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In this paper, two improvements to the theory of transition from brittle to ductile fracture developed by Langer
[J. S. Langer, Phys. Rev. E 103, 063004 (2021)] are proposed. First, considering the drastic temperature rise
near the crack tip, the temperature dependence of the shear modulus is included to better quantify the thermally
sensitive dislocation entanglement. Second, the parameters of the improved theory are identified by the large-
scale least-squares method. The comparison between the fracture toughness predicted by the theory and the
values obtained in Gumbsch’s experiments for tungsten at different temperatures [P. Gumbsch et al., Science
282, 1293 (1998)] shows good agreement.
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I. INTRODUCTION

The transition from brittle to ductile fracture depends cru-
cially on the rate of dislocation nucleation and multiplication
under the elevated stress and temperature near the crack tip.
Therefore, to develop a predictive theory for this transition,
one must have a correct kinetics of dislocation depinning.
Such a kinetics of dislocation depinning was first established
in the framework of the thermodynamic dislocation theory
(TDT), originally proposed by Langer et al. [1] and further
developed in [2–11]. The TDT is based on two unconventional
ideas. The first states that, under nonequilibrium conditions,
the slow configurational degrees of freedom associated with
the chaotic motion of dislocations are characterized by an
effective disorder temperature that differs from the ordinary
temperature caused by the much faster vibrations of atoms in
the crystal lattice. Both temperatures are thermodynamically
well-defined quantities whose equations of motion govern the
irreversible behavior of these subsystems. The second basic
idea is that dislocation entanglement is the overwhelming
cause of resistance to deformation in crystals and that the
dislocation depinning, determined by the double-exponential
formula, is strongly sensitive to small changes in stress and
temperature. These two ideas have led to successful pre-
dictive theories of strain hardening [1,2,10,11], steady-state
stresses over wide ranges of temperatures and strain rates
[8,9], thermal softening during plastic deformation [6], yield-
ing transitions between elastic and plastic responses [3,5,10],
and shear banding instabilities [4,7].

To apply the TDT to the transition from brittle to ductile
fracture, we need to analyze the local stress field near the
crack tip. If the stress at the crack tip (called, for short, tip
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stress) increases fast enough or if the plastic strain rate due
to thermally activated dislocation depinning is sufficiently
small, then this local tip stress caused by the prevailing elastic
deformation quickly reaches a critical value at a relatively low
stress intensity factor that triggers unstable crack growth or
rapid crack propagation. This is a brittle fracture mode. On the
other hand, when plastic deformation predominates, the crack
tip is shielded by a plastic zone that prevents the tip stress from
growing rapidly. The crack tip loses its shielding when the
far-field stress exceeds a critical value that causes the unstably
expanding plastic zone. At this point, the tip stress can quickly
reach the breaking stress, resulting in crack growth, but at a
much higher stress intensity factor and consequently a much
higher fracture toughness. This is the ductile fracture mode.
Equations governing the evolution of crack tip stress, crack tip
curvature, dislocation density, and temperature as functions
of stress intensity factor were recently proposed by Langer
[12]. With the ad hoc parameters chosen to be physically
reasonable, he was able to simulate fracture toughness as a
function of temperature and predict the transition from brittle
to ductile fracture. The comparison with the fracture tough-
ness as a function of temperature measured for tungsten in the
experiments of Gumbsch et al. [13,14] shows relatively good
agreement.

The aim of this paper is to propose an improved theory
of brittle-to-ductile transition (BDT) under the assumption of
small strains. Similar to the theory developed by Langer in
[12], we neglect the anisotropy effect and assume the elastic
isotropy. However, compared to [12], there are two essential
improvements. First, the temperature rises sharply near the
crack tip and can reach several hundred or even thousand
degrees near the ductile instability. The first experimental
evidence of a temperature rise of about 130 K near the tip
of a crack propagating at 10 m/s in steel was observed by
Weichert and Schönert [15]. Another experimental measure-
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ment of the temperature rise of about 600 K in steel during
adiabatic shear banding, at the end of which a crack forms,
was made by Marchand and Duffy in [16]. Light emission
produced by rapid cracking in brittle materials has also been
interpreted as thermal radiation at a temperature greater than
1000 K [15]. Therefore, the dependence of the shear modulus
and consequently of the Taylor stress on temperature must be
taken into account to better quantify the thermally sensitive
dislocation entanglement. Second, and most importantly, all
material parameters otherwise chosen in an ad hoc manner
in [12] must be replaced by those identified by the large-
scale least-squares method [6,10,11,17]. The result is that
the theoretical prediction based on this improved theory fits
Gumbsch’s experimental data much better than that of [12].

