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Taylor’s swimming sheet in a smectic-A liquid crystal
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We calculate the swimming speed of a Taylor sheet in a smectic-A liquid crystal. Assuming that the am-
plitude of the wave propagating on the sheet is much smaller than the wave number, we solve the governing
equations using the method of series expansion up to the second order in amplitude. We find that the sheet can
swim much faster in smectic-A liquid crystals than in Newtonian fluids. The elasticity associated with the layer
compressibility is responsible for the enhanced speed. We also calculate the power dissipated in the fluid and the
flux of the fluid. The fluid is pumped opposite to the direction of the wave propagation.
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I. INTRODUCTION

The motility of microorganisms strongly depends on the
dynamical properties of the surrounding fluid [1]. In this con-
text, recent studies have focused on the following properties of
fluids: shear-dependent viscosity, viscoelasticity, anisotropy,
activity, etc. [2–9]. The purpose of this paper is to advance
the understanding of microswimming in anisotropic media.
Powers and co-workers have conducted notable research in
this direction: The swimming dynamics of microorganisms
in hexatic and nematic liquid crystals is now well under-
stood [5–7,9].

In this work we ask how the motility of microorganisms
is affected when the ambient fluid breaks the rotational and
the translational symmetries together. The smectic liquid crys-
tal is an example of a system with such a scenario [10],
in which the elongated molecules not only are aligned in
one direction, but are also arranged in layers, thus breaking
the translational symmetry as well. Within a layer, smectics
show fluidlike properties, whereas, normal to the layers, the
elasticity emerges due to the broken translational symmetry.
Moreover, they are known for showing striking dynamical
properties such as diverging viscosity coefficients at low
frequencies [11,12]. We study here the swimming microor-
ganisms in smectic-A liquid crystals which have the molecules
aligned along the direction normal to the layers [10].

To some extent, the nematic order has been seen in bio-
logical fluids [13–15], but no example of the microorganisms
inhabiting smectic media is known so far. However, the mi-
croswimming in anisotropic media is not studied only in
this context; another motivation stems from the use of liquid
crystals as a medium for biomedical and biological sensing
applications [16–18]. Furthermore, microswimmers in liquid
crystals also have applications in cargo transport and microflu-
idics [19]. In addition, the suspension of microorganisms in
a liquid crystal, known as a living liquid crystal, has seen
remarkable progress recently, because it enables controlled
experimental studies of active systems [20–22]. In such sys-
tems, mobility is crucial as it describes the ability of the
microorganism to convert its biological energy into work that
drives the system away from equilibrium. The motility of

bacteria has been studied in nematic liquid crystals [23–26],
but no experiments have yet been performed with microor-
ganisms in smectic liquid crystals. On the theoretical side, the
dynamics of a single microswimmer in a smectic liquid crystal
has been studied using a stochastic model [27].

To estimate the swimming speed of microorganisms, we
use a simple model introduced by Taylor, namely, a two-
dimensional sheet waving with a propagating wave of the
displacement normal to the sheet [28]. As usual, we work
with the assumption that the wave amplitude is small enough
such that one can take advantage of the method of series
expansion. The main result of this paper is that the swimming
speed of the Taylor sheet is remarkably high in smectic-A
liquid crystals when it is aligned parallel to the smectic layers.
It is found to be proportional to the layer compressibility
elastic constant. We also calculate the power dissipated and
the flux of the fluid pumped by the sheet; the fluid is pumped
opposite to the direction of the wave propagation. The sheet
cannot swim through the smectic-A liquid crystal if it is tilted
with respect to the smectic layers.

The rest of the paper is arranged as follows. In Sec. II
we discuss the setup of the problem. In Sec. III the series
expansion method implemented to solve the problem is de-
scribed. In Sec. IV the results are presented. We conclude with
a discussion and a summary in Sec. V.

II. SETUP

This section is organized in the following manner. In
Sec. II A we review the theory of smectic-A liquid crystals. We
then talk about the Taylor sheet in Sec. II B and the boundary
conditions in Sec. II C. In Sec. II D the experimental values of
various parameters are stated.

