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Delayed Hopf bifurcation and control of a ferrofluid interface via a time-dependent magnetic field
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A ferrofluid droplet confined in a Hele-Shaw cell can be deformed into a stably spinning “gear,” using
crossed magnetic fields. Previously, fully nonlinear simulation revealed that the spinning gear emerges as a
stable traveling wave along the droplet’s interface bifurcates from the trivial (equilibrium) shape. In this work, a
center manifold reduction is applied to show the geometrical equivalence between a two-harmonic-mode coupled
system of ordinary differential equations arising from a weakly nonlinear analysis of the interface shape and a
Hopf bifurcation. The rotating complex amplitude of the fundamental mode saturates to a limit cycle as the peri-
odic traveling wave solution is obtained. An amplitude equation is derived from a multiple-time-scale expansion
as a reduced model of the dynamics. Then, inspired by the well-known delay behavior of time-dependent Hopf
bifurcations, we design a slowly time-varying magnetic field such that the timing and emergence of the interfacial
traveling wave can be controlled. The proposed theory allows us to determine the time-dependent saturated state
resulting from the dynamic bifurcation and delayed onset of instability. The amplitude equation also reveals
hysteresislike behavior upon time reversal of the magnetic field. The state obtained upon time reversal differs
from the state obtained during the initial (forward-time) period, yet it can still be predicted by the proposed

reduced-order theory.
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I. INTRODUCTION

Ferrofluids are stable colloidal suspensions of nanometer-
sized magnetic particles dispersed in a nonmagnetic carrier
fluid [1,2]. The rheological behavior of these “smart” fluids
is typically Newtonian, yet ferrofluids can flow in response
to external magnetic fields [3,4]. The most visually striking
example of such a “remote control” of the fluid is the motion
of the interface between a ferrofluid and air [5]. This behavior
allows for convenient, noninvasive manipulation of ferrofluids
interfaces and flows, which has motivated a number of poten-
tial applications ranging from drug delivery [6] to mechanical
characterization of tissues [7] and soft robotics [8—10].

Ferrofluids’ interfacial dynamics are also widely studied
from the fundamental point of view. One canonical system
is a two-dimensional free surface flow confined to a Hele-
Shaw cell (i.e., the small gap between two large, rigid plates
[11]), which provides a fertile ground for exploring nonlinear
physics [12]. In this context, driven ferrofluids exhibit pattern
formation. One remarkable type of pattern is the so-called
labyrinthine instability [13,14], caused by imposing a uni-
form magnetic field perpendicular to a horizontal Hele-Shaw
cell. Another pattern-forming phenomenon studied analyti-
cally [15,16] is a ferrofluid droplet in a Hele-Shaw cell subject
to a radial magnetic field. The droplet interface experiences
linear instability and evolves into a stationary starfishlike
pattern. Statics and dynamics of a ferrofluid droplet in both
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rotating [17] and motionless [18] Hele-Shaw cells subjected
to an azimuthal magnetic field have been studied using weakly
nonlinear analysis. Next, to influence the interfacial mode
selection, Jackson and Miranda [19] introduced a model
“crossed” magnetic field, which has both perpendicular and
tangential components along a free ferrofluid interface. Re-
cently, we investigated one such magnetic field setup, showing
that the crossed field (with a combination of radial and az-
imuthal components) leads to the ferrofluid droplet achieving
a stable profile shape that further rotates with a predictable
angular velocity [20]. This configuration was further studied
in the context of the unstable evolution of the droplet [21],
modified for a ferrofluid annulus [22,23], and also consid-
ered in the context of wave propagation under a thin-film
long-wave Eq. [24]. Despite previous work identifying the
steady and periodic interfacial waves on a ferrofluid droplet
under a combined radial and azimuthal magnetic field, this
model problem has not been thoroughly investigated from a
dynamical systems perspective.

A striking feature of pattern formation in confined fer-
rofluids, especially near the critical point of linear instability,
is the apparent low dimensionality of the dynamics. This
observation allows for a description of the complex dynam-
ics of the fluid flow (in principle, infinite dimensional) as
a finite-dimensional system of ordinary differential equa-
tions (ODEs). The system of ODEs easily reveals the stable
and unstable invariant objects in the phase space, such as
steady states and periodic orbits. Canonical examples of such
reductions can be traced back to the low-dimensional models
of turbulence by Hopf [25] and of atmospheric convection
by Lorenz [26]. In a Hele-Shaw cell, complex behaviors
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of bubble evolution including symmetry breaking, bistabil-
ity, and nontrivial transients were reported by Franco-Gémez
et al. [27]. These dynamics were subsequently investigated
theoretically by Keeler ef al. [28], using a weakly nonlinear
analysis in the physical domain, finding that unstable peri-
odic orbits are edge states. Weakly nonlinear analysis can
also be applied in the Fourier domain. Such a perturbative,
second-order mode-coupling analysis was employed to study
the pattern-forming dynamics in a Hele-Shaw cell with fluid
injection [29] and then followed by extensive analytical stud-
ies of different control strategies (see, e.g., Refs. [16,30,31]).
The Fourier-domain weakly nonlinear approach was used to
identify the stationary shape [16] and traveling-wave profile
[20] of a ferrofluid interface in a Hele-Shaw cell from a finite-
dimensional system of ODEs, which is more computationally
efficient than solving the Hele-Shaw equations along with the
nonlinear interfacial conditions. However, a complete char-
acterization of the dynamics (i.e., the stability of the orbits
and the type of the bifurcation) is lacking for these coherent
structures.

External forcing strategies, for instance, the manipulation
of the rigid geometry of the Hele-Shaw cell [32], using elastic-
walled cells [33], and imposing an electric [34] or magnetic
[35] field, are effective strategies for passive control. Recently,
“nonstandard” time-dependent control strategies are also at-
tracting attention [36]. Early theoretical and experimental
work by Cardoso and Woods [37] showed that the interfacial
instabilities are suppressed if the injection rate in a radial
Hele-Shaw flow follows a power law in time. Their idea was
refined by Li et al. [38], whose numerical and experimental
study manipulated fingering patterns by controlling the injec-
tion rate of the less viscous fluid. More recently, Zheng et al.
[39] proposed a time-dependent strategy for manipulating the
fingering pattern (instability can either be suppressed or a
fingering pattern, with a prescribed number of fingers, can be
selected and maintained) using a time-varying gap thickness
in a lifting Hele-Shaw cell (see also [40]). Meanwhile, Anjos
et al. [41] designed control protocols to produce self-similar
patterns in electro-osmotic flow by adjusting both the electric
current and the flow rate. Similarly, time-varying external
forcing is easy to achieve for ferrofluids, without altering
the cell geometry. For example, Jackson et al. [42] proposed
a simple model using a linearly increasing magnetic field
strength to achieve pattern selection.

A universal feature of time-dependent nonlinear dynamical
systems is the phenomenon of bifurcation delay. Examples in-
clude the Eckhaus instability of a stretching spatially periodic
pattern [43,44] and the time-dependent dissipative Swift-
Hohenberg model for crown formation during the splashing
of a drop onto a liquid film [45]. Finite-time evolution of a
dynamic instability is characterized by two instability onset
times: (i) the time at which the equilibrium loses its stability
and then (ii) the time at which the solution is repelled from
the equilibrium. The nonzero difference between these two
times is termed the bifurcation delay. Clearly, such a phe-
nomenon is expected to occur for ferrofluid interfaces under
time-dependent magnetic fields. However, it has not been
discussed previously.

