value. For
the search problem, a natural choice is to shape the reward to
encourage moving toward the source by setting, as we have in
this work,

ϕ(b) = −
∑

s

b(s)g[D(s)], (A14)

where g is monotonically increasing and g(0) = 0, and D is
the Manhattan distance to the source.

The importance of ensuring the shaping function is poten-
tial cannot be overstated. A nonpotential choice like rewarding
the agent for making detections, while having intuitive merit,
would explicitly destroy the optimality of the solution with
respect to the arrival time.

4. Perseus algorithm

Value iteration in Perseus is accomplished through the
backup operation. With the aid of Eq. (11), we can express
the value iteration as

V n+1(b) = max
a∈A

[
b · Ra + γ

∑
o∈O

max
i

b · gi
a,o

]
, (A15)

where Ra = R(s, a) and

gi
a,o =

∑
s′∈S

Pr(o|s′, a)Pr(s′|s, a)αi(s
′). (A16)

There is a gi
a,o for each α-vector, which can be computed once

and stored. The backup operation is then

backup(b) = arg max
{α′

a}a∈A

b · α′
a, (A17)

where

α′
a = Ra + γ

∑
o∈O

arg max
{gi

o,a}i

b · gi
o,a. (A18)

The backup thus produces a new α-vector α′ so that
V n+1(b) = b · α′, and the optimizing action is found during
the argmax in Eq. (A17).

The backup operator forms the basis of an array of dif-
ferent “point-based” algorithms [39], which differ in how
they sample beliefs from the simplex and in what order they
are backed up. In the original Perseus algorithm, backups
are performed in a random order, but we perform them in
the order of decreasing Bellman error—the so-called “prior-
itized” version of Perseus. The Bellman error of a belief b is
defined as

ε(b) = max
a∈A

[
b · Ra +

∑
o∈O

Pr(o|b, a)V n(bo,a)

]
− V n(b).

(A19)
Prioritizing Perseus in this way was shown to accelerate con-
vergence in [50].

Our implementation of the Perseus algorithm proceeds as
follows. First, we assemble a large collection of beliefs B,
by exploring the environment according to some policy (after
initializing the agent in the same way that we do during eval-
uation), updating the belief using Bayes’ theorem, and adding
the belief to B. When the agent finds the source, we restart
and repeat, until we have enough beliefs. The original paper
[26] suggested using a uniform random policy, but we find it
is much better to employ a heuristic, as suggested in [39]. In-
tuitively, the most useful beliefs to sample are those which are
likely to be encountered when taking optimal actions [51], and
it is generally understood that the subspace of these “reachable
beliefs” is much smaller than the whole simplex. Thus using
a good heuristic which is reasonably close to optimal is a far
more efficient way to sample beliefs; we use infotaxis. We
found that |B| = O(104) beliefs were required to obtain good
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results, with clear loss in performance when fewer beliefs
were sampled.

Next, we initialize the policy to a single α-vector: A0 =
{0}, the zero-vector. This was chosen to guarantee V 0(b) �
V ∗(b) ∀b [note that reward shaping does not affect this
choice, as long the potential ϕ(b) is non-negative, in view of
Eq. (A11)]. We assign one of the four actions to this vector; it
does not matter which.

Finally, we perform some number of iterations until a con-
vergence or performance criterion is met. An iteration consists
of the following steps:

(1) Compute, for each b ∈ B, ε(b).
(2) Initialize B′ to B and An+1 to ∅.
(3) Find α = backup(b) for the b ∈ B′ with largest ε.
(4) If α · b � V n(b), then add α to An+1. Otherwise, add

the α ∈ An which previously gave the maximum value for b.
(5) Set B′ ← {b ∈ B′ : α · b < V n(b)}, where α is the vec-

tor added to An+1 in step 4.
(6) If B′ �= ∅, go to step 3.
Perseus is not the only algorithm for POMDP planning.

