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Geometric theory of mechanical screening in two-dimensional solids
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Holes in mechanical metamaterials, quasilocalized plastic events in amorphous solids, and bound dislocations
in a hexatic matter are different mechanisms of generic stress relaxation in solids. Regardless of the specific
mechanism, these and other local stress relaxation modes are quadrupolar in nature, forming the foundation for
stress screening in solids, similar to polarization fields in electrostatic media. We propose a geometric theory for
stress screening in generalized solids based on this observation. The theory includes a hierarchy of screening
modes, each characterized by internal length scales, and is partially analogous to theories of electrostatic
screening such as dielectrics and Debye-Hückel theory. Additionally, our formalism suggests that the hexatic
phase, traditionally defined by structural properties, can also be defined by mechanical properties and may exist
in amorphous materials.
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I. INTRODUCTION

The concept of screening, which refers to the reduction of
energy density through a material’s local responses, is central
to many physical systems. Examples include dielectrics and
ionic liquids, in which induced dipolar or monopolar charge
densities respond to the background electric field. As a result,
the effective electric field is modified either quantitatively or
qualitatively [1]. Previous research has successfully applied
the concept of screening to mechanical systems. For instance,
the onset of buckling in 2D defective membranes has been
interpreted as the screening of structural defects by curvature
[2]. Additionally, studies have shown that mechanical stresses
in curved self-assembled crystals can be screened through the
nucleation of structural defects [3–6].

The duality between curvature and defects as entities that
screen and are screened is reflected in the first Föppl–von
Kármán equation for the stress potential χ :

1

Y
��χ = KD − KG. (1)

In this equation, the Gaussian curvature of the actual deformed
configuration is represented by KG, and singular or distributed
defects are represented by KD [2]. This equation demonstrates
that when the curvature KG is fixed, stresses can be reduced
by distributing defects through KD, and vice versa.

Physical phenomena that can be explained by geometric
screening include the shape of virus capsids [7] and defect
patterns on curved colloidal crystals [4,5]. Another example
is the theory of linear and nonlinear screening by imaginary
quadrupoles, which was systematically derived to describe
the emergent mechanics in Kirigami [8] and planar elastic
metamaterials containing arrays of holes [9]. In Fig. 1(a) we
demonstrate a state in which imaginary quadrupoles interact
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nonlinearly, leading to a spontaneous breaking of symmetry
with an alternate pattern [9].

Previous work on mechanical screening has been largely
influenced by an early discovery of mechanical screening
within the statistical theory of 2D crystalline matter, which led
to the concept of two-step melting of a solid through an inter-
mediate hexatic phase to a liquid state [10,11]. In this theory,
the three phases are distinguished by their structural proper-
ties, and the transitions from solid to hexatic and hexatic to
liquid correspond to a sequential destruction of translational
and rotational quasi-long-range order.

From a mechanical perspective, the low, intermediate, and
high temperature phases form elastic solids supplemented by
thermally induced tightly bounded dislocation pairs, tightly
bounded disclination pairs (dislocations), and free disclina-
tions, respectively. The free element in each phase forms a
potential screening mechanism. In the intermediate hexatic
phase, for example, dislocations can form in pairs and unbind
to screen out external loads and are the key mechanism behind
its vanishing shear modulus and the screened interactions
between disclinations [10–13]. This is illustrated in Fig. 1(b)
where a bubble-raft model of a 2D crystalline matter shows
the unbinding of dislocations due to external shear.

The ever-growing list of systems that contain screening
mechanisms is not limited to ordered systems. Examples in-
clude granular amorphous solids, where local quadrupolar
particle rearrangements are induced in response to external
loads [14] [shown in Fig. 1(c)], epithelial tissue [15,16], and
wrinkles and crumples in strongly confined thin sheets, where
local out-of-plane deformations are also of quadrupolar nature
[17,18] [shown in Fig. 1(d)].

Motivated by the wide range of screening mechanisms
found in solids, a linear continuum theory was developed to
describe various modes of screening in elastic materials [21].
Specifically, two distinct screening regimes were predicted: a
quasielastic regime and an anomalous one. It was suggested
that a transition between these different screening modes can
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FIG. 1. Mechanical screening. Top panel: Stress relaxation mechanisms. (a) Nonlinear quadrupole screening in holey metamaterials,
established in [9], (b) screening by dipoles via dislocation unbinding in a 2D crystal bubble-raft model [19,20], (c) quadrupolar Eshelby
plastic event in a model of amorphous solid, adapted with permission from [14], and (d) screening by local quadrupolar wrinkles, adapted
with permission from [17]. Bottom panel: Diagrammatic description of the different screening modes. The linear and nonlinear quadrupole
screening theory was established in [9]. Here we focus on linear dipole and monopole screening theories, extending linear quadrupole screening
in analogy with the extension of dielectrics to Debye-Hückel screening.

be achieved, for example, in granular solid by decreasing the
confining pressure.

Indeed, the theory’s predictions, including the emergence
of anomalous mechanics, have been validated through a series
of numerical and experimental studies on the mechanics of
granular and glassy materials in both two and three dimen-
sions [22–26]. Despite its success in predicting the mechanics
of granular and glassy materials, the theory presented in
[21–26] is derived based on ad hoc assumptions on the gen-
eral nature of screening. In addition, we identify three main
drawbacks of the theory: (1) It is written in a specific coor-
dinate system. (2) It assumes a geometrically linearized strain
measure. (3) The analytic methods available within the current
displacement-formulation are limited.

In this paper, we derive a hierarchy of screening theories
from (geometric) first principles. We address the limitations of
previous theories by developing a covariant geometric formu-
lation of screened elasticity. Our theory reveals three distinct
screening regimes, controlled by quadrupole, dipole, and
monopole screening mechanisms. Additionally, we develop
a generalized Airy potential theory, in which the governing
equations take different forms in each of the regimes

1

Ỹ
��χ = K̄0 Quadrupole

1

Ỹ
��χ + 1

Ỹ
�−2

P �χ = K̄0 Dipole

1

Ỹ