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Oblique impact of a buckling table-tennis ball on a rigid surface
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We report on the rebound of a table-tennis ball impinging without any initial spin in oblique incidence on a
rigid surface. We show that, below a critical incidence angle, the ball rolls without sliding when bouncing back
from the surface. In that case, the reflected angular velocity acquired by the ball can be predicted without any
knowledge of the properties of the contact between the ball and the solid surface. Beyond the critical incidence
angle, the condition of rolling without sliding is not reached within the time of contact with the surface. In this
second case, one can predict the reflected angular and linear velocities, as well as the rebound angle, provided
the supplementary knowledge of the friction coefficient associated with the ball-substrate contact.
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I. INTRODUCTION

In most ball games, there are rebounds of the ball on some
surfaces, which can be of different kinds. Ultimately, a better
understanding of the interaction between the ball and the
substrate can be significant for the players, especially of the
rotational speed of the ball after rebound, as it will influence
the way they will control it and therefore adjust to it. In table
tennis for instance, the less the ball rotates, the better the
player can attack with a suitable stroke.

Many authors studied the rebound of a ball in oblique
incidence, mostly without initial spin [1–4]. From a purely
theoretical point of view, if one considers a perfectly rigid ball
during the impact, the ball will start rolling if the friction force
is large enough, independently of the mass and size of the ball.
Otherwise, the ball will slide and the rebound properties are
determined by both the coefficient of friction and the coeffi-
cient of restitution of the normal velocity. These equations are
detailed by Brody [1]. It is worth mentioning that this theory
neglects the elastic deformation of the solid bodies. Maw et al.
developed a numerical model which extends the Hertz contact
theory, dividing the contact surface into concentric annuli
among which some are slipping and some are sticking to the
surface. The result is that the friction force reverses during the
rebound, allowing the ball to spin faster than what is predicted
by the rolling condition [5]. This model has been validated
experimentally when studying a solid perfectly elastic ball on
a similar surface [6–9].

There are very few studies about the rebound of hollow
spheres, which are inelastic, on a perfectly elastic surface in
oblique incidence. One can wonder which model has to be
taken into account when considering the fact that only the
ball will deform. Cross studied the behavior of tennis balls
on different surfaces and showed that the ball only rolls on
a high friction coefficient surface, at a high incident angle
of 45◦ from the surface [2]. Additionally, he came to the
conclusion that bouncing balls, including tennis balls, do not
roll [3]. Furthermore, most of the studies presented above are
performed at low incident linear velocities, around 3–4 m s−1.

Yet, a thin-walled sphere is known to buckle past a critical
velocity, which depends on the shell thickness and material
properties [10]. The buckling of the shell might have signif-
icant consequences on the rotation of the ball after rebound.
The present paper investigates the rebound of a table-tennis
ball impacting onto a tilted rigid surface, within a large range
of incident linear velocities (from 2 to 13 m s−1). For such
a ball, the typical velocity leading to buckling is around
6 m s−1. We show that the behavior of the ball can be com-
pletely described by Brody’s theory and that the buckling
instability does not alter the final motion of the ball.

II. EXPERIMENTAL PRINCIPLE AND SETUP

The aim of the experiment is to study the rebound of a
table-tennis ball without incident spin in oblique incidence.
For practical reasons, we consider the rebound of a ball trav-
eling downwards vertically impinging on an inclined solid
surface as depicted in Fig. 1. The angle of incidence θi is
defined to be the angle between the incident velocity �vi and
the normal to the surface oriented downwards

−→
CP, i.e., θi =

( �vi,
−→
CP). It is oriented so that it equals the tilt angle α of the

surface.
Due to the action of the contact force �F during the col-

lision, the ball starts spinning. It leaves the surface with the
reflected velocity �vr and rotates with the angular velocity �ωr

around the out-of-plane x axis. For convenience, we denote θr

the reflected angle that the velocity �vr makes with the normal
to the surface oriented upwards

−→
PC, i.e., θr = (

−→
PC, �vr ). With

this choice, we have θr = θi if the tangential component of the
incident velocity is conserved after the rebound and its normal
component changes in sign only.