A. Theory of smectic-A liquid crystals

As discussed earlier, due to the layered arrangement of
the molecules (see Fig. 1), smectic-A liquid crystals break
translational symmetry, which gives rise to another hydrody-
namic or slow variable, namely, the displacement field u(r):
A material point r of the deformed smectic-A liquid crystal
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FIG. 1. (a) Schematic diagram of a Taylor sheet in a smectic-
A liquid crystal. The ellipses represent the smectic molecules. The
sheet is subject to a propagating wave of wave number k, amplitude
b, and angular frequency ω.

was at the position r − u(r)n0 before deformation, where n0

is the direction of the alignment of the undeformed smectic-A
liquid crystal. The free-energy density for the smectic-A liquid
crystal reads [10,12,29,30]

f (u) = 1
2 [BE2 + K (∇2u)2], (1)

where

E = ∇‖u − 1
2 (∇u)2, (2)

∇‖ ≡ n0 · ∇, and B and K are the layer compressibility elastic
constant and the Frank constant for splay deformations or the
layer bending stiffness, respectively. Here we have ignored
(∇2

‖ u)2 and ∇2
‖ u∇2

⊥u terms (∇2
⊥ ≡ ∇2 − ∇2

‖ ) for the following
two reasons: (i) They are negligible and undetectable [10,29]
and (ii) if they are included, the force per unit volume on
the fluid due to the elasticity of the smectic-A liquid crystal
cannot be written as the divergence of a stress tensor. The
equations of motion for u and the velocity field v for an
incompressible smectic-A fluid of mass density ρ are given
by [10–12,29,31]

∂u

∂t
+ v · ∇u = n0 · v − ξ

δF

δu
, (3a)

ρ

(
∂v
∂t

+ (v · ∇)v
)

= ∇ · σvT − ∇p − w
δF

δu
, (3b)

∇ · v = 0, (3c)

where superscript T stands for the transpose,

F [u] =
∫

d3x f (u) (4)

is the free-energy functional for the smectic-A liquid crystal,

σv = η(∇v + ∇vT ) (5)

is the viscous stress tensor,

w = ∂E

∂ (∇u)
= n0 − ∇u, (6)

p is the pressure, η is the kinetic viscosity, and ξ is the
permeation coefficient. The vector w(r) gives the direction
normal to the smectic layer at position r [32]. As can be
seen from Eq. (3a), the local velocity of the smectic layer
is different from the local fluid velocity, so the fluid can
pass through the layers, that is, the layers are permeable
to the fluid [33]. The permeation coefficient ξ quantifies

this permeability. The field −δF/δu in Eq. (3a) tries to re-
store the undeformed smectic. Equation (3c) is nothing but
a continuity equation when the density is uniform. In gen-
eral, smectic-A liquid crystals exhibit anisotropic viscous
behavior [31], which has been disregarded here since we
already have many parameters in the problem. Anyway, the
anisotropy in the viscosity does not play a crucial role in
the story presented here (see Sec. IV). The last term in
Eq. (3b) is the force per unit volume on the fluid due to the
elasticity owing to the broken translational symmetry along
n0. As our system is momentum conserving, one should be
able to write this term as the divergence of a stress tensor
as in

−w
δF

δu
= ∇ · σeT

. (7)

Indeed, this is possible for the free-energy density given by
Eq. (1) with the expression of the elastic or reactive stress
tensor σe [12,32],

σ e
i j = δi j f + wih j + ∂ f

∂ (∇2u)
∂ jwi, (8)

where

hi = δF

δ(∂iu)
= ∂ f

∂ (∂iu)
− ∂i

∂ f

∂ (∇2u)
. (9)

Note that σ e
i j is not symmetric. However, the law of con-

servation of the angular momentum demands that it should
be symmetric [31]. One can easily symmetrize it when f is
quadratic in ∇u, which is our case [12]; the symmetric form
of σ e

i j is given by

σ e
i j = δi j

[
f + ∂k

(
wk

∂ f

∂ (∇2u)

)]
+ wih j − w j∂i

∂ f

∂ (∇2u)

= δi j

[
f + ∂k

(
wk

∂ f

∂ (∇2u)

)]
+ wi

∂ f

∂ (∂ ju)

−
(

w j∂i
∂ f

∂ (∇2u)
+ wi∂ j

∂ f

∂ (∇2u)

)
.