The paper is structured as follows. Immediately after this
introduction, we start with the derivation of the equations of
motion that will be used here. Similar to Langer’s theory,
these equations should be derived separately for two differ-
ent cases, predeformed and nonpredeformed crystals with an
initial notch, which will be done in Secs. II and III, respec-
tively. Our focus is on the physical meaning of the various
parameters that occur in them. We discuss which of these pa-
rameters can be expected to be material-specific constants that
are independent of temperature and loading rate and thus are
among the key parameters of the theory. In Sec. IV we develop
the large-scale least-squares method to determine the material
parameters and compare the results of numerical simulations
of toughness-temperature curves with the experimental data
of Gumbsch et al. [13]. We conclude in Sec. V with some
remarks on the significance of these calculations.

II. EQUATIONS OF MOTION: PREDEFORMED CRYSTALS

For simplicity, let us assume that a single crystal plate con-
taining an initial notch deforms in-plane strain mode I under
a time-dependent remote tensile stress σ∞(t ). This idealized
setting corresponds approximately to the three-point bending
tests carried out by Gumbsch et al. [13,14]. We first consider
the case of a predeformed crystal, where a plastic zone already
exists near the notch tip before the stress σ∞(t ) is applied.
The midplane of the plate occupies an area in the (x, y) plane,
while the notch projection has the shape of an ellipse centered
at the origin of the coordinate system, with a large semiaxis
W (1 + m) in the x direction and a much smaller semiaxis
W (1 − m) in the y direction (m = 1 − 2ε, where ε is a small
parameter). It is assumed that the elliptical shape does not
change during the deformation of the notch into a crack. How-
ever, the curvature of the notch tip at x = W (1 + m), ktip, may
evolve during the loading process. Using the hypoelastoplas-
ticity combined with TDT, Langer [12] derived the following
equation for the dimensionless curvature κ = ktipdtip, with dtip

the initial tip radius:

κ̇

κ
= (ν̄ − 1)2

3

(
ṡ0

2μ
+ Dpl

0

)
+

(
2ν̄ − 1

ν̄2

)(
σ̇∞
2με

)
. (2.1)

Here the dot above a letter denotes the time derivative, ν̄ is
a function of the curvature and the yield stress characterizing
the width of the plastic zone to be defined later, s0 denotes the
tip stress, μ is the shear modulus, and Dpl

0 corresponds to the

plastic strain rate. The latter is given in the form [1]

Dpl
0 = b

√
ρ

τ0
exp

(
−TP

T
e−s0/μT b

√
ρ

)
, (2.2)

where τ0 is a microscopic timescale inversely proportional to
the Debye frequency, b is the Burgers vector, s0 is the tip
stress, ρ is the dislocation density at the crack tip, TP is the
pinning energy (in the temperature unit), and μT is a reduced
shear modulus, so σT = μT b

√
ρ gives the Taylor stress. The

equation for the tip stress, derived by using a circular approx-
imation as in [18], reads

ṡ0

2μ
= −Dpl

0 +
(

σ̇∞
2με

)
�(ν̄)

ν̄3
, (2.3)

where

�(ν̄) = (ν̄ − 1)2

4ν̄ ln ν̄ − (3 + ν̄)(ν̄ − 1)
.

Note that function �(ν̄) has a singular point ν̄c ≈ 5.116,
which plays a crucial role in predicting the instability of the
plastic zone, as will be seen later on.