Thus, motivated by the prior studies and the knowledge
gap in understanding the nonlinear dynamics and bifurcations

of confined ferrofluid interfaces under time-dependent forc-
ings, in this work, we first use a two-harmonic-mode coupled
ODE system to approximate the weakly nonlinear dynamics
(Secs. II and III). Then, we adopt a center manifold reduction
to show the geometrical equivalence between this two-mode
ODE system and the Hopf bifurcation (Sec. IV). Inspired by
the delayed Hopf bifurcation [43,46], in which the dynam-
ics is infinitesimally slow until a critical time, at which the
system abruptly begins to oscillate with a large amplitude,
we show that such time-accumulated instability can be used
to manipulate pattern evolution in our ferrofluid Hele-Shaw
model (Secs. V and VI). Finally, conclusions are stated in
Sec. VII. Appendixes A—F provide further technical details
and examples for the reader’s convenience.

II. PROBLEM FORMULATION
AND GOVERNING EQUATIONS

Inspired by an early, Cartesian model of interfacial waves
driven by a “tilted” magnetic field [47], in our previous work
[20], we proposed a static nonuniform magnetic field con-
figuration H, under which a ferrofluid droplet can deform,
driven by interfacial waves, into a spinning gear. The droplet
is confined in the Hele-Shaw cell and H consists of the com-
bination of an azimuthal field and a radial field. Thus H forms
an angle with the initially undisturbed (circular) interface of
the confined droplet, as shown in Fig. 1(a). A time-dependent
field can be generated by varying the magnitude and the di-
rection of the currents in the central wire (for the azimuthal
field) or in the anti-Helmholtz coils (for the radial field). A
linear closure for the ferrofluid’s magnetization M is usually
assumed under a static or quasistatic field since the time scale
of the magnetic relaxation is several orders smaller than the
flow scale [42,48]. Thus, when we discuss the dynamics under
a time-dependent field in Sec. VI, it is still under the linear
magnetization assumption: M(z) || H(¢). In the configuration
shown in Fig. 1(a), the droplet experiences both a magnetic
body force and a surface traction oc(M - h)> [3], where f
denotes the outward unit normal vector at the mobile interface.
The projection of M onto fi breaks the symmetry of the initial
droplet interface and causes the droplet to rotate [20].

When linearly unstable, small perturbations of the droplet’s
shape grow exponentially and, then, saturate to a permanent
traveling wave (causing the droplet to rotate) as shown in
Figs. 1(b) and 1(c). In [20], the nonlinear evolution was
studied mainly through fully nonlinear simulation. The low-
dimensional ODEs, such as Egs. (2) and (4) to be discussed
below, arising from a weakly nonlinear analysis can also serve
as a good approximation of the shape, but do not provide dy-
namical intuition beyond the initial, linear growth regime. In
this study, we first derive a simpler model, using weakly non-
linear analysis, which allows us to gain dynamical insights.
Then, we compare this new model with the nonlinear simula-
tions performed using a vortex-sheet solver. The vortex-sheet
method is a standard sharp-interface technique for simulating
the dynamics of Hele-Shaw flows [40,49,50]. It is based on
a boundary integral formulation in which the fluid-fluid inter-
face is formally replaced by a generalized vortex sheet [51].
For the present problem, this type of solver was introduced
and benchmarked in [20].
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FIG. 1. (a) Schematic illustration of a horizontal Hele-Shaw cell
confining a ferrofluid droplet, which is initially circular with a radius
R. An azimuthal magnetic field H, is produced by a long wire con-
veying an electric current /.. A radial magnetic field H, is produced
by a pair of anti-Helmholtz coils with equal currents ;5 in opposite
directions. The combined field H = H, + H, deforms the droplet.
The droplet’s interface shape is given by h(6, ). The fluid exterior
to the droplet is assumed to have negligible viscosity and velocity
(e.g., it can be taken to be air). (b) The nonlinear evolution of the
interface from a small perturbation of the flat base state (2 = R) into
a permanent traveling wave. (c) The interfacial traveling wave causes
the droplet to rotate with speed v;. The motion of the droplet is
sufficiently slow to neglect flow inertia. Panel images adapted, with
permission, from [20].

To start, we consider an initially circular interface with ra-
dius R whose shape, defined as r = & in the plane, is perturbed
ash(@,t) =R+ £(0,1), with 6 € [0, 2rr]. The perturbation &
can be expanded into Fourier modes as

+0o0
E0,0)= ) &)™, (1)

k=—00

where & (t) € C are the complex Fourier amplitudes with
azimuthal wave numbers k € Z. Through a weakly nonlinear
analysis [29], the dimensionless evolution equations of the
mode amplitudes, up to second order in &, can be found [20]
to be

& = AK)E
+ Y Fk. K)evkiw + Gk Kk, (2)
k'#£0
where we have defined the linear growth rate of mode k as
k| 2N
AR = o5 (1=K = =2 k] + 201+ X)NeelK|
2x+/NgaNp;
—l—éiﬂmm. 3)

Here, Np, and Npg, are magnetic Bond (dimensionless)
numbers that represent the ratio of the strengths of the cor-
responding magnetic body forces arising from the azimuthal
and radial magnetic field components, respectively, to the
capillary force. The nonlinear interaction functions F(k, k")
and G(k, k') in Eq. (2), which also depend on N, and Ng,,
are given in [20]. Note that under the static magnetic field in
this section, N, and Np, are constants. When the magnetic
field is made time dependent (to be discussed in Sec. VI),
Npa = Npa(?), N = Np.(¢), and A = A(k, t) accordingly.

The simulations in [20] showed that the droplet shape ex-
hibits a long-wave instability and a finite number of harmonic
modes can appropriately describe the dynamics. In this study,
we are interested in the dynamics around the critical point,
i.e., when the system achieves Re[A (k)] = 0, where &/ is the
fundamental mode (we set ky = 7 as in [20]). When the fun-
damental mode is marginally unstable, i.e., Re[A(kf)] =0,
a small number of harmonic modes is sufficient to approx-
imate the fully nonlinear dynamics. Thus we first truncate
Eq. (2) with four harmonic modes, k = k¢, 2k, 3ky, 4k, rep-
resenting the interactions with the fundamental mode. The
representation using only four harmonic modes is sufficient
for the parameters used in this study. This fact will be demon-
strated a posteriori by comparison to the fully nonlinear
simulation in Figs. 4, 7-9.

To obtain an explicit-in-time system of equations for &,
we further eliminate & on the right-hand side of Eq. (2) by
reusing the equation itself. We thus obtain a system of four
nonlinear ODEs:

X = aix + apx*y + azy*z + asz* p, (4a)
¥ = b1y + bax*z+ bsy*p+ bux’, (4b)
2= c1z+ X" p+ caxy, (4¢)
p = dip + drxz + d3y*, (4d)

where x =&, y = &y,, 2 = &3,, and p = &4,. The super-
script * denotes complex conjugation. The system (4) retains
all second-order terms in the perturbation’s amplitude. The
expressions for the complex coefficients a;, b;, ¢j, and d; are
given in Appendix A.

III. TRAVELING WAVE SOLUTION AND ITS STABILITY

The system (4) can be conveniently written in polar form
by setting j = r;(t)e’®"), where j € {x,y, z, p}. Under this
transformation, the evolution equations for the amplitudes
rj € R and phase angles ¢; € R of the first four harmonic
modes become decoupled, yielding separate ODEs for the
real and imaginary parts of the complex ODEs. The complex
ODE:s are written out in Appendix B.

For the original droplet problem, the traveling wave solu-
tion on the periodic domain [0, 277 ] can be writtenas £(6, 1) =

120 rie®® where the real amplitudes ry are independent
of time and related to the complex amplitudes in Eq. (1)
via & = rre *kU'+%0k The phase depends on time as ¢y (¢) =
k(@ — vyt) + ¢ok, such that (ﬁk = —kv,, with v, being the
(right) propagation speed of the traveling wave. Here, the ¢
describe the relative phase difference with respect to the fun-
damental mode. One example of a fully nonlinear simulation
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—0.04

FIG. 2. Evolution of the fundamental mode k; from a fully non-
linear simulation with Ng, = 1 and N, = 13.

is shown in Fig. 2, where the magnitude ry, = |&,(¢)| of the
fundamental mode’s rotating complex amplitude & (¢) satu-
rates to a constant as the traveling wave solution is achieved.