The symmetric nature of the above σ e
i j is obvious since

∂ f

∂ (∂ ju)
= BEw j . (10)

The net stress tensor then reads

σ = σv + σe − Ip. (11)

Then the right-hand side of Eq. (3b) is ∇ · σT. The elastic
stress σe is not uniquely defined [10], although that is not a
matter of concern since our final results are independent of
the choice of σe (see Appendix A). As microorganisms swim
at low Reynolds number, we drop the terms on the left-hand
side of Eq. (3b). Then, after rearranging their terms, Eqs. (3a)
and (3b) reduce to

1

ξ

(
∂u

∂t
+ v · ∇u − n0 · v

)
= B∇ · (Ew) − K∇4u, (12a)

w[B∇ · (Ew) − K∇4u] = −η∇2v + ∇p. (12b)
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B. Taylor sheet

We consider a Taylor sheet in the xy plane which is
undulating with a propagating wave of the height function
Z (x, t ) = b sin(kx − ωt ), where b, k, and ω are the amplitude,
wave number, and angular frequency of the wave, respec-
tively. The speed of the wave is c = ω/k. Assuming that the
smectic layers are parallel to the plane of the sheet, i.e., n0 = ẑ
(see Fig. 1), when the sheet is tilted with respect the smectic
layers, it is unable to swim (see Appendix B). We further
restrict ourselves to the regime of ε = bk � 1.

C. Boundary conditions

We obtain the solution of Eqs. (12) in the z � Z (x, t ) re-
gion in a coordinate frame comoving with the sheet; solving
the problem for the other side of the sheet yields the same
results. We enforce the no-slip boundary condition on the
sheet. Therefore, the fluid velocity at z = Z (x, t ) is simply
given by ẑŻ , that is,

v(z = Z ) = ẑŻ = −ẑcε cos(kx − ωt ). (13)

We also consider that the smectic layers adjacent to the sheet
are anchored to it, which gives us the following boundary
condition on u:

u(z = Z ) = Z (x, t ) = ε
1

k
sin(kx − ωt ). (14)

Further, we assume that the surface of the sheet exerts no
anchoring torque on the smectic molecules. The angle of the
director of the deformed smectic with n0 ≡ ẑ is θ � −∂u/∂x.
Then, at a point on the sheet [7,10],

Ks · ∇θ � −Ks · ∇ ∂u

∂x
= 0, (15)

where s is the unit vector normal (pointing outward) to the
sheet.

D. Various length scales and timescales and their experimental
values

The smectic-A fluid has two length scales (K/B)1/2 and
(ηξ )1/2 and a timescale η/B. The undulating sheet provides
another length scale 1/k and timescale 1/ω. Therefore, in
scaled units, only three dimensionless parameters can be var-
ied independently; we choose to work with the parameters
Ks = Kk2/ηω, ξs = ηξk2, and Bs = B/ηω. Note that Ks is
equivalent to the inverse of the Eriksen number [34]. The
parameters Ks and Bs tell about the effects the bending stiff-
ness and compressibility of the layers on the dynamics of
the fluid, respectively, whereas ξs measures the comparative
strengths of the following two forces on the fluid: the viscous
force and the force due to the fluid motion relative to the
smectic layers. For the microorganisms, ω ∼ 1–102 s−1 and
k ∼ 104–105 cm−1 [35], and for smectic-A liquid crystals,
B ∼ 107–109 dyn/cm2, K ∼ 10−7–10−6 dyn, η ∼ 10−1–1 P,
and ξ ∼ 10−14 P−1 cm2 [10,12,36–39]. Then Ks ∼ 10−1–105,
Bs ∼ 105–1010, ξs ∼ 10−7–10−4, Ks/Bs ∼ 10−8–10−3, and
Bsξs ∼ 10−1–103; thus ξs � 1, Bs 	 1, and Ks � Bs.