The experimental setup is designed to measure �vr , θr , and
�ωr as a function of the incidence angle θi and impact velocity
�vi. The ball [Cornilleau

TM
, P-ball 3 stars, 4 cm in diameter,

mass 2.7 g, acrylonitrile butadiene styrene (ABS) plastic] is
launched with the velocity �vi vertically owing to a home-
made impactor already described elsewhere (see Ref. [10]). It
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FIG. 1. Metrics for the vertical impact of a ball on a titled rigid
surface. The ball reaches the solid surface with the vertical velocity
�vi without initial spin. The surface is tilted by the angle α. After
rebound, due to the action of the contact force �F during the collision,
the ball spins with the angular velocity �ωr and the reflected velocity
of the ball �vr makes the angle θr with the normal to the surface.

consists of a metal rod initially armed by compressing a
spring. The ball is then put into place in a holder underneath.
The striker is subsequently released. The ball reaches the solid
surface, a firmly held 2.8-mm-thick transparent glass plate,
with a vertical incident velocity vi, which is tuned to vary
from 1 to 13 m s−1 depending on the initial compression of
the spring.

The rebound of the ball is observed from one side with a
high-speed camera (Fig. 2). The optical axis of the camera
(Kron Technologies, Chronos 2.1-HD, monochrome image
sensor, 2142 fps) is along the normal of the incidence plane
(x axis) to keep the whole rebound in the same focal plane.

For each test, the incidence angle θi is set owing to a pivot
connection on the metallic structure holding the glass plate.
In addition, the ball joint located on the equator is marked in
order to ensure the same initial orientation of the ball from
one test to another (noting that the joint exhibits a greater
thickness resulting in a local enhanced stiffness which is likely
to alter the impact response). The incident angle as well as
the relevant characteristics of the rebound are determined on
the recorded images using the image analysis software IMAGEJ

[11]. The velocities of the ball before and after it comes in
contact with the surface are measured as a function of time
t to account for the acceleration due to gravity. Then, by
interpolation, the velocities right before, vi, and right after,
vr , the contact are evaluated at the collision time, defined as
the time when both trajectories, before and after the rebound,
intersect. The rebound angle θr is calculated by interpolating
the trajectory in space of the center of the ball to a polynomial
of order 2. Finally, ωr is evaluated considering the rotation
of the dashed line drawn on top of the ball equator (i.e., the
joint).

FIG. 2. Superimposition of five images of the ball around the
collision with the tilted glass window and associated trajectory. Only
five images separated by a time difference of 5.6 ms are displayed
here. The black dashed line drawn on the ball allows identifying
the ball joint and is used for the determination of the ball angular
velocity. For each image of the movie (frame rate: 2142 fps), we
determine the position of the center of the ball (red circle) and
the angular position of the ball (red dashed). From the successive
positions of the center we obtain the incidence angle θi = 35◦ and
the incident velocity vi = 11.6 m s−1. From the successive angular
positions of the ball we get the angular velocity ωr = 190 rad s−1.

III. RESULTS

A. Experimental results

In Fig. 3(a), we report the angular velocity ωr as a function
of the incidence angle θi for various incident velocities vi.
We observe that, as intuitively expected, ωr increases from
zero as the incidence angle θi is increased (noting that θi = 0
corresponds to the normal incidence). However, when the
glass window is tilted further, i.e., when the incidence angle
exceeds typically 45◦, the angular velocity ωr is seen to drop
with a further increase of θi. It is of particular interest to note
that below typically 45◦ and for the range of initial veloci-
ties covered, the angular velocity ωr is simply proportional
to the incident tangential velocity vy,i = vi sin(θi ) as can be
observed in Fig. 3(b).

In addition, when displaying the restitution coefficient
associated with the normal component of the velocity,
εz = −vz,r/vz,i as a function of vz,i, for various values of the
incident velocity vi and incidence angle θi, one observes a
great collapse of the data (Fig. 4). The restitution coefficient
εz does not seem to depend on the incidence angle, i.e., on the
tangential component of the velocity vy,i. We thus observe a
clear independence of the dynamics along the normal which
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(a)

(b)

FIG. 3. Angular velocity ωr vs (a) incidence angle θi and (b) in-
cident tangential velocity vy,i. In (a), one observes two regimes. For
angles θi typically below 45◦, ωr increased when θi is increased. By
contrast, beyond typically 45◦ the angular velocity ωr drops down. In
(b), one observes that below the transition, ωr is simply proportional
to vy,i, regardless of the norm of the incident velocity vi. In (a) and
(b), the solid lines are the prediction of Eq. (5) which assumes that
the spherical shell is rolling without sliding when it leaves the solid
surface and the dotted lines are the prediction of Eq. (8) which
assumes that the spherical shell is still sliding when it leaves the solid
surface (εz = 0.9 and μ = 0.22).

can thereafter be considered independently. Moreover, as al-
ready evidenced in the case of normal incidence impact, εz

exhibits two regimes on both sides of a critical incident normal
velocity vc

z,i = (7.5 ± 0.5) m s−1. It has been shown that for
impacts with incident normal velocities greater than vc

z,i the
spherical shell of the ball is subjected to an elastic buckling
instability [10].