To understand this traveling wave solution, we set 7, =
iy =71, =7, =0and

Or = €, (by =2Q1 + ¢0,y7
¢ =3Q1 + oz, ¢p = 40 + G0, p, )

where 2 = —kyv, is the rate of change of the phase of the
fundamental mode k. Substituting the traveling wave solution
(5) into the system (4) [or in the polar form system (B1)] gives
rise to

(iR —apr, = azrxryeil) + a3ryrzeiA + a4rzrpei3, (6a)
(i2Q — by)ry = byryre™ + byryrye + byrie™™, (6b)
(BL—cpr, = czrxr,,eiB + C3rxrye7m, (6¢)

(i4Q — d)ry = doryre™™ + dyrle ™, (6d)

where A = ¢ — ¢0,yv B= ¢0,p —¢oz,and C = ¢0,p - 2¢0,y
are the relative phase difference. The latter three unknowns,
together with r,, ry, 7, 7, and €, characterize the nonlinear
traveling wave; note that D is calculated from A, B, and C as
D=A+B-C.

Equations (6) are solved using a Newton—Krylov method
available in the SciPy library [52]. The solutions are shown in
Fig. 3. Near the critical point of the system, when Re(a;) = 0,
the magnitudes of the higher-order modes (i.e., r, and 7))
become small (comparable to machine precision) and the
Newton-Krylov method struggles to converge.

On the other hand, as the nonlinearity becomes weaker, the
system can be approximated by an even lower-order system.
Taking z = p = 0, the system (4) reduces to

X = aix + axx*y, (7a)
V= biy+bar’, (7b)
and the stationary solution r, is found from (7) to satisfy

(b = 2iQ)(a) — i) = aybyr?. (8)

0.05 Lo o >
o 0 SR
& fw
0 Stable Q‘Jﬂs‘téﬁl@""
—0.051
0 5 10 15 20 2 30
NBr

FIG. 3. Fundamental mode’s amplitude bifurcates with Ng,. The
circles mark the amplitude from the fully nonlinear simulations. The
black and gray solid curves show the solution of the four-mode
coupling system (6), while the gray curve (with negative amplitude)
has no physical meaning. The black dashed line represents the un-
stable trivial solution r; =0, j € {x,y, z, p}. The red curve shows
the solution near the critical point obtained from the reduced model
(8). The green dashed line shows the result from the center manifold
reduction (13). The blue dotted line shows the multiple-time-scale
analysis result from Eq. (21). An azimuthal field with Ng, =1 is
used, and to set the critical point of the system, i.e., Re(a;) = 0 for
k; =7, we must take Ng, = 12.5.

This stationary solution is shown in Fig. 3. One immediate
conclusion that can be drawn from Eq. (8) is that at the critical
point, when Re(a;) = 0, one solution is 2 = Im(a;) and r, =
0. This solution corresponds to the nonhyperbolic equilibrium
point. Along this solution branch of Eq. (8), if Re(a;) were
to further decrease (and become negative), then rf < 0, and
thus there are no real solutions for r,. In other words, the
traveling wave solution does not exist (initial perturbation to
the equilibrium state decay).

Next, we address the question of the stability of the travel-
ing wave solution. We perturb the complex stationary solution
by taking

x(t) = (& + ree®)e (9a)
Y(t) = (€ + rye®)e, (9b)
2(t) = (&, + ), (9¢)
p(t) = (€ + rpe®r)e . (9d)

The evolution of the perturbation € = [e,, €,, €, € ,,]T is given
by € = Me, where the matrix M is given in Appendix C.

We find that the real part of the four eigenvalues of M
is always negative for the range of parameters considered in
this study (see Fig. 10 in Appendix C), which indicates that
the traveling wave is on the stable solution branch of the
dynamical system. This result agrees with the stability dia-
gram numerically investigated in [20], wherein the traveling
wave profiles were found to be local attractors. Also, while
[20] studied the stability of the droplet profile in the physical
domain, the current study revises and verifies the result in the
Fourier domain.

The bifurcation of the amplitude r, with increasing Ng;
is shown in Fig. 3. A stable limit cycle emerging from the
trivial solution beyond a critical value of the parameter is, of
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FIG. 4. Comparison of leading modes’ amplitude evolution for
(a) Ng; = 13, (b) N, = 15, and (c¢) N, = 30. Shown are the cen-
ter manifold reduction solution from Eq. (13) (black dotted curve),
the multiple-time-scale analysis solution from Eq. (21) (red dashed
curve), and the fully nonlinear simulation (solid curves). The or-
ange dash-dotted curve shows the unstable linear evolution. The
corresponding permanent rotating droplet shapes are shown on the
right, produced via a fully nonlinear simulation (purple solid), via
the multiple-time-scale analysis (red dashed), and via the center
manifold method (white dotted).

course, the familiar Hopf bifurcation. The limit cycle is the
traveling wave solution with complex amplitude rotating at
a constant speed €2, which is also seen in Fig. 2. Next, we
wish to understand the details and implications of this Hopf
bifurcation of the ferrofluid droplet’s interface dynamics.

IV. SUPERCRITICAL HOPF BIFURCATION

The system (4) of four complex-valued nonlinear ODEs is
challenging to analyze. Instead, to determine the properties of
the observed bifurcation, we consider the reduced, two-mode
system (7). This reduction is supported by the fact that, around
the critical point (i.e., for weak nonlinearity), the dynamics
can be well approximated by a small number of harmonic
modes. Indeed, the fully nonlinear simulation in Figs. 4(a) and
4(b) shows that, around the critical point [here, Ng, = 12.5
when Re(a;) = 0], the dynamics involves effectively only two
harmonic modes (the fundamental mode k = k; = 7 and its
harmonic k = 2k; = 14). For larger Ng,, the “strength” of the
instability also increases (since a; increases with Ng;) and
nonlinearity leads to the interaction of multiple harmonics
modes, as seen in Fig. 4(c). However, around the critical
point, as in Figs. 4(a) and 4(b), the system (7) captures the
leading-order behavior.

The linearization of the system (7) around the fixed point
(x,y) = (0, 0) is simply
y = buy. (10)

Thus the dynamics of x and y are decoupled. We are only
interested in leading mode, for which we have

X =apx,

(11a)
(11b)

x, = Re(ay)x, — Im(a;)x;,
x; = Re(ap)x; + Im(aq)x,,

where x, = Re(x) and x; = Im(x). The linearized system
(11) has a pair of eigenvalues Ay = Re(a;) £ iIm(a;). Thus
the nonhyperbolicity condition [i.e., that one conjugate pair
of imaginary eigenvalues exists at the critical point when
Re(a;) = 0 and Im(a;) # 0] and the transversality condition
[i.e., that d Re(a;)/dNg; # 0] of the Hopf bifurcation are
easily verified. To satisfy the genericity condition, however,
the first Lyapunov coefficient needs to also be shown to be
negative [53], such that the limit cycle is orbitally stable.
However, the calculation of this coefficient is not trivial for
higher-dimensional systems [53,54]. Instead, we turn to the
center manifold method to further reduce the dimensionality
of the system (7) near the critical point and obtain a planar
dynamical system.

A. Center manifold reduction

From the dynamics studied above, we expect the current
system to have a parameter-dependent center manifold on
which the system exhibits the Hopf bifurcation. In contrast,
the behavior off the manifold is “trivial” (meaning that the
leading mode dominates the dynamics).