We note in particular the existence of “heuristic search value
iteration” (HSVI) [52,53] and SARSOP [51], both of which
involve building a tree of beliefs reachable from some (single)
initial belief, and both of which come with more rigorous
guarantees of convergence than Perseus. While HSVI and
SARSOP have been shown to outperform Perseus on certain
problems, for the present problem we view the restriction to a
single initial belief as a limitation. We will test SARSOP on
the olfactory search problem in Ref. [45].

Finally, we note that it may be possible to improve the
performance of Perseus by projecting the beliefs onto a space
of smaller dimension, using a form of non-negative matrix
factorization (see, for example, [54]).

5. Other heuristic strategies

In addition to those detailed in Sec. III D, there are a litany
of other heuristic strategies which we could have considered.
Among these, we tested the most likely state policy which
strikes towards the location with maximum belief,

πMLS(b) = π∗
MDP[arg max

s∈S
b(s)], (A20)

and action voting, which selects the action most likely to be
optimal according to the underlying MDP,

πAV(b) = arg max
a∈A

∑
s∈S

b(s)δ(π∗
MDP(s), a), (A21)

where δ(·, ·) is a Kronecker delta.
We found these policies to be too myopic or greedy and

generally inferior to the others when applied to the search
problem, so we did not present results for them in this work.

6. Testing policies

In determining whether or not a policy is good, we must
first specify the problem space we are interested in solving:
namely, where the agent starts its search. We limit ourselves to
problems that are neither unreasonably hard nor unreasonably
easy in the following way: the agent always begins its search
somewhere between two isocurves of detection likelihood

� = Pr(o|s). Specifically, we (somewhat arbitrarily) select the
range 0.006S̄ < � < 0.02S̄. where, as a reminder, S̄ is the
nondimensionalized emission rate of the source (see Fig. 2).
The scaling with S̄ ensures that the curves are approximately
invariant when the emission rate is changed. For consistency,
this condition is imposed on the agent’s starting location both
when we are testing the policy and when we are collecting
beliefs in the initial phase of Perseus. During training, at each
iteration of Perseus 10, we evaluate the resulting policy in
a couple of different ways. First, we randomly select (with-
out replacement) an ensemble of 100 points lying within the
acceptable isocurves, and trial the policy starting from each
point ten times. (For each S, the set of starting points is
held constant across policies and iterations for consistency.)
This leads to 1000 Monte Carlo trials whose arrival times
and rewards are then averaged, to get a sense of the overall
performance of the policy.

Because the ensemble averaging is poorly controlled, we
also evaluate the policies on a small set of four fixed starting
points at different distances from the source, using 1000 trials
each. For a more detailed view of the statistics, for a few select
policies we extend the number of trials to 10 000, which we
use to construct the arrival time pdfs.

It should be pointed out that this prescription for evaluating
performance is ad hoc and in particular diverges somewhat
from the rigorous definition of optimality for a POMDP. For-
mally, the optimal policy is optimal when conditioned on the
prior, so the source should be drawn from the initial belief for
a rigorous evaluation of optimality. We take this approach in
Appendix C, which loosely follows the initialization used in
[25]. The careful reader should understand the approach taken
in the main body of the present work as the specification of
an interesting problem based on phenomenology, and the use
of a POMDP solver as a heuristic to find an empirically best
solution to this problem.

APPENDIX B: CONVERGENCE OF PERSEUS

In this section we show how a few key features of the
Perseus policies evolve from iteration to iteration, while
comparing different choices of the shaping function. These
features include the performance on test problems and the
Bellman error. We also compare performance for different
choices of γ .

1. Mean arrival times for an ensemble of starting points

In Fig. 10 we show the evolution, over Perseus iterations,
of the mean arrival time for an ensemble of 100 randomly
selected starting points. The agent searches from each starting
point ten times, yielding ten estimates for the mean arrival
time; the standard error over these ten estimates is used as
our error bar. Note that, to limit computation time, the agent’s
search was limited to 1000 time steps.