Langer assumed in [12] that both μ and μT in Eqs. (2.1)–
(2.3) are independent of temperature T . However, as men-
tioned in the Introduction, the temperature changes drastically
near the crack tip, especially during the unstable expansion
of the plastic zone. Therefore, in order to better quantify
the thermally sensitive dislocation entanglement, we take into
account the dependence of μ on the temperature according to

μ(T ) = μ0 f (T ), f (T ) = 1 − D/μ0

eT1/T − 1
, (2.4)

where μ0, D, and T1 are material constants (see Sec. IV for
their values for tungsten). Note that Eq. (2.4) works well up to
melting temperature [19]. Likewise, we assume that μT (T ) =
μT 0 f (T ). If we introduce the rescaled quantities

ρ̄ = a2ρ, s̄0 = s0

μ̄T 0
, μ̄T = b

a
μT = μ̄T 0 f (T ),

where a is a minimum spacing between dislocations, then the
plastic strain rate can be rewritten as

Dpl
0 = q

τpl
, q(s̄0, ρ̄, T ) = √

ρ̄ exp

(
− TP

T
e−s̄0/ f (T )

√
ρ̄

)
,

(2.5)

with τpl = aτ0/b.
To convert Eqs. (2.1) and (2.3) into a form suitable for

numerical simulation, we introduce the dimensionless stress
intensity factor

ψ = σ∞
μ̄T ε

√
κ

(2.6)

and define

ψ̇ = σ̇∞
μ̄T ε

√
κ

≡ 1

τex
, ξ ≡ τex

τpl
, (2.7)

with ξ the inverse dimensionless loading rate. Note that the
derivative of function f (T ) is negligibly small [19], so in the
derivative of ψ with respect to time μ̄T and κ can be treated
as constants. We assume that the loading rate represented by
ψ̇ is constant, so the time derivative can be replace by the
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derivative with respect to ψ according to
d

dt
= τex

d

dψ
.

In this way Eqs. (2.1) and (2.3) can be rewritten in the form

1

κ3/2

dκ

dψ
= c0

(
(ν̄ − 1)2

3

�(ν̄)

ν̄3
+ 2ν̄ − 1

ν̄2

)
(2.8)

and

ds̄0

dψ
= − ξ

c0
q(s̄0, ρ̄, T ) + √

κ
�(ν̄)

ν̄3
, (2.9)

where c0 = μ̄T /2μ. To define function ν̄ in these equations,
we must find the yield stress. It is obvious that the plastic
yielding occurs when the elastic strain rate s0/2μ becomes
negligibly small. By inverting (2.5) where the total strain rate
stands on the left-hand side and using deliberations similar to
those in [12], we get the dimensionless yield stress in the form

s̄y = f (T )
√

ρ̄

{
ln

(
TP

T

)
− ln

[
ln

(
10ξ

c0 ln(TP/T )

)]}
.

(2.10)

Then ν̄, as a function of s̄y, should be defined as

ν̄(y) =
{

y1/3 if y > 1
1 otherwise,

(2.11)

with y = ψ
√

κ/s̄y.
To close the system of equations, we need to write down

the equations for the dislocation density ρ̄ and the equation for
the kinetic-vibrational temperature T . Both equations can be
proposed in accordance with the principles of irreversible
thermodynamics. The equation for ρ̄ remains unchanged com-
pared to that in [12],

d ρ̄

dψ
= Aξq(s̄0, ρ̄, T )s̄0(ψ )

(
1 − ρ̄

ρ̄∞

)
. (2.12)

It describes the evolution of dislocations in the simplified
situation of a predeformed crystal when the configurational
entropy is already close to the highest possible value. The
interpretation of (2.12) is simple: The rate at which disloca-
tions are formed is proportional to the plastic power and the
detailed-balance factor 1 − ρ̄/ρ̄∞, which accounts for dislo-
cation annihilation by requiring ρ̄ to approach its saturated
value ρ̄∞. We assume that A is independent of temperature
and the inverse loading rate ξ . The remaining equation for T
reads

dT

dψ
= C(T )ξq(s̄0, ρ̄, T )s̄0(ψ ). (2.13)

The term on the right-hand side corresponds to the plastic
power that dissipates into heat, with C(T ) = C0 exp(TA/T )
the Taylor-Quinney factor. The exponential dependence of
C on TA/T is indirectly justified by comparison with the
experimental stress-strain curves in the problems of thermal
softening [6] and adiabatic shear banding [7]. Certainly, the
heat exchange between the crack tip and the surrounding ma-
terial could also be considered. Since this leads to the models
with heat conduction which are nonlocal, we will neglect this
heat exchange for simplicity.