A quadratic approximation is used to derive the finite-
dimensional center manifold [53,54]. Specifically, we assume
the dynamics on the center manifold can be related by a scalar
quadratic function y = V (x, x*). For the system (7) near its
critical point (x, y) = (0, 0), we find the center manifold (see
Appendix D) to be

. by 2
We=1(x,y):y=Vx)= —x¢. (12)

2a1 — bl
Correspondingly, we have a locally topologically equivalent
dynamical system [53]:

@bi_ e

v = —— , 13
X a1x+2a1—b|xx (13a)

(13b)

Now, the equations for x and y are decoupled and Eq. (13a)
is the restriction [53] of the system (7) to its center manifold
W,. The dynamics of the system are essentially determined
by this restriction, i.e., Eq. (13a), since (13b) is linear and
its dynamics is trivial. Indeed, as shown in Fig. 4, Eq. (13a)
accurately captures the evolution of x from system (7) along
the center manifold. It is also evident that Eq. (13a) even
captures the original fully nonlinear system’s dynamics [i.e.,
Egs. (2)—(4) from [20]]. Further, the single ODE (13a) from
the center manifold reduction also accurately predicts the
permanent rotating droplet profile, especially near the critical
point [Ng, = 12.5 as in Figs. 4(a) and 4(b)].

Notably, it takes four steps of reduction to obtain the single
ODE (13a) from the original Hele-Shaw problem. First, we

y = 2ayy.
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performed the weakly nonlinear expansion (2) in the Fourier
domain. Second, the weakly nonlinear expansion was trun-
cated at a finite number of harmonic modes (four in the current
study) to yield the system (4). Third, we approximated the
system (4) by the two-harmonic-mode system (7) near the
critical point. Fourth, along the center manifold, the system
(7) becomes decoupled and the leading mode’s nonlinear evo-
lution is accurately described by Eq. (13a). The second and
third steps can be combined since they only depend on how
many modes we wish to retain. In the physical system under
consideration here, for weaker nonlinearity, a smaller number
of interacting modes is present. Note that the system (7) can
also be obtained by restricting the system (4) to its critical
eigenspace {z = 0, p = 0}. This tangent approximation does
not always guarantee topological equivalence [53,54]. In the
present problem, the specific meaning of the harmonic ampli-
tudes, i.e., x, y, z, p, and the long-wave instability feature of
the Hele-Shaw problem ensure the tangent approximation is
successful.

B. Normal form of the Hopf bifurcation

Leta; = u +iw (w < 0)and T = —wt; then Eq. (13a) can
be rewritten as

dx [T arby
dt (_a) B l)x + —2a; — b))w

which is the normal form of a Hopf bifurcation [53] in which
the motion along the limit cycle is counterclockwise. The
rotation direction of our ferrofluid droplet is determined by
the direction of the magnetic field’s azimuthal component and
thus the sign of the imaginary part of the linear growth rate, as
discussed in [20]. This sign does not change the stability of the
system. For a dynamical system in the form (14), the first Lya-
punov coefficient can be directly computed as Re[#lfb])w]
and shown to be always negative for the parameters chosen in
this study. Thus, together with the condition —u/w > 0, the
existence of a supercritical Hopf bifurcation is proven. The
corresponding stable limit cycle has radius

Ix[%x, (14

_—. (15)
Re(%)

As expected, Fig. 3 shows that this radius can predict the
amplitude of the traveling wave solution near the critical point
of the system, i.e., when the ferrofluid interface experiences
weak nonlinearity.

Equation (14) reveals that the linearly unstable but non-
linearly stable interfacial dynamics of the confined ferrofluid
interface emerge via a Hopf bifurcation. We expect that this
analysis can also be applied to other Hele-Shaw problems
involving interfacial dynamics characterized by long-wave
instability, such as the configuration in [47]. For systems ex-
hibiting a long-wave instability, a finite set of wave numbers
usually dominates the dynamics and thus the truncation to a
finite-dimensional space, in the Fourier domain, is fruitful,
reducing the original infinite-dimensional partial differential
equations to a low-dimensional system of ODEs. Further-
more, in the weakly nonlinear regime, the number of unstable
modes can be controlled such that two-mode interaction

(7) can be analyzed via a center manifold reduction, while
still revealing important dynamical features of the original
infinite-dimensional problem, which has nonlocal dynamics
as already hinted by the vortex-sheet formulation of the prob-
lem [20,50].

The success of the center manifold reduction may appear
surprising. The simple local Eq. (13a) successfully captures
the nonlocal dynamics. This feature can be understood by con-
sidering the stationary pattern emerging from the balance of
capillary and centrifugal forces, discussed by Alvarez Lacalle
et al. [55]. For the stationary pattern, imposing the zero vor-
ticity condition, the vortex-sheet formulation is reduced to a
single geometric ODE in space. The solution of this geometric
ODE is the well-known family of elasticas. Alvarez Lacalle
et al. [55] build the connection between the elastica solutions
of the Saffman-Taylor problem and the bifurcation analysis
of interfacial growth problems. The unstable branch of the
subcritical bifurcation diagram obtained from their amplitude
equation is similar to Eq. (13a) herein. It is interesting to
note that while Ref. [55] shows the linearly stable modes in the
Saffman-Taylor problem are generically nonlinearly unstable
(characterized by a subcritical bifurcation), the current study
finds patterns that are nonlinearly stable (characterized by a
supercritical bifurcation), even if linearly unstable. However,
even though the vortex-sheet formulation of the problem from
[55] and the present study are similar, a geometric ODE pro-
viding exact solutions cannot be obtained in the current work
due to the dynamic nature (i.e., the nonzero interface velocity
and local vorticity).

Although the proposed model reduction process, starting
with the leading-order weakly nonlinear approximation and
followed by the center manifold calculation, looks straight-
forward, it does not mean that the Hopf bifurcation result
follows trivially. First, a complex linear growth rate is nec-
essary such that, near the critical point of the system, a simple
pair of complex-conjugate eigenvalues cross the imaginary
axis when varying the controllable bifurcation parameter. The
latter ensures the satisfaction of the nonhyperbolicity and
transversality conditions. For example, when the linear growth
rate is purely real (e.g., when the interface is subjected to only
a radial magnetic field as in [15,16]), a supercritical pitchfork
bifurcation can be expected, from which a static gearlike
pattern emerges. In comparison, the propagating interfacial
wave, driven by the tilted magnetic field introduced in [47],
is expected to be governed by a Hopf bifurcation. In addition,
it must be properly shown that the physical configuration
and parameters yield a negative first Lyapunov coefficient,
which ensures that a stable limit cycle emerges from the
bifurcation.

Another possibility is a dynamical bifurcation, such as a
delayed bifurcation [46,56]. In a delayed Hopf bifurcation,
the dynamics is infinitesimally slow with respect to the bi-
furcation parameter. The real part of the linear growth rate
is initially negative until a critical time, thereupon becoming
positive, which causes the solution to abruptly begin to rotate
with a large amplitude. Next, we would like to understand
if a delayed bifurcation can be observed in the confined fer-
rofluid droplet problem. Further, we would like to determine
how well the critical (delay) time can be approximated. To
answer these questions, we first conduct a multiple-time-scale
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analysis of Eq. (7). Then, we analyze a time-dependent prob-
lem with a slow-varying bifurcation parameter.