For each emission rate, we show as a baseline the corre-
sponding results for the heuristic which performed best at that
emission rate. These are, respectively, Thompson sampling
with τ = 100, space-aware infotaxis, and QMDP. We also
tested Thompson sampling with τ = 1 and τ = 10; increasing
τ beyond 100 had essentially no effect since the agent will
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FIG. 10. Mean arrival times from ensemble of starting points in
the each environment, for several choices of reward shaping. Error
bars represent the standard error of the mean as estimated by the
variance across the ten trials. The policy chosen for testing is circled.

almost never have to travel farther than 100 units to reach a
sampled point.

An immediate takeaway is that, with a good choice of
reward shaping, significantly fewer iterations are required to
achieve good performance on the search problem, relative to
the unshaped baseline. In fact, on the relatively large grid
studied here, we have found that no number of iterations seem
to suffice for unshaped Perseus to “catch up” with Perseus
using a good shaping.

Another observation is that introducing a reward-shaping
function can apparently reduce the stability of the policy from
iteration to iteration, as evidenced by significant fluctuations
in policy performance which were occasionally observed (the
logarithmic shaping in the S̄ = 25 environment provides an
extreme example of this). This behavior is more evident when
γ is larger and is usually intensified when the shaping is in-
creased in magnitude. This, along with the concomitant need
for additional hyperparameter tuning, appears to be the main
drawback of using reward shaping.

FIG. 11. RMS Bellman training and validation errors, i.e., errors
on B and those encountered during testing, respectively, for S̄ = 2.5.

2. Bellman error

To claim that the policies obtained using Perseus are
near-optimal, one should confirm that the Bellman error
[Eq. (A19)] is decreasing from iteration to iteration. In Fig. 11
we show, for S̄ = 2.5, the rms Bellman error on the belief set
B and on beliefs encountered during testing. Borrowing from
the lexicon of machine learning, we call these “training” and
“validation” errors.

3. Dependence on γ

On the left side of Fig. 12 we show how the performance of
Perseus, in the absence of a reward-shaping function, depends
on γ , for S̄ = 2.5. We plot the mean arrival times for the
ensemble of starting points as a function of iteration for a few
γ , corresponding to a range of horizons 12.5–200. Note that
performance is comparable for most of the γ ’s, but γ = 0.99
is too large and leads to poor stability or convergence.

In the right side of the same figure, we show the same, but
with a reward shaping g = 0.1D turned on. While an excellent
choice when γ = 0.98, this shaping function leads to poor
performance on all other γ ’s. Thus it is clear that the best
choice of shaping depends strongly on the choice of γ ; one
should select a γ first.

FIG. 12. Evolution of mean arrival time from ensemble of start-
ing points using Perseus, for S̄ = 2.5, and for several choices of γ .
On the left we do not use a reward-shaping function, and on the right
we use g = 0.1D.
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TABLE IV. Performance statistics of various polices with the alternate initialization described in this Appendix, with S̄ = 0.25. Note that
Tmax was set to 2500. The MDP optimum (i.e., the mean Manhattan distance) is shown for comparison. The best-performing policies have been
highlighted in bold font.

Policy E[T |T < Tmax] T90 Pr(T > 2〈T 〉perseus ) Pr(T � Tmax)

MDP optimum 21.6 ± 0.1 — — —

Perseus 203.2 ± 1.8 539 0.162 0.0011

Infotaxis 197.6 ± 1.8 567 0.165 <5 × 10−5

SAI 136.8 ± 1.2 469 0.127 0.043

QMDP 22.2 ± 5.8 2500 0.858 0.857

Thompson, τ = 1 483.8 ± 3.9 1837 0.455 0.065

Thompson, τ = 10 347.0 ± 2.8 884 0.299 0.0086

Thompson, τ = 100 351.3 ± 2.5 795 0.311 0.0019

APPENDIX C: ALTERNATE INITIALIZATION

Previously in this work, we have explored an initialization
of the belief where the agent waits in place until it receives
a detection. Another initialization, as in Ref. [25], is to force
a detection at time zero. Under such a prescription, the ini-
tial belief will always be the same, and it will simply be
proportional to the likelihood of detection. In this Appendix,
we briefly present performance results for the various policies
using this approach.