III. SOLUTION USING SERIES EXPANSION METHOD

As the fluid is considered to be incompressible [see
Eq. (3c)], the velocity field can be written as the curl of a
stream function ŷψ (x, z):

v = ∇ × [ŷψ (x, z)]. (16)

The series expansions for the variables u, ψ , and p in ε have
the form

φ = εφ(1) + ε2φ(2) + · · · . (17)

The ε terms of Eqs. (12) then give

1

ξ

(
∂u(1)

∂t
− ∂ψ (1)

∂x

)
− B

∂2u(1)

∂z2
+ K∇4u(1) = 0, (18a)

−B
∂3u(1)

∂z2∂x
+ K∇4

(
∂u(1)

∂x

)
+ η∇4ψ (1) = 0. (18b)

Equation (18b) is obtained by taking the curl of Eq. (12b). We
solve the above equations with the boundary conditions given
by the leading-order expressions of Eqs. (13)–(15),

∂ψ (1)

∂z

∣∣∣∣
z=0

= 0, (19a)

∂ψ (1)

∂x

∣∣∣∣
z=0

= −c cos(kx − ωt ), (19b)

u(1)
∣∣
z=0 = 1

k
sin(kx − ωt ), (19c)

∂2u(1)

∂z∂x

∣∣∣∣
z=0

= 0. (19d)

That results in

u(1) = Re

[(
4∑

i=1

Ai exp(αiz)

)
exp[i(kx − ωt )]

]
, (20)

where αi are the roots of the characteristic equation with
Re(αi ) < 0,(α

k

)8
+ L1

(α

k

)6
+ L2

(α

k

)4
+ L3

(α

k

)2
+ L4 = 0, (21)

where

L1 = −4 − Bs

Ks
, (22a)

L2 =
(

2Bs

Ks
+ 6 + 1

ξs

)
− i

1

ξsKs
, (22b)

L3 = 2

ξsKs
i −

(
Bs

Ks
+ 4 + 2

ξs

)
− Bs

ξsKs
, (22c)

L4 = 1 + 1

ξs
− i

1

ξsKs
. (22d)

The constants Ai are calculated using the boundary condi-
tions (19). The expression of ψ (1) is readily obtained by
integrating Eq. (18a) with respect to x, with the integration
constant being zero; the value of the integration constant is
redundant here since it does not contribute to the fluid velocity
calculated using the curl of ψ (1)ŷ [see Eq. (16)]. The terms
with Re(αi ) > 0 are discarded as they will lead to the diver-
gence of the velocity field v(1) at z → ∞. Far from the sheet,
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v(1) vanishes, so the first-order speed of the sheet is zero.
The second-order fields u(2), ψ (2), and p(2) have the following
form:

φ(2) = φ
(2)
0 (z) + Re

{
φ

(2)
2 (z) exp[2i(kx − ωt )]

}
. (23)

Therefore, their time-averaged values are independent of x.
Then time averaging the ε2 term of the x component of
Eq. (12b) yields

η
d2

dz2

〈
v(2)

x

〉 =
〈
∂u(1)

∂x

(
B

∂2u(1)

∂z2
− K∇4u(1)

)〉
. (24)

From Eq. (13), the boundary condition on 〈v(2)
x 〉 is

〈
v(2)

x

〉∣∣
z=0 = −1

k

〈
∂v(1)

x

∂z
sin(kx − ωt )

〉∣∣∣∣
z=0

. (25)

Once we have the expressions of u(1) and v(1)
x , it is straight-

forward to solve Eq. (24) with the above condition. As our
calculation is performed in a frame moving with the velocity
of the sheet, in the laboratory frame, the component of the
velocity of the sheet along −x̂ is given by

U � 〈
v(2)

x

〉∣∣
z→∞ε2. (26)

As seen in earlier studies, the Taylor sheet does not simply
swim through liquid crystals; it also pumps the fluid [5,7].
In the laboratory frame, the time-averaged fluid flux in the x

direction is [5]

Q =
∫ ∞

Z (x,t )
dz[〈vx〉 − U ] �

∫ ∞

0
dz

[
ε2

〈
v(2)

x

〉 − U
]
, (27)

where O(ε3) terms have been ignored.
We also measure the power dissipated per unit sheet area

in the fluid using the formula [5]

P = k

2π

∫ ∞

Z (x,t )
dz

∫ π/k

−π/k
dx

[
σ v

i j (∂iv j ) + ξ (∇ · h)2
]
. (28)

The second term here measures the dissipation due the dis-
sipative dynamics of u. The above expression is for the
dissipation on one side (in z � Z region) of the sheet; the total
power dissipated would be twice its value. We calculate the
leading-order term of P which is quadratic in ε.