V. MULTIPLE-TIME-SCALE ANALYSIS

Multiple-time-scale analysis allows for the calculation of
the leading effect of nonlinearity on the propagation of a
harmonic wave [57]. Following the approach used in [24],
to begin the multiple-time-scale analysis we perturb the bi-
furcation parameter with a; = €%sc + iw around its critical
value Re(a;) = 0, where again € < 1 is a small perturbation
parameter and »¢ > 0 is independent of €. The assumption that
the linear growth rate is much smaller than the oscillation rate,
i.e., € < 1 is supported by Fig. 2, in which the envelope and
oscillations are clearly evolving on disparate time scales. This
perturbation makes the leading mode marginally unstable and
also the only unstable mode of the system. We first rescale
Eq. (7) to a small amplitude problem viax > e€x and y > €y:

(16a)
(16b)

X = (€25 + iw)x + €arx™y,
y = b1y + ebsx’.

Then, we assume that x and y have multiple-time-scale pertur-
bation expansions in the form

x(t, Ty) = xo(t, 1) + exi(t, T) + €221, Ty) + O(€Y),
(17a)

Y@, ) = yot, To) +eyi(t, Ty) + €y2(1, Ty) + O(€).
(17b)
The slow time scale is T} = €%t and the time derivative
transforms as (-) = d(-)/dt = d(-)/dt + €29(-)dT;. Substitut-
ing the time derivative and the expansion (17) into the small
amplitude Eq. (16) gives rise to a series of problems at each

order in €.
The leading-order problem, at O(1), is

on
- — 7 = O’ 18
o iwx (18a)
dyo
— — b1y =0, 18b
” 1Y0 (18b)
which has a solution of the form
xo(t, Ty) = Ac(T))e'™, (192)
Yo(t, Ty) = Ay(Ty)e™", (19b)

subjected to the initial conditions xp(0,0) = A,(0) =X,
v0(0,0) = A,(0) =Y, where X,Y € C. By eliminating sec-
ular terms at O(e?) (see Appendix E for details), we obtain
the complex amplitude equation:
dA b
X, A, + .612 4
d T1 2iw — b1

The complex amplitude A,(7;) describes the slow temporal
modulation of the base periodic (harmonic wave) solution.

Let A(T) = a(T))e ™) where «, B € R; then the real
part of the amplitude Eq. (20) is

da

T = »a + Qu’, (1)

A A, (20)

where we defined Q = Re(zi“aff4b] ). The amplitude Eq. (21)
is also known as the Landau equation [58]. Unsurprisingly,
Eq. (21) agrees with the center manifold reduction (13a).
The only difference is the denominator of Q. In the case
of Eq. (13a), the derivation is limited to dynamics near the
critical point, i.e., in the neighborhood of Re(a;) = 0 with
Re(a;) > 0 (see [53]); thus a; appears in the equation. Mean-
while, Eq. (21) is derived by separating the real part s and
imaginary part w of a; into different orders of €, such that
there is only iw in the denominator of Q. However, this dif-
ference is trivial. As seen in Fig. 3, the difference between
the traveling wave amplitudes computed from Eq. (21) and
Eq. (13a) are barely distinguishable. Importantly, Eqgs. (13a)
and (21) are asymptotically equivalent as Re(a;) — 0 (at the
critical point).

VI. TIME-DEPENDENT PROBLEM

A central question concerning pattern formation in time-
dependent systems is how unsteady external forces affect the
phase space structures and their evolution. This question is
somewhat analogous to the question of how the quasistatic
variation of a bifurcation parameter affects local attractors.
The key insight is provided by the supercritical Hopf bifur-
cation, for which the instability onset (when the solution is
repelled from the equilibrium) occurs later than the instant
when the equilibrium loses its stability.

Above, we have shown that the amplitude Eq. (21) can
predict the permanent rotating shape (traveling wave profile)
seen in the nonlinear simulations of the confined ferrofluid
droplet. Now, we move on to the question of dynamics: using
the bifurcation delay feature to dynamically control the time
evolution of the interface.

To start, we first reconsider the amplitude Eq. (21) for
time-varying magnetic fields. Above, we took a; = €25 + iw,
where sc € R. Now, instead, consider the slowly varying time-
dependent real growth rate »c = »(7}) = s + [T}, and thus

a1 =a1(Ty) = €2y + ITY) + iw, (22)

where €2 is the small initial growth rate, which can be either
positive or negative. Here, €I is the slow evolution rate of
Re(a;) on the long time scale Ti, i.e., d Re(a;)/dT) = €2l
Physically, the linear variation of a; with 77 can be achieved
by controlling the combination of azimuthal and radial mag-
netic field strengths, or Ng,(#) and Ng,(?), respectively. For
example, we can take N, = | and set Np,(?) to be a suitable
linear function of time.

Next, the amplitude Eq. (21) can be shown, via the same
analysis as before, to take the form

d
d—;fl = (o + 1Ty ) + Qct’, (23)

and its solution is given by

1
a(T}) = exp (%OT1 + EIT,2>

1/2

= |:<—Q %e;{%)erﬁ<%lnl> +c:| , (29)
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FIG. 5. (a) Solution «(7}) from Eq. (24) (black) saturates to the
quasistatic solution «; from Eq. (25) (red) as T; increases. (b) The
ratio o /o, approaches 1 during the same time period. Here, 7, de-
notes the time when o/, = p = 0.99. The remaining parameters
are taken as 2 = —7.5, I =75, and the initial condition is X =
5x 107 « 1.

o
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where ¢ = 1/X% + Q«/n/le’”g/’erﬁ(zo/\/f) is a constant
related to the initial value X = «(7; = 0). The imaginary
error function erfi is defined via erfi(z) = —ierf(iz) [59].

The solution (24) for sy < 0 is shown in Fig. 5(a). For
T\ < T, the linear growth rate is such that Re(a;) < 0 and
the initial small perturbation decays, as shown in the inset.
At Ty =T, a;(T.) = 0 and the equilibrium loses its linear
stability. Now, the amplitude starts to grow, yet it remains
infinitesimally small with respect to the initial perturbation.
Next, at T} = Tuxi (> T¢), the initial perturbation amplitude is
recovered and now the solution starts to repel from the initial
state. Subsequently, the amplitude increases abruptly due to
the positive linear growth rate. This exponential increase is
also observed in the time-independent problem, as shown in
Fig. 4, which is followed by the saturation of the energy (i.e.,
emergence of the permanent traveling wave profile).

Under the proposed time-dependent field, the exponential
increase is followed by a slow increase, which is identified as
the quasistatic region, in which the solution slowly varies with
the bifurcation parameter. As seen from Fig. 5(a), the time-
dependent solution (24) saturates to the quasistatic solution

wy + ITh
s =4 T 25
N 25)

which is obtained by setting do/dT; = 0 in Eq. (23). This
saturation can be intuitively understood as the balance of
the exponential factor e’ T2/2 and the decay factor erfi[ (55 +
IT)/vI17'/? as T} — oo in the time-dependent solution (24).
This balance also provides the possibility of predicting the
delay time 7, analytically.

A. Approximation of the bifurcation delay time
To approximate the delay time 7,, we consider the equation
a(l)
as(T,)
such that when T} > T,, a/a; > p. In this study, we take
o = 0.99 without loss of generality. Now, we would like to
determine 7, from Eq. (26) and establish the quality of this

approximation. To this end, we use the quasistatic solution
(25) and time-dependent solution (24) to calculate the ratio

0, (26)

Ot2 117 1 2 2
s I I | —37 /1 —4
=t <QX2€ ” )e ot en
where the expansion is valid for s = 3¢ 4+ [T} — oo. The
following expansion of the imaginary error function at infinity
(as |z] — o0) [59] has been used:
& 1 3
erfi(z) = ST+ ) - 28
() ﬁ(z ty gt i (28)

Further, the coefficient /7 /I[erfi(s¢/ VI ) + i] of the expo-
nentially decaying term e My is neglected when compared
to terms of O(1/X?) for X « 1.