In Tables IV–VI we show several properties of the arrival
time distributions. To wit, we show the mean and several
properties of the tails: the time T90 corresponding to the 90th
percentile of the pdf, the probability that the arrival time
exceeds twice the mean obtained under Perseus, and the fail-
ure rate Pr(T � Tmax) for Tmax = 2500. To be clear, we have
followed Ref. [25] and, for each Monte Carlo trial, drawn the
location of the source randomly from the initial belief, which
is a more precise test of optimality.

The results are qualitatively very different from those
obtained with the initialization we used in the main text.
Across all three environments, one of the versions of infotaxis
yielded the best results among heuristics, and Perseus per-
formed equally well or slightly worse. In the dilute S̄ = 0.25
environment, infotaxis and Perseus are nearly indistinguish-
able in terms of their performance—infotaxis has a slightly
lower mean arrival time but a slightly fatter tail. We find
that SAI, while having a low mean arrival time when the
agent does not fail, nevertheless suffers from a relatively high

failure rate (more than 4%) in this environment and thus
is (arguably) not very competitive. QMDP fails more than
85% of the time. Thompson sampling, the best heuristic in
the corresponding environment in the main text, is less per-
formant with this initialization. It is not terribly surprising
that the performance Thompson sampling might depend on
the prior, since the strategy depends on sampling from this
prior.

In the S̄ = 2.5 environment, the performance of SAI
and Perseus are now nearly indistinguishable. Infotaxis also
performs well, and the other heuristic policies are not com-
petitive.

Finally, in the S̄ = 25 environment, SAI was slightly better
than Perseus, and infotaxis lagged somewhat further behind.
QMDP, which was the best heuristic for the high emission
problem under the initialization in the main text, still suffers
from a rather high failure rate.

These results illustrate the fact that the performance of var-
ious policies on the search problem depends strongly on the
choice of prior, so it may be interesting to study which prior
comports best with observed insect behavior. It is remarkable
how well infotaxis and SAI perform in this setting, and the
results here strongly suggest that, depending on the emission
rate, one or both of these heuristics are very close to optimal
under this prior.

Other solvers, such as SARSOP, may be better suited for
this initialization than Perseus due to there being only a single
initial belief; this will be checked in [45].

TABLE V. Same as Table IV, but with S̄ = 2.5. The best-performing policies have been highlighted in bold font.

Policy E[T |T < Tmax] T90 Pr(T > 2〈T 〉perseus ) Pr(T � Tmax)

MDP optimum 23.3 ± 0.1 — — —

Perseus 64.4 ± 0.4 143 0.131 3 × 10−4

Infotaxis 66.8 ± 0.5 155 0.163 <5 × 10−5

SAI 62.1 ± 0.4 145 0.139 1.5 × 10−4

QMDP 86.7 ± 0.8 2500 0.444 0.281

Thompson, τ = 1 138.9 ± 1.4 301 0.359 0.0027

Thompson, τ = 10 102.0 ± 0.7 212 0.284 <5 × 10−5

Thompson, τ = 100 124.3 ± 0.7 241 0.396 <5 × 10−5
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TABLE VI. Same as Table IV, but with S̄ = 25. The best-performing policies have been highlighted in bold font.

Policy E[T |T < Tmax] T90 Pr(T > 2〈T 〉perseus ) Pr(T � Tmax)

MDP optimum 29.8 ± 0.1 — — —
Perseus 43.9 ± 0.2 76 0.070 4.5 × 10−4

Infotaxis 48.5 ± 0.2 92 0.125 0.0018
SAI 41.6 ± 0.2 76 0.044 <5 × 10−5

QMDP 51.2 ± 0.3 100 0.138 0.031
Thompson, τ = 1 70.9 ± 0.5 122 0.281 5 × 10−5

Thompson, τ = 10 58.07 ± 0.2 99 0.171 <5 × 10−5

Thompson, τ = 100 82.7 ± 0.3 136 0.398 <5 × 10−5
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