IV. RESULTS

As discussed in Sec. II B, for a typical microorganism in
smectic-A liquid crystals, ξs � 1, Ks � Bs, and Bs 	 1. In
this case, one root of Eq. (21) is α1 � −k(Bs/Ks )1/2, which
is much larger than k. It indicates the existence of a thin
boundary layer of thickness of approximately (Ks/Bs)1/2/k ≡
(K/B)1/2 near the sheet, where the magnitude of the surface
torque [10] −K ẑ · ∇(∂u/∂x) increases sharply with z from
zero at the sheet [see the boundary condition (15)] and then
slowly decreases beyond the boundary layer, recalling that
the angle of the local smectic director with the z axis is
θ � −∂u/∂x. This boundary layer is observed because the
wavelength 2π/k is much larger than the characteristic length
(K/B)1/2 of the smectic. Another two roots are

α2,3 � −k

(
1 + Ks

2Bsξs
− i

1

2Bsξs

{
1 ± [

4B2
s ξs − (i − Ks )2]1/2})1/2

,

so |α2,3| � k. The last root is α4 = αr + iαi, where

αr � −k

(
Ks + √

1 + K2
s

2Bs

)1/2

, (29)

αi � k

(
1

2Bs
(
Ks + √

1 + K2
s

)
)1/2

. (30)

Clearly, |α4| � k. Thus, α4 is much smaller than the other
three roots, and the leading-order solution of Eqs. (18) corre-
sponds to this root only. The real part αr of α4 gives rise to
the decay of u(1) and ψ (1), whereas the imaginary part αi is
responsible for the oscillatory behavior of these functions in
the z direction. The approximate solution of Eqs. (18) is

u(1) � 1

k
exp(−αrz) sin(kx + αiz − ωt ), (31)

ψ (1) � − c

k
exp(−αrz) sin(kx + αiz − ωt ). (32)

Note that u(1) and ψ (1) decay slowly with the distance from
the sheet. The swimming speed of the sheet calculated as

discussed in the preceding section is given by

U � 1

4

Bs

Ks + √
1 + K2

s

cε2 = 1

4

B

η
(
Ks + √

1 + K2
s

)kε2. (33)

Since Bs 	 Ks and Bs 	 1, U is much larger than the swim-
ming speed of the Taylor sheet UN = cε2/2 in a Newtonian
fluid. Moreover, U is independent of ω for Ks � 1. However,
is the expression (33) of U approximately correct for all
ε � 1? To answer this question, we do a simple analysis to
know the dependence of the fourth-order speed of the sheet U4

on Bs and we find that U4 goes as ε4Bn
s , where n is a number

which is definitely greater than 2 (see Appendix C). Hence our
calculation is reasonable only when Bn−1

s ε2 � 1. Of course,
this is not practical even if we consider that n = 2, because
Bs � 105. Nevertheless, our analysis hints that the smectic
ordering may lead to a large enhancement in the swimming
speed of the sheet.

Using Eq. (28), we get the following formula of the power
dissipated per area of the sheet:

P �
(

Bs

8
(
Ks + √

1 + K2
s

)
)1/2

ηωcε2. (34)
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Again, the power dissipated is also much larger than in the
Newtonian case. The flux of the fluid is given by

Q � −1

2

(
Bs

2
(
Ks + √

1 + K2
s

)
)3/2

c

k
ε2. (35)

As Q < 0, the fluid is pumped opposite to the direction of the
wave propagation.

We now briefly discuss the effect of the viscosity
anisotropy. Adding the anisotropic part σani to the viscous
stress, we get

σv = η(∇v + ∇vT) + σani. (36)

For our quasi-two-dimensional system, σ ani
11 = 2�η1∂1v1,

σ ani
33 = 2�η3∂3v3, and all other elements of σani are zero [36].

The values of the coefficients �η1 and �η3 are of the order of
η [12]. Then our approximate results given by Eqs. (33)–(35)
remain unchanged. This is because the effect of the layer
compressibility on the dynamics of the fluid is much stronger
than that of the viscosity, since the viscosity coefficients are
negligibly small compared to B/ω.