Note that Eq. (25) is valid only if s + ITy > 0 VT, i.e.,
2y > 0. Thus, when 51y > 0, the time 7, can be evaluated via
Egs. (27) and (26). Specifically, T, solves

1+ ! !
2 (500 + IT,)?

_Q X2 ,02
For s¢p < 0, T, can instead be written as 7, = T, + T, », where
T. = —3/1 is the critical time defined by requiring a van-

ishing linear growth rate [»(7.) = 0]. When T7 < T¢, »r < 0,
and perturbations decay. Thus we can use the approximation
do/dT) = (300 + IT))x. At T = T, the initial perturbation X
decreases to its minimum value of «,, where

T,
o, =X exp (/ wy + IT) dT1> — X %0/ (30)
0

For T} > T, »« > 0, Eq. (29) can be used to evaluate 7, ,, by
substituting X, = «, as the initial value and 55, = 0.

When X2 > _LQI(% + IT,)3e~ @ THT)  the effect of the
initial perturbation amplitude is no longer important and the
delay time can be explicitly predicted by

L~ —t 2 (31)

S0 —ph I
or = 2y +IT, = \/Ip%/2(1 — p?). As shown in Fig. 6, for

fixed s¢ and I, the delay time 7, first decreases as the ini-
tial perturbation increases and then starts to saturate (around
1073) to the value determined by ¢ and I only. Note that
2 and I are controllable parameters corresponding to the
external forces and thus in the physical system, as long as the
droplet is perturbed by a perceivable amplitude (say, >0.1%
of its initial radius), the delay time can be explicitly computed
and controlled via Eq. (31).

Figure 7 shows that the delay time 7, evaluated from
Eq. (29), based on the physical parameters and initial pertur-
bation, can predict the bifurcation delay. Further, it is evident
that this prediction compares favorably with the delayed time
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FIG. 6. Dependence of s + IT, on the initial perturbation
strength X, based on the prediction of the delay time 7, via
Eq. (29). The black curve with “4+” markers represents the pre-
dicted time for different values of 7 = 180, 200, 220, with an arrow
pointing in the direction of increasing /. The red curve with “o”
markers represents the predicted time for different values of s =

—35, —40, —45. The dotted horizontal lines denote the asymptotic

values of \/Ip2/2(1 — p2).

observed in the multiple-time-scale analysis and the fully
nonlinear simulations. For example, 7, can be taken as the
minimum time needed for the time-dependent evolution to
saturate to a predictable stationary state. When 77 < T, the
dynamics is governed by exponential growth or decay. Subse-
quently, the amplitude experiences limited growth constrained
by nonlinearity. Finally, when 7} > T,, the dynamics satu-
rate to a state governed by the balance of nonlinearity and
dispersion and the interface evolution is determined by the
quasistatic variation of the bifurcation parameter, i.e., the sys-
tem responds to the (slow) external forcing instantaneously.

Figure 8 shows fully nonlinear simulation examples us-
ing the value of T, to control the droplet’s evolution. The
azimuthal field’s strength is fixed via N, = 1 and the ra-
dial field’s strength, set by Npg;, is determined through a; =
o + It for t < Toe. For T1 > Toge, N (T1) = N (Tofr), i.€.,
both fields are static. Figure 8 shows three cases, for different
values of Ty but with the same initial perturbation strength
X = 0.001 and the same physical parameters (corresponding
to I = 400, s = —40). In Fig. 8(a) Ty < T. In this case,
the radial field’s strength stops increasing when the droplet
amplitude is still in the linear regime, so it grows exponen-
tially. In Figs. 8(b) and 8(c), Toir > T, and the radial field’s
strength stops increasing when the droplet begins to settle into
the permanent rotating state. Note that, while 7, is calculated
through the multiple-time-scale analysis (which is a reduced
model involving only two harmonic modes), it can still ef-
fectively capture the saturated state from the fully nonlinear
simulations. The delay time 7, can be controlled via an ex-
ternal magnetic field, which allows targeting the shape of the
droplet, by evaluating the quasistatic solution a; = +/—/Q
with the linear growth rate sr at the targeted time To.

B. Irreversible dynamics under a time-reversed magnetic field

In the classic film Low Reynolds Number Flows [60],
Taylor explained the physical meaning of reversibility—*“low

Reynolds number flows are reversible when the direction of
motion of the boundaries, which gave rise to the flow, is re-
versed.” The reversibility of Stokes flow is due to its steadiness
and the fact that inertial forces are negligible. In this time-
independent flow, the time-reversed problem solves the same
equations as the original Stokes flow. These equations are
linear in Taylor’s example of Couette flow. The reversed fluid
flow is the result of reversing the direction of the external
forcing (rotation of the cylinder in the Couette flow example
shown by Taylor). The reversibility is at first surprising, as it
can be used to show that the initial state of the fluid is recov-
ered under flow reversal, which in some ways may contradict
intuition based on observations of everyday fluid flows.

In this study, the original problem is a Hele-Shaw flow,
which in general is also expected to be reversible like a Stokes
flow. Yet, the reversibility of the dynamics of the confined
ferrofluid droplet is not an obvious consequence because
nonlinearity arises from the surface forces (capillary tension
and magnetic traction) acting on the fluid-fluid interface. The
interface is also subjected to unsteady forcing by the time-
dependent external magnetic field. And, thus, time reversing
the magnetic field strengths does not return the fluid interface
back to its initial shape. This irreversibility is demonstrated
in Fig. 9, in which the fully nonlinear simulations show the
perturbation amplitude upon time reversing the magnetic field
can be (a) smaller, (b) similar, or (c) larger than the initial
perturbation.

The reversed process is initialized with the final state
(Ty, o) from the forward process, then N, = 1 is fixed,
and Np; is manipulated such that the linear growth rate de-
creases linearly. Specifically, Y = Re(a;) = Yy — IT;, where
Yo = 2 + IT;. This protocol achieves the reversal process
of the external field and Y(t) = »(Ty —t), Vt € [0, T]. Note
that, while the magnetic field is reversed, the external forces
are not. The magnetic surface force depends on the interface’s
shape and the irreversible evolution of the interface implies
the irreversibility of the external forces in this problem. Thus it
is of interest to determine how to evaluate Y'(7%), if the initial
state corresponding to s(0) cannot be fully recovered in this
irreversible system.

To answer this question, we first utilize Eq. (21) from the
multiple-time-scale analysis to formulate the reverse problem
as

do

The solution for « can be calculated explicitly from
1

1 -
S(N,a)—— +205(T10) = S(T1p)——
(ap)

@)’ +205(T; »),

(33)
where the subscripts a, b denote two arbitrary states and

S(t) = eZTUz—ItZ . (34a)

S L LTy, It — Ty
S(t)_/OS(t)dt _2\/} erf(—ﬁ ) (34b)

Taking 71, = 0, aq = o, then the reversed initial amplitude
ay can be predicted at 71 , = 7. One quick approximation can
be made on finding the final state (7}, o) when the forward
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FIG. 7. Delay time prediction (marked by the vertical dashed line) from the multiple-time-scale analysis, compared to the fully nonlinear
simulations. In (a), (b), and (c), the black (purple) curves show the leading mode’s amplitude evolution from the multiple-time-scale analysis
(fully nonlinear simulations). The red curves (purple circles) show the stationary solution for the corresponding a, (¢) from the multiple-time-
scale analysis (fully nonlinear simulations). The amplitude ratio of the time-dependent evolution and the corresponding stationary solution
is shown in (d), (e), and (f), with the black curve (purple circles) denoting the ratio from the multiple-time-scale analysis (fully nonlinear

simulations).

evolution (23) enters the quasistatic region, i.e., Tr > T,, and
the amplitude oy can be approximated by Eq. (25).