III. EQUATIONS OF MOTION: NONPREDEFORMED
CRYSTALS

For nonpredeformed crystals with an initial notch, the
situation changes drastically. In this case, the redundant dis-
locations of opposite sign are initially in the pinned state and
are therefore inactive in an early stage of deformation. When
the load is applied and the tip stress is not yet high enough to
overcome the pinning energy barrier but sufficiently high to
emit dislocations at the notch tip, nonredundant dislocations
of the same sign (geometrically necessary dislocations) form
at the notch tip and then quickly move away under the drag
force from there, changing the curvature of the notch [20,21].
This type of dislocation is called by Langer a dragged disloca-
tion; its density is denoted by ρD. Since this type of dislocation
is recognized by us as a nonredundant dislocation, we change
the notation for its density to ρG. The depinning of redundant
dislocations, called by Langer entangled dislocations, occurs
at a later stage of deformation, when the tip stress is high
enough to overcome the pinning energy barrier, leading to
separation of dislocations of opposite sign. Since this is the
thermally assisted collective dislocation generation [22,23],
their density, which we denote by the same letter ρ as in the
previous case, becomes dominant rapidly thereafter. With this
analysis in mind, we now turn to the equations of motion
at the notch tip, whose derivation is essentially the same as
Langer’s, although there are some differences in detail. Since
the emission of nonredundant dislocations increases the tip
curvature as mentioned above (see [20,21]), Eq. (2.8) should
change to

1

κ3/2

dκ

dψ
= c0

(
(ν̄ − 1)2

3

�(ν̄)

ν̄3
+ 2ν̄ − 1

ν̄2

)
+ ρ̄Gψ

ξη(T )
. (3.1)

The last term on the right-hand side of this equation is the
contribution of the nonredundant dislocations to the change
of the tip curvature, with ρ̄G their dimensionless density in
units of a−2 and η(T ) = η0e−TD/T a thermal activation fac-
tor (Gumbsch’s scaling law [14]). Likewise, the presence of
nonredundant dislocations also causes the change of tip stress,
so the equation for s̄0 becomes

ds̄0

dψ
= − ξ

c0
q(s̄0, ρ̄, T ) + √

κ
�(ν̄)

ν̄3
+ ρ̄Gψ2κ

ξη(T )
. (3.2)

The last term in Eq. (3.2) is the contribution of the nonredun-
dant dislocation to the change in tip stress. The presence of the
ξ factor in the denominators of the last terms in Eqs. (3.1) and
(3.2) means that the increase in tip curvature and tip stress is
proportional to the loading rate. This can be explained by the
fact that the dislocation emission from the tip occurs in times
much shorter than the characteristic time for curvature and
stress growth. Therefore, the generalized Orowan formula,
which contains the number of dislocations in a square whose
side length is proportional to the loading rate, leads to the ξ

factor in the denominators of these terms [12]. Equations (3.1)
and (3.2) are identical in form to Eqs. (5.9) and (5.10) in [12],
except that functions q(s̄0, ρ̄, T ) and s̄y are now given by (2.5)
and (2.10), respectively.

Since we have now two families of dislocations, their
densities must obey two separate evolution equations. The
equation for ρ̄ remains unchanged except that the prefactor
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Aξ is no longer a linear function of ξ as in the previous case.
Assuming that this prefactor is a function of ξ , we write the
equation for ρ̄ in a slightly different form as [12]

d ρ̄

dψ
= A(ξ )q(s̄0, ρ̄, T )s̄0(ψ )

(
1 − ρ̄

ρ̄∞

)
. (3.3)