For the sake of completeness, the behavior of U , P , and Q
over a wider range of Bs, Ks, and ξs is shown in Appendix D.
Here is a summary of what we find: Q < 0 for all the pa-
rameters values we investigated, so the fluid is pumped in the
direction opposite to the direction of the wave on the sheet. All
these quantities U , P , and −Q increase with Bs and decrease
with both Ks and ξs, except that −Q rather increases with ξs

for small K (=10−2). In the following two cases, the values
of U , P , and Q tend to their values for the Newtonian case,
ωk−1ε2/2, ηω2k−1ε2, and 0, respectively: (a) in the ξηk2 →
∞ limit, since Eqs. (12) reduce to Stokes equations in this
limit, and (b) when Kk2/B 	 1, in which case the solution of
Eqs. (18) reads

ψ (1) � −ωu(1)/k � − c

k
(1 + kz) exp(−kz) sin(kx − ωt ),

(37)
with ∇4ψ (1) � ∇4u(1) � 0. Then the terms on the right-hand
side of Eq. (24) are negligible and the Newtonian results
prevail.

V. CONCLUSION

The anisotropy of the medium gives rise to significant
variations in the swimming speed of the Taylor sheet [5–7,9].
In fact, for nematic liquid crystals, the speed of the sheet
can be enhanced up to five times compared to Newtonian
fluids at large values of the rotational viscosity [7]. Here the
sheet fails to be propelled when it is tilted with respect to the
smectic layers (see Appendix B). Otherwise, the swimming
speed is dramatically much larger than its Newtonian value
for the typical experimental values of the parameters Bs, ξs,
and Ks. Such a large boost has also been observed in the case
active fluids [8], although the active fluid supplies the energy
to sheet in that case. Indeed, our findings are approximately
correct only if ε2 � B−m

s , where m is a number which is
definitely greater than one; this condition seems to be far
from the reality as Bs 	 1. We have also presented the results
for a wider parameter range, which could be applicable in
the context of artificial microswimmers and smectic-A liquid

crystals consisting of micron-sized particles such as filamen-
tous viruses [40].

A numerical study of this problem would be useful to see
whether the Taylor sheet can really swim that fast even for the
large values of ε. Also, it would be interesting to investigate
the swimming microorganisms in smectic-A liquid crystals;
the bacterial swimming has already been explored in nematic
liquid crystals [20,23–26].

To summarize, to get an estimate of the swimming speed
of microorganisms in smectic-A liquid crystals, we modeled
them as a Taylor sheet. We predict that, in smectic-A liq-
uid crystals, the microorganisms can swim much faster than
in Newtonian fluids. The sheet also pumps the fluid in the
direction opposite to the direction of the propagating wave.
We further calculated the power dissipated, which again it
turned out to be much larger than the power dissipated for
the Newtonian case.
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APPENDIX A: NONUNIQUENESS OF THE STRESS
TENSOR

Recalling Eq. (3b),

ρ

[
∂v
∂t

+ (v · ∇)v
]

= ∇ · σT, (A1)

where

σ = σv + σe − Ip (A2)

is the net stress tensor. From Eq. (7)

−w
δF

δu
= ∇ · σeT

. (A3)

Let us consider two different forms of the elastic stress tensor,
σe

a and σe
b. From the above equation

∇ · σe
a
T = −w

δF

δu
, (A4)

∇ · σe
b

T = −w
δF

δu
. (A5)

Hence

∇ · σe
a
T = ∇ · σe

b
T
. (A6)

In the calculation discussed in this paper, the form of the stress
tensor σ becomes important only when we apply the condition
that the net force Fsheet on the Taylor sheet should be zero. The
expression of Fsheet reads

Fsheet = −
∫

s
σ · dA, (A7)

where the subscript s stands for the surface integration on
the sheet and the surface element dA is pointing outward.
As we choose the exponentially decreasing solution in the z
direction, σ vanishes at z → ∞. Then, from the divergence
theorem,

Fsheet = −
∫

∇ · σTdV. (A8)
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FIG. 2. Dependence of the scaled swimming speed U/(ωε2/k)
of a Taylor sheet on B/ηω for various values of ξηk2: (a) Kk2/ηω =
102, (b) Kk2/ηω = 1, and (c) Kk2/ηω = 10−2.