In what follows, we show how straightforward mechanical
arguments account for both the proportionality between ωr

and vy,i and the critical incidence angle θ c
i beyond which the

linearity ceases to apply.

FIG. 4. Restitution coefficient of normal velocity εz vs normal
velocity vz,i. The collapse of the data in a single trend shows that
the restitution of the normal component of the velocity is not altered
by the tangential component. The gray vertical region highlights the
transition to the buckling instability which occurs within the vicinity
of the critical velocity vc

z,i = (7.5 ± 0.5) m s−1.

B. Small incidence angle θi < θc
i

As previously shown, for moderate incidence angles, 0 <

θi � θ c
i , the reflected angular velocity ωr is observed to be

proportional to the tangential component of the incident ve-
locity vy,i, independent of the magnitude of the incident
velocity vi.

In order to understand this experimental fact, one can
consider for the sake of simplicity, that a spherical shell of
mass m and moment of inertia J comes into contact with a
solid substrate and that none of the solids deforms during
the collision. During the contact time τ , the substrate exerts
a force �F (which depends on time) on the shell. Denoting
�vi and �vr the impact velocity before and after the rebound,
respectively, one can write from the fundamental principles of
the dynamics

m( �vr − �vi ) =
∫ τ

0
( �F + m �g)dt, (1)

J (�ωr − �ωi ) =
∫ τ

0
(
−→
CP ∧ �F )dt, (2)

where C and P denote the center of the spherical shell and the
point of contact, respectively. The origin of time is taken to
coincide with the onset of the contact. We remind here that the
incident angular velocity �ωi = �0. We note that in Eq. (1), the
rigid shell is subjected to the acceleration due to the gravity
�g. However, during the short time of the collision but mostly
due to the intensity of the force �F , its effect can be neglected.
Noting further that

−→
CP = R �z is perpendicular to the solid

surface, we can write
−→
CP ∧ �F = −(R Fy) �x, where Fy is the

tangential component of the force �F . The dynamical Eq. (2)
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can then be rewritten in projection along the x axis:

J ωr = −R
∫ τ

0
Fy dt . (3)

From Eq. (1), one can write along the y axis

m(vy,r − vy,i ) =
∫ τ

0
Fy dt = −J ωr

R
. (4)

This relation between the variation of the tangential velocity
and the angular velocity holds true as long as the normal
component of the force �F does not apply any torque.

We now assume that, due to the action of the force �F ,
the spherical shell is rolling without sliding when leaving the
surface. This leads to the relation R ωr = vy,r . Using Eq. (4)
and the value of the moment of inertia for a spherical shell
J = 2

3 m R2, we get

R ωr = 3
5vy,i. (5)

The reflected angular velocity is here proportional to the tan-
gential component of the incident velocity vy,i, independent
of the magnitude of the incident velocity vi. The solid line
in Fig. 3(b) comes from the theoretical relation in Eq. (5),
and is found to fit nicely the experimental data. With vy,i =
vi sin(θi ), one can then interpolate the data reported as a
function of the incidence angle in Fig. 3(a). The most striking
result obtained from the simple modeling is that the relation
does not depend on any experimental parameter except that
the ball is a thin spherical shell, which triggers the value of
the moment of inertia and thus the 3/5 constant in Eq. (5).