Our proposition for A(ξ ) also differs significantly from that
of [12]: We now assume that A(ξ ) = A1 exp(A2ξ ). Thus, as ξ

goes to zero (very fast loading) the function A(ξ ) approaches
the constant value A1. We now look at ρG, the density of
nonredundant dislocations. This quantity must be expressed
by the curl of the nonuniform plastic distortion satisfying the
equilibrium of microforces acting on them, which is actually a
partial differential equation [24,25]. We simplify the situation
by posing the following evolution equation for the local tip
density ρ̄G:

d ρ̄G

dψ
= An

ψ2ρ̄Gκ (ψ )

ξη(T )

(
1 − ρ̄G

ρ̄c

)
. (3.4)

The detailed-balance factor on the right-hand side of this
equation contains a value ρ̄c = tnρ̄∞ that is much smaller than
ρ̄∞. This means that most of the nonredundant dislocations
move away from the crack tip, so the local density of these
dislocations accounts for only a small fraction of the total
density of dislocations near the crack tip in the later stage
of deformation. Finally, the equation for T remains the same
as (2.13) except that the Taylor-Quinney factor C(T ) must
be replaced by Cn(T ) = C0n exp(TAn/T ). The replacement of
the function C(T ) by Cn(T ) can be explained by the fact
that the dissipation into heat caused by dislocations in this
case is a much longer process starting with a negligibly small
dislocation density.

IV. DATA ANALYSIS

The experimental results of Gumbsch et al. [13] along with
our theoretical predictions based on the equations of motion
(2.8), (2.9), (2.12), and (2.13) in the predeformed case and
(3.1)–(3.4) and (2.13) in the nonpredeformed case are shown
in Fig. 1. In order to obtain the fracture toughness from the
theory, the above systems of ODEs complemented by the
initial conditions must first be solved. In the predeformed case
the initial conditions are assumed in the form

κ (0) = 1, s̄0(0) = 0, ρ̄(0) = riρ̄∞, T (0) = T0. (4.1)

In the nonpredeformed case we pose

κ (0) = 1, s̄0(0) = 0, ρ̄(0) = ρ̄i,

ρ̄G(0) = ρ̄Gi, T (0) = T0. (4.2)

Having found the solution of the ODEs, we can determine
the critical stress intensity factor ψc at which the crack starts
to grow as follows: In the predeformed case, it is the smallest
root of the equation s̄0(ψc) = s̄c, while in the nonpredeformed
case it is the smallest root of the equation s̄0(ψc) = s̄cn, where
s̄cn is somewhat larger than s̄c. The explanation is rather sim-
ple: The predeformed crystal has already been subjected to
strain hardening, which has created new defects or weakened
existing ones, so s̄c must be smaller than s̄cn. Finally, the
fracture toughness is evaluated as Kc = αψc. Note that the
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FIG. 1. Fracture toughness Kc (in unit MPa m1/2) versus tem-
perature (in units of K): predeformed tungsten at a loading rate of
0.1 MPa m1/2 s−1 (black curve with circles) and nonpredeformed
tungsten at a loading rate of 0.1 MPa m1/2 s−1 (red curve with trian-
gles). The experimental points are taken from the work of Gumbsch
et al. [13].

proportionality factor α depends only on instrumentation and
not on sample preparation.

Thus, in order to simulate the theoretical toughness as
shown in Fig. 1, we need numerical values for four system-
specific parameters common in both cases: the pinning energy
TP (in units of temperature), the ratio of moduli c0, the dimen-
sionless saturated dislocation density ρ̄∞, and the toughness
factor α. In predeformed case we need additionally four pa-
rameters A, C0, TA, and s̄c, while in the nonpredeformed case
there are nine additional parameters η0, TD, A1, A2, C0n, TAn,
An, s̄cn, and tn. In addition, to specify the initial conditions, we
need ri in the predeformed case and ρ̄i and ρ̄Gi in the nonpre-
deformed case. For the temperature-dependent shear modulus
μ(T ) of tungsten given by (2.4) we take μ0 = 159.5 GPa,
D = 33.69, and T1 = 1217 K [26].