0.06 — t=0.25
(a) o
o 0.041 P 7
=2 i :
Y 0.021 i/
: E— 14
000 R—
0.06 : t=0.381
T L
o 0.041 i =
v H
0021 ;
, k=14
0.00 R
0.06 : = 0.45
«  |© ! k=1
%om— |
2002/ i
T 1
0000 0T 02 03 02 05 06 07

t

FIG. 8. Control of the rotating droplet shapes (via the amplitude
of the interfacial traveling wave) for (a) T = 0.25, (b) Toyy = T, =
0.348, and (c) Tor = 0.45. The curves show the leading mode’s
amplitude evolution from the fully nonlinear simulations. The red
dashed vertical line denotes the turn-off time T.;; the black dot-
ted vertical line denotes the delay time prediction 7,. The colored
droplets are the real-time profiles from the fully nonlinear simula-
tions (up to the corresponding times) and the red dashed outlines
show the targeted profiles evaluated via Eq. (25). Here, I = 400,
X = 0.001, 5 = —40, and Np, = 1, which are also the values used
to evaluate T,. For the convenience of the comparison, € = 1 is taken
such that 77 and ¢ can be plotted at the same time scale. All other
parameters are determined through Eq. (3) and Appendix A.

Figure 9 shows a comparison of the forward and reversed
processes approximated by Eqgs. (23) and (32). In the qua-
sistatic region, the evolution is close to reversible, after which
the reverse evolution does not experience a sudden decrease
in amplitude, which would parallel the rapid increase dur-
ing the forward process. The cycling process under the fully
nonlinear simulation shows similar dynamics. It is interesting
to note that oy from the simulation and Eq. (23) are differ-
ent at t = T, yet the predictions of both during the reverse
process eventually coincide in the small-# region, meaning
that Eq. (32) provides a good approximation to the reversed
“initial” amplitude.

This result is very similar to the one reported in the ex-
perimental work [61], wherein the peak of a magnetic fluid
interface attains different amplitudes at the same field strength
upon cycling the external magnetic field. This effect was
attributed to the strong permeability of the ferrofluid, while
in our work the hysteresislike behavior is mainly due to the
time-dependent field’s interaction with the interfacial nonlin-
earity, which is captured by the reduced models in Eq. (23)
and Eq. (32). The difference between these evolution equa-
tions highlights the hysteresislike behavior.

On the one hand, Eq. (32) provides a tool for predicting the
time-reversed process. On the other hand, this equation also
provides a new point of view on the observed irreversibility.
Solutions to Eq. (23) in the (77, @) plane and solutions to
Eq. (32) in the (Ty — Ti, ) plane are two families of curves
that intersect at (T, ar). The initial condition (23) determines
a certain curve in the forward family, along which any arbi-
trary (17, oy) can be found as the intersection point with the
curve in the reverse family determined by Eq. (32). Impor-
tantly, these two curves intersect only at (Tr, ay) and do not
overlap.

VII. DISCUSSION AND CONCLUSION

Previously, we demonstrated that the combination of static
radial and azimuthal magnetic fields deforms a ferrofluid
droplet confined in a Hele-Shaw cell into a stably spinning
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FIG. 9. Dynamics under a reversed-time magnetic field: comparison of the prediction from the multiple-time-scale analysis and the fully
nonlinear simulations. The solid (dashed) curves show the forward (reverse) process for which X(kf) >0 [X(kf) < 0]. The black (purple)
curve shows the leading mode amplitude evolution from the multiple-time-scale analysis (fully nonlinear simulations). The circle represents
the (Ty, ay) state. In (a), Ty = 0.95, X = 0.001, and I = 200. In (b), Ty = 0.7, X = 0.001, and I = 400. In (c), Ty = 0.4, X = 0.002, and
1 = 800. In all three simulations, »¢y = —40, and € = 1 is taken such that 7] and ¢ can be plotted at the same abscissa.

“gear,” whose rotation is driven by interfacial waves [20].
In this study, we show that a periodic traveling wave on the
droplet’s interface is stable and its dynamics is governed by a
Hopf bifurcation at the critical growth rate. A center manifold
reduction shows the geometrical equivalence between a two-
harmonic-mode coupled ODE system describing the interface
evolution and a supercritical Hopf bifurcation. This reduction
is supported by the amplitude (Landau) equation derived from
a multiple-time-scale analysis, which also reveals how the
marginally unstable linear solution is equilibrated by weak
nonlinearity. Both methods adequately predict the fully non-
linear evolution, as demonstrated by comparisons between the
theory and fully nonlinear, interface-resolved simulations of
the original PDE system.

The intrinsic reason why a simple, local ODE can approx-
imate the fully nonlocal dynamics is discussed, also in the
context of the static problem considered in [55]. However, un-
like the case in [55], we are unable to obtain a single curvature
ODE for the dynamic problem, due to the difficulty of elim-
inating the nonlocal term from the vortex-sheet formulation
of the full Hele-Shaw problem. This task remains an open
question, specifically whether such a single curvature ODE
even exists to exactly describe the family of traveling wave so-
lutions discussed herein. To further understand that challenge,
suppose that vortex elements on the interface are subjected
to rigid rotation. In this case, a moving frame transformation
would eliminate the relative velocity (and, thus, the nonlocal
term). However, to perform a moving frame transformation,
the exact traveling wave velocity needs to be found, which
is still nontrivial. On the other hand, if the interface is not
rotating as a rigid body, then the elements on the interface
have some local rotation rate, which collectively leads to
the interfacial wave. In this case, when the local velocity is
nonuniformly distributed along the interface, a moving frame
transformation may not exist. The success of the approxi-
mations in the present work might imply the existence of
such a curvature equation, but how to obtain it is left as an
open question. Answering this question would surely provide
further examples of the relevance of elastica solutions.

Next, with the reduced model revealing the key dynam-
ical features, we designed a slowly varying radial magnetic
field such that the timing of the emergence of the spinning

“gear” can be controlled. This work is inspired by the well-
known delay behavior of dynamic Hopf bifurcations. In this
study, the delay time is predicted based on the fact that the
time-varying amplitude equation finally saturates to the qua-
sistatic amplitude. This time can be manipulated purely via
an external magnetic field by controlling the linear growth
rate and its rate of change. We also studied the evolution
under a time-reversed magnetic field. While we found that the
evolution of the droplet is irreversible due to the nonlinearity
in the interface condition, the reverse evolution, and the final
state achieved under it, can still be well approximated by the
reversed amplitude equation.

In this work, the bifurcation parameter is controlled by a
simple linear variation, which allows for the explicit analytical
solution of the amplitude equation, and the approximation of
the delay time. The linear variation with time is expected to be
the simplest strategy that can be realized in experiments, as it
only requires increasing the magnetic field strength at a con-
stant rate. Thus, by explicitly predicting the delay time, our
work enables the effective design of the target control. Further,
the selection of a linear variation scheme requires minimal
algebraic calculations to obtain a straightforward prediction.
Other control protocols, such as periodic forcing, can also be
considered, providing a different view on the accumulation of
the time-dependent evolution. For example, a log-varying, an
exponentially increasing, and an oscillating time-dependent
protocol are highlighted in Appendix F, which may form
the basis of further explorations. The proposed reduction
method can be generally applied to other interfacial prob-
lems governed by a finite number of harmonic modes. Our
mode-reduction approach also allows for the effective and
computationally inexpensive prediction of the dynamics, as
well as for “reverse engineering” of time-dependent forcing
schemes (i.e., choosing a forcing that generates dynamics of
interest), such as those aiming to achieve pattern stabilization
[39] or self-similar evolution [38,41] of fluids confined in
Hele-Shaw cells.
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APPENDIX A: COEFFICIENTS
FOR THE REDUCED MODEL

The coefficients in the system of ODEs (4) are

a; = A(k),
ay = F(k, —k) + F (k, 2k)