To go further, we remark that vy,r = 3
5vy,i enables the es-

timate of the reflected angle θr . Indeed, tan(θr ) = −vy,r/vz,r .
Denoting εz the velocity restitution along the normal to the
surface, εz = −vz,r/vz,i, we get

tan(θr ) = 3

5 εz
tan(θi ). (6)

In practice, due to the fact that the normal velocity is al-
most conserved in magnitude (a loss of about 10%) but the
tangential velocity is reduced by 2/5 (40%), the trajectory
after rebound rears up, and the angle θr is smaller than θi

(θr − θi < 0). The latter result depends on the value of εz.
However, we observe in Fig. 4 that εz is almost independent
of the incident velocity vz,i. Assuming that εz is constant, lim-
iting the interpolation to the smallest impact velocities (vi < 7
m s−1) for θi < θ c

i , we obtain an excellent agreement between
Eq. (6) and the experimental data in Fig. 5 for εz = 0.9
(least-squares method). This value is compatible with the data
displayed in Fig. 4 for moderate incident normal velocity vz,i.
In addition, we remark that the experimental data are above
the trend (green triangles in Fig. 5) for the largest incident
normal velocity (vz,i = 9.5 m s−1). This observation is also in
agreement with Eq. (6) which predicts an increase of θr when
the incident normal velocity is increased due to the associated
decrease of the restitution coefficient εz.

C. Critical incidence angle θc
i

The theoretical results of the previous section have been
obtained assuming that the spherical shell is rolling without

FIG. 5. (a) Difference θr − θi vs angle of incidence θi. We
observe, for θi below 45◦, an excellent agreement between the ex-
perimental data and Eq. (6) with εz = 0.9. Beyond the onset (dotted
vertical line), an excellent agreement is observed with Eq. (9) (εz =
0.9 and μ = 0.22).

sliding when leaving the solid substrate after impact. How-
ever, for a prescribed incident velocity, an increase in the
incidence angle θi causes simultaneously the increase of the
tangential velocity and the decrease of the normal one. As a
consequence, if, for instance, the tangential component of the
force �F is due to solid friction, it will be less and less able to
stop the initial sliding of the contact.

In order to prove that the transition between the two
regimes is due to the inability of the system to ensure the
conditions of rolling without sliding, we report in Fig. 6 the
ratio η of the experimental R ωr to vy,r which equals 1 in the
case of no sliding and 0 for perfect sliding. We observe that the
latter quantity equals 1 for θi smaller than 45◦ approximately
and decreases drastically when θi is higher. The transition is
thus clearly due to the fact that the contact point is still sliding
when the ball leaves the surface.

In order to account for the transition, yet in a simplistic
manner, we consider that the tangential component of the
force Fy is due to friction and we simply write Fy = −μ|Fz|
(provided that vy > 0). Considering the dynamics along the
normal to the substrate, we have, at all times, Fz = m v̇z

(where the overdot denotes the derivative with respect to
time). Considering the dynamics in the substrate plane, we
have m v̇y = Fy = −μ|Fz| because the contact point slides
during the whole contact time, such that integrated over
time vy,r − vy,i = μ (vz,r − vz,i ). Introducing the restitution
coefficient εz and the incidence angle θi (vz,i = vi cos θi and
vy,i = vi sin θi), taking into account that the rolling conditions
vy,r = 3

5vy,i are still valid at the onset, we get the critical angle
θ c

i in the form

tan θ c
i = 5

1 + εz

2
μ. (7)

From the experimental value of θ c
i � 45◦, taking into ac-

count that εz is close to 1, we get a first estimate of the
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FIG. 6. (a) Ratio η ≡ R ωr/vy,r vs incidence angle θi. The ex-
perimental data (black disks) are averages over six impact velocities
in the experimental range. We observe that η = 1 (no sliding) for
θi < 45◦ typically. For θi > 45◦, η is significantly smaller than unity,
which proves that the condition of nonsliding is not reached when the
ball leaves the surface. The interpolation of the experimental data to
Eq. (8) makes it possible to determine the critical angle θ c

i = 46.2◦

(vertical dashed line). The gray curves are for εz = 0.9 and μ = 0.22
for the solid curve. Dashed lines, plotted for μ = 0.18 and μ = 0.26,
underline the sensitivity to the value of the friction coefficient.

friction coefficient, μ � 0.2. In the next section, we analyze
the behavior of the system for larger incidence angles and then
further discuss the value of the friction coefficient.

D. Large incidence angle θi > θc
i

Beyond the critical angle θ c
i , the contact point between

the ball and the substrate slides throughout the contact. The
angular velocity ωr is smaller than that obtained from rolling
conditions (Fig. 3) and the reflected angle θr is larger (Fig. 5)
than expected without sliding.