All the above parameters were present in Langer’s theory
[12]. He chose most of them in an ad hoc manner, based on
some physical deliberations. Some parameters like A1, A2,
s̄cn, or C0n even vary from case to case. In this paper, we
abandon this way of choosing parameters and try to iden-
tify them by the large-scale least-squares method. Let the
unknown parameters be the components of a vector denoted
by P, which belongs to the multidimensional space of parame-
ters. This vector is obtained from Ne experimentally measured
toughness-temperature curves (of Ne different cases and load-
ing rates) as follows. Assuming P is known, we integrate the
system (2.8), (2.9), (2.12), and (2.13) or the system (3.1)–(3.4)
and (2.13) depending on the cases and loading rates to find Ne

functions Kci(T, P), i = 1, . . . , Ne. Then we form the sum of
squares

h(P) =
Ne∑

i=1

Ni∑
j=1

[Kci(Ti j, P) − K∗
i j]

2,
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TABLE I. Common material parameters for tungsten.

Theory/Parameter TP (K) c0 ρ̄∞ α

Ours 36214 1.026 × 10−2 1.79 × 10−2 21.1
Langer’s 36000 0.01 1.83 10−2 20

where (Ti j,K∗
i j ), i = 1, . . . , Ne and j = 1, . . . Ni, correspond

to the temperatures and fracture toughness measured in the
experiment at Ne different cases and loading rates (the index
j goes from 1 to Ni, where Ni is the number of selected points
on the curve i). We then find the optimal P by minimizing the
function h(P) in the space of parameters subject to physically
meaningful constraints. Langer’s physical deliberations are
still very valuable and can be used to obtain initial guesses
and reasonable upper and lower bounds for the parameters.
Since the above ordinary differential equation (ODE) systems
are stiff, we use the MATLAB solver ode15s for their numerical
integration. Regarding the minimization of the function h(P),
as we are aiming at the global minimum (least squares), the
best numerical package for this is the MATLAB GlobalSearch
minimization.

One of the numerical challenges is the evaluation of frac-
ture toughness in the context of finding the smallest root of
the equation s̄0(ψc) = s̄c. As shown in Fig. 2, the behavior
of the tip stress s̄0(ψ ) representing the solution of the ODEs
(2.8)–(2.13) for predeformed crystal (at the loading rate ξ =
1) changes drastically when T exceeds a critical value Tc ≈
460 K. At low temperatures (T < Tc), the plastic shielding is
small and the tip stress is a monotonically increasing function
of ψ and shows a nearly elastic behavior, so it is straightfor-
ward to find the smallest root of the equation s̄0(ψc) = s̄c. For
T = Tc the tip stress, which is the green curve, touches the
horizontal line s̄0 = s̄c, while for T > Tc the plastic shielding
becomes so strong that the tip stress does not reach the hori-
zontal line before the boundary layer experiences its thermal
instability, leading to the singular behavior of s̄0(ψ ) indicated
by a (nearly) vertical line (the pink and black curves). Thus,
the root is very close to the singular point when function �(ν̄)
goes to infinity, i.e., ν̄c ≈ 5.116. Despite some minor differ-
ences in detail, the behavior of s̄0(ψ ) representing the solution
of the ODEs (3.1)–(3.4) and (2.13) for nonpredeformed crys-
tals at the loading rate ξ = 1 is similar, as shown in Fig. 3.
In this case, the temperature of the BDT is Tc = 360 K. Since
the numerical integration stops when the ψ step is smaller that
some fixed value, it is not always possible to get s0(ψ ) near
the singular point reaching the horizontal line s0 = sc and to
find the intersection point. In order to do so we choose the
alternative event that ν̄ is larger than 5.115. If either of the
conditions s̄0 > sc and ν̄ > 5.115 is satisfied, then the root
finding is stopped and the last ψ is output as ψc.

TABLE II. Parameters for predeformed tungsten.

Theory/Parameter A C0 TA (K) s̄c

Ours 11.58 5.6 × 107 3283 0.2934
Langer’s 10 7 × 107 3500 0.31

TABLE III. Parameters for nonpredeformed tungsten.