+ Gk, —k)A(=k) + G(k, 2k)A (2k),
a3 = F(k, —2k) + F (k, 3k)

+ G(k, —2k)A(—2k) + G(k, 3k)A(3k),
ay = F(k, —=3k) + F (k, 4k)

+ G(k, =3k)A(=3k) + G(k, 4k)A(4k),
by = A(2k),
by = F(2k, —k) + F (2k, 3k)

+ G2k, —k)A(—k) + G2k, 3k)A(3k),
by = F (2k, —2k) + F (2k, 4k)

+ G2k, —2k)A(—2k) + G(2k, 4k) A (4k),
by = F(2k, k) + G2k, k)A(k),
c1 = A(3k),
¢y = F(3k, —k) + F (3k, 4k)

+ Gk, —k)A(—k) + G(3k, 4k) A (4k),
c3 = FQ3k, k) + F(3k, 2k)

+ Gk, k)A(k) + G(3k, 2k)A(2K),
di = A(4K),
d» = F(4k, k) + F (4k, 3k)

+ G(4k, k)A (k) + G(4k, 3k)A(3k),
dy = F(4k, 2k) + G(4k, 2k) A (2Kk),

where the functions F' and G are given in [20].

APPENDIX B: FOUR-MODE EQUATION OF MOTION
IN POLAR COORDINATE

The four-mode coupled system (4) written in polar is

Iy +ipry = ayry + azrxrye’(“bﬁ‘_zd’*)

S a3ry OB 4 gy (O,

(Bla)

iy + igyry = biry + byryr, @)
+ b3ryrpe" ) 4 byrle®m %) (Blb)

i’z + i(p.zrz = C\Iy + Czrxrpei(%*%*(f):)
+ c3rxryei(¢x+¢,\'_¢z)’ (BIC)

i’p + iqﬁprp =4, rp+ dzrxrzei(¢x+¢z—¢p)
+ d3 r)%ei(2¢,\‘_¢p)‘ (Bld)

APPENDIX C: EIGENVALUES OF PERTURBATION
GROWTH MATRIX

The matrix M governing the evolution of perturbations,
€ = Me,in Eq. (9) is

a; —i2 + R, ayR, + a3R, a3R, + a4Rp asR,
byR. +2b4R, by —2iQ + b3R, bR, b3R, 1
Csz + C3Ry 3R, (c1 — 3iQ2) R,
AR, 2d3R, drR, di — 4iQ
[
The real part of the four -eigenvalues, ({v; = The unknown coefficient g9, g11, and gogp can be found by

Re[eig(M)]}i=12.3.4, are plotted in Fig. 10 as functions
of Ng, € [12.5, 60].

APPENDIX D: CENTER MANIFOLD DERIVATION

Assume the dynamics on the center manifold can be re-
lated by a scalar function y = V (x, x*). To quadratic order, its
Taylor series is

V(x,x*) = 1go0x® + griax* + 1gox™ + O(Ix*).  (DI)

substituting (D1) into the reduced system (7):

y=Vux+ ‘/X*X*
= a1820x” + 2 Re(a))gnxx* + ajgox* + O(x|?),
y = by + bsx*

(D2a)

b b
= (51820 + b4)x2 + bignxx* + ?lgzox*z + 0(x]?).

(D2b)

The equivalence of the two Eqs. in system (D2) at O(|x|?)
gives 820 = 2b4/(2611 — b]) and 811 = 802 = 0.
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with initial condition x; (0, 0) = 0, y;(0, 0) = 0.

0
Finally, at O(e?), we have
0 0
50001 T2 iomy = — % e+ ax(gy +xiyo). (Bda)
at aT;
= —100004 D2y = =0 4 Db (E4b)
9 1Y2 T, Yo 4X0X1 5
—15000 1 with initial condition x,(0, 0) = 0, y,(0, 0) = 0. The nonlin-
ear term in Eq. (E4a) can be calculated as
—20000 1 " *
Xo¥1 +X1Yo
20 30 40 50 60 b
Npg: _ Aie—iwt —“,(Aiezm . Xzeblz)
by — 2iw
FIG. 10. Real part of the four eigenvalues of traveling wave a
solution’s stability matrix M given in Eq. (C1). +A(T))e" | —2— (A ArePTTN _ xy*e=iony |,
bt + 2w Y
(E5)
APPENDIX E: AMPLITUDE EQUATION To eliminate the secular term, we require that
VIA MULTIPLE-TIME-SCALE ANALYSIS
0X arb :
Substituting the expansion (17) into the small amplitude — 20 e+ ,2—4A:Aie"‘” =0, (E6)
) 0T 2iw — by
Egs. (16), we obtain the system
24 62—>(X() Texi +€2x) which yields the amplitude equation
ot aTl dAx a2b4 |A |2A (E7)
. = XAy T ST 1Ax| Ay
= (€ + iw)(xg + €x; + €2x2) dT, 2iw — by
+ ear(xj + ex} + €2x3)(yo + €y1 + €%y2), (Ela) Letting A, = « ¢'?, we have
9 2 9 ) 2 dA d d
—+e — 0o +ey+€n) r_ &Y 4B i ES
(E)t Ty T aT, + ldTl ale (E8)
= b1(yo + €y1 + €°y2) + €by(xo + €x1 + €°x,)°. and Eq. (E7) becomes
(Elb) do a2b4 3
. . . —— = o + Re o (E9a)
By collecting terms at O(l), we obtain the leading-order dT, 2iw — by ’
Eq. (18) and its solution (19). dB wb
Then, at O(¢), the equation is — =1Im .2—4 o’ (E9b)
0x1 . dT 2iw — b
P [WX] = AXyyo = azAjAye(b it (E2a)
a )
N iyt = baxd = byA2ede (E2b)
ot APPENDIX F: OTHER POSSIBLE
which can be solved as TIME-VARYING PROTOCOLS
x| = L.(A;Aye(b“iw” — X*Y &), (E3a) The analysis can be carried out for arbitrary time-varying
by = 2iw protocols. In this Appendix, we show three examples: a
—b, 2 diwt 2 byt log-varying, an exponentially increasing, and an oscillating
= by — 2iw (Axe —Xe )’ (E3b) growth rate. We can observe that for a log-varying or an
0.0351
0.030{ @ 0.0301 (b) 0.0121
0.0251 0.0251 0.010
£0.020] 200201 & 0.008;
& 0.0151 & 0.0157 & 0.006 1
0.010+ 0.010+ 0.004+
0.0051 0.0051 0.002 (c)
0.0001 0.000.: : : ‘ ‘ 0.000: ‘ ‘ ‘ ‘
0005 1.0 15 0.0 05 1.0 15 20 25 00 05 1.0 15 20 25
T Ti T

FIG. 11. Time-dependent solution «(7;) (black) and quasistatic solution ¢, (red) evaluated from Eq. (21) with (a) »c = 5 + 20 In(207; +
1), (b) 3¢ = 359 + 0.081 €™, and (c) ¢ = 24y + 0.031 cos(30T}). I = 75 for all three cases and s, = 7.5 for (a),(b), while ko = —7.5 for (c).
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exponentially increasing growth rate, as in Figs. 11(a) and
11(b), respectively, o will saturate to the quasistatic solution
o,. This is not the case, however, for the oscillating growth
rate shown in Fig. 11(c). This observation opens a series
of follow-up questions (i) How do we prove the saturation
mathematically and how do we obtain the explicit delay

prediction like in Eq. (31)? (ii) How do we quantify the
reliable prediction time range (since the exponential variation
will quickly break down the slow-time-variation assumption)?
(iii)) How do we quantify the observed phase lag between the
time-dependent solution and the quasistatic solution for an os-
cillating growth rate? These questions are left to future work.
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