Beyond θ c
i , the relation between the changes in the normal

and in the tangential velocity holds and we have vy,r − vy,i =
μ(vz,r − vz,i ). In addition, from Eq. (2), we have R ωr =
− 3

2μ(vz,r − vz,i ). One can thus write the ratio of the final
angular velocity ωr to the final tangential velocity vy,r in the
form

Rωr

vy,r
=

3
2 (1 + εz)μ

tan(θi ) − (1 + εz)μ
. (8)

The interpolation of the experimental data in Fig. 6 with
εz = 0.9 leads to μ = 0.22 and θ c

i = 46.2◦. Complementary
experimental data beyond 60◦ would be necessary to confirm
that ωr tends to 0 when the incidence angle tends to 90◦. How-
ever, for practical reasons, the experimental setup does not
make it possible to study angles larger than 60◦. We observe
in Fig. 6 that Eq. (8) does not perfectly fit the data beyond
θ c

i when εz is assumed to be constant. In principle, we can
introduce the experimental values of εz in Eq. (8) which leads
to a better interpolation of the data but does not provide more
insights on the mechanisms at play. Thus, we consider a good

agreement between the analytic model and the experimental
data, even if εz is constant.

Finally, one can report in Fig. 5 the predicted value of θr −
θi as a function of the incidence angle θi. We have

tan θr = 1

εz
tan θi − μ

1 + εz

εz
. (9)

Again, based on the aforementioned values for εz and μ, one
observes an excellent agreement between the model and the
experimental data.

IV. DISCUSSION AND CONCLUSION

We reported an experimental study of the rebound of a
table-tennis ball colliding without initial spin with a rigid
surface. The most striking result is that, for a large range of
incidence angles and velocities, perfect rolling prevails so that
the final translational and angular velocities can be predicted
without any knowledge of the material or contact properties.
The result is even more striking if one considers that the ball
shell is in most cases subjected to a mechanical instability that
leads to elastic buckling in the contact region, as we know
from a previous study [10] and as documented elsewhere
[12–14].

On the one hand, we observe that the introduction of an
incidence angle does not affect the rebound along the normal
to the substrate. Indeed, reporting the normal velocity restitu-
tion coefficient εz as function of the initial normal component
of the velocity vz,i, we observe that all the experimental data
follow the same trend regardless of the tangential component
of the velocity vy,i (Fig. 4). Moreover, we observe that the nor-
mal restitution coefficient exhibits two regimes as a function
of the normal incident velocity vz,i. The transition between the
two regimes is due to the buckling of the spherical shell which
occurs above a critical normal velocity of about 7.5 m s−1,
compatible with previous measurements obtained in normal
incidence with the same system [10].

On the other hand, we observe that the buckling of the
ball shell does not significantly alter the spin of the ball
after rebound. For sufficiently small incidence angles θi, the
collision conditions are such that the ball leaves the substrate
while rolling without sliding. The reflected translational and
angular velocities do not depend on the material properties.
In addition, the reflected angle can be well predicted just
knowing the restitution coefficient of the normal component
of the velocity, acknowledging that this one might depend on
the constitutive material of the ball. Beyond a critical angle of
incidence the contact point between the ball and the substrate
still slides when they separate. In this case, the translational
and angular velocities after rebound can be predicted provided
the supplementary knowledge of the friction coefficient μ.

To reinforce our conclusions, we repeated the experiment
with a second type of table-tennis ball (made of celluloid)
presenting significantly different experimental parameters
(frictional coefficient μ � 0.16 and restitution coefficient
εz � 0.84). For the sake of clarity, the results are not shown
here but the agreement is again excellent and, for instance, the
measured critical angle is of about θ c

i � 35◦ in this case, as
expected from Eq. (7).
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The present results represent an important step for the
understanding of the rebound of the table-tennis ball on the
racket and directly apply to the rebound on the table. They
lead us to think that there are only a few ways to modify
the ability of the racket to provide effects (spin) to the ball
and that the angular velocity cannot exceed ωr = 3

5vy,i/R. We
must remind here that we considered a substrate that cannot
deform and load elastic energy. Indeed, the stiffness of the ball
and surface materials differ so much that no elastic energy can
be stored in the tangential deformation. A natural extension of

the present study to the case of collision with soft and elastic
surfaces (corresponding to the paddles polymeric layers) is in
progress.
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