η0 TD (K) A1 A2 C0n TAn An s̄cn tn

0.876 1728 7.993 4.318 7.7 × 107 2912 12.27 0.473 9.07 × 10−2

1.2 2200 3500 10 0.1

With the developed large-scale least-squares method, we
could identify the optimal parameters used in simulating the
toughness-temperature curves shown in Fig. 1. The common
parameters are listed in Table I, those for predeformed tung-
sten in Table II, and those for nonpredeformed tungsten in
Table III. For comparison, we also show the values used by
Langer in [12], except for the parameters which vary from
case to case. Note that the value of TP is close to that found in
[11]. The value of TD is somewhat smaller than Gumbsch’s
scaling temperature 2200 K. This suggests that the change
in curvature and growth of tip stress due to nucleation and
emission of nonredundant dislocations are less sensitive to
thermal fluctuations. Finally, the parameters related to the
initial dislocation densities are ri = 0.145, ρ̄i = 9.67 × 10−8,
and ρ̄Gi = 6.89 × 10−5.

The toughness-temperature curves calculated according to
the proposed theory with the above parameters (see Fig. 1)
show a remarkable behavior: At low temperatures, the tough-
ness is rather low and increases with increasing temperature.
At temperature Tc ≈ 460 K for predeformed tungsten and
Tc ≈ 360 K for nonpredeformed tungsten, the toughness ex-
periences a sharp jump corresponding to the vertical line.
When the temperature exceeds Tc, the toughness decreases
with increasing temperature, but still remains higher than
before the BDT. Therefore, Tc is considered to be the tem-
perature of the BDT. Note the good agreement between the
toughness-temperature curves predicted by theory and the
experimental points measured in [13]. A noticeable deviation
is observed only at two temperatures T = 300 and 377 K
for predeformed tungsten and at lowest and highest tem-
peratures for nonpredeformed tungsten. Considering various
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FIG. 2. Tip stresses s̄0(ψ ) representing the solution of the ODEs
(2.8)–(2.13) for temperatures T0 = 100, 200, 350, 460, 500, and
600 K, from top to bottom, plus a dashed line at the breaking stress
s̄c for predeformed tungsten at the loading rate ξ = 1.
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FIG. 3. Tip stresses s̄0(ψ ) representing the solution of the ODEs
(3.1)–(3.4) and (2.13) for temperatures T0 = 150, 175, 200, 250, 360,
and 500 K, from top to bottom, plus a dashed line at the breaking
stress s̄c for nonpredeformed tungsten at the loading rate ξ = 1.

uncertainties in sample preparation and toughness measure-
ment methods, the agreement seems satisfactory.

Figure 4 shows the change of the tip temperature for
predeformed tungsten at loading rate ξ = 1 and at remote
temperature 460 K during the deformation process. We see
that the temperature changes only slightly in the early stage
of deformation. However, during the unstable expansion of
the plastic zone, the temperature changes drastically. This is
caused by the sharp increase in tip stress, which leads to a
large plastic power, a main part of which is dissipated into
heat (compare with the somewhat similar material instability
during adiabatic shear banding, which leads to an increase in
plastic strain rate and plastic power [7]). This is the reason
why taking into account the temperature dependence of the
shear modulus could improve the quantitative agreement with
the experiment at the later stage of deformation.

V. CONCLUSION

Based on the above analysis, we can conclude that tak-
ing into account the temperature dependence of the shear
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FIG. 4. Tip temperature T (ψ ) for nonpredeformed tungsten at
the loading rate ξ = 1 and at the remote temperature of 460 K.

modulus as well as the large-scale least-squares method for
identifying the material parameters can significantly improve
the agreement between theory and experiment. However, the
theory could still be improved in many ways. For example, we
neglect completely the change in configurational temperature
in the equations of motion. This is perhaps acceptable for the
case of predeformed crystals, but not fully justified for the
case of nonpredeformed crystals. In addition, the simplified
theory does not account for the spatial distribution of stress
and plastic distortion or for heat transfer by conduction. An-
other nonlinear effect that could play an important role is
the decrease of the tangential stiffness matrix, which could
accelerate the material instability and lead to the formation
of an adiabatic shear band in front of the crack tip. The
nonlinear and nonlocal model, which analyzes the stress field
and inhomogeneous plastic distortion in the plastic zone ahead
of the crack tip, as well as heat conduction, is left for future
discussion.
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