For the two different forms of σe discussed above, the net
forces on the sheet will be

Fa
sheet = −

∫
∇ · (

σv + σe
a − Ip

)T
dV, (A9)

Fb
sheet = −

∫
∇ · (

σv + σe
b − Ip

)T
dV. (A10)

Hence, from Eq. (A6),

Fa
sheet − Fb

sheet = −
∫

∇ · (
σe

a − σe
b

)T
dV = 0. (A11)

So Fa
sheet = Fb

sheet, i.e., the net force on the sheet is independent
of the form of the stress tensor chosen. Therefore, none of our
results depend on the choice of the stress tensor.

APPENDIX B: SWIMMING SPEED OF A TAYLOR SHEET
TILTED WITH RESPECT TO THE SMECTIC LAYERS

Let θ0 be the angle of n0 with ẑ; then n0 = sin θ0x̂ +
cos θ0ẑ. Considering that θ0 �= 0. The time average of the
variables u, ψ , and p would be independent of x. Therefore,
time averaging the nth-order term of Eq. (12) yields(

B cos2 θ0
d2

dz2
− K

d4

dz4

)
〈u(n)〉 = −1

ξ
sin θ0

〈
v(n)

x

〉 + �(n),

(B1)
where all the nth-order nonlinear terms are buried in �(n).
Here n is a positive even integer; 〈u(n)〉 and 〈v(n)〉 vanish for
the odd values of n. If the nth-order swimming speed of the
sheet in the −x̂ direction is Un = U (n)εn, then v(n)

x will have
the form 〈

v(n)
x

〉 = U (n) + 〈
�v(n)

x

〉
, (B2)

where 〈�v(n)
x 〉 is the remaining part of 〈v(n)

x 〉, which exponen-
tially decays to zero as z → ∞. If U (n) �= 0, from Eq. (B1),
〈u(n)〉 diverges at z → ∞. Hence, U (n) = 0 for all n. There-
fore, if the sheeting is tilted with respect to the smectic layers,
it cannot swim through the smectic-A liquid crystal.

FIG. 3. Scaled power dissipated P/(ηω2ε2/k) in the smectic-
A fluid as the function of B/ηω for different values of ξηk2:
(a) Kk2/ηω = 102, (b) Kk2/ηω = 1, and (c) Kk2/ηω = 10−2.

APPENDIX C: DEPENDENCE OF THE FOURTH-ORDER
SPEED OF THE SHEET ON Bs

Averaging the fourth-order term of Eq. (12b) over time, we
get

η
d2

dz2

〈
v(4)

x

〉 = 1

2
B

〈
∂u(1)

∂x
∇ · [∇u(1)(∇u(1) )2]

〉
+ �(4), (C1)

where �(4) consists of all other nonlinear terms. For ξs � 1,
Ks � Bs, and Bs 	 1, ∇u(1) ∼ (kx̂ + αr ẑ)u(1) and αr � k, so
the first term on the right-hand side of Eq. (C1) would be of

FIG. 4. Scaled flux Q/(ωε2/k2) of the fluid pumped by the Tay-
lor sheet in the x direction as a function of B/ηω for different values
of ξηk2: (a) Kk2/ηω = 102, (b) Kk2/ηω = 1, and (c) Kk2/ηω =
10−2. Note that Q < 0. In contrast to the first two cases, −Q increases
with ξηk2 for Kk2/ηω = 10−2.
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the order of Bk5(u(1) )4. Hence, due to this term [see Eq. (31)],

〈
v(4)

x

〉 ∼ Bk

ηα2
r

∼ Bsc
Bs

Ks + √
1 + K2

s

. (C2)

As �(4) may have the higher powers of Bs, one can say that
the fourth-order swimming speed U4 goes as ε4Bn

s . Here we do
not know the exact value of the number n, but it is certainly
greater than 2.

APPENDIX D: RESULTS FOR A BROADER RANGE
OF PARAMETERS

Figure 2 shows U vs Bs for the different values of Ks

and ξs. Recall that Bs ≡ B/ηω, Ks ≡ Kk2/ηω, and ξs ≡
ξηk2. How power dissipated in the fluid P varies with
Bs is shown in Fig. 3. The dependence of the flux Q
of the fluid pumped by the sheet on Bs is displayed in
Fig. 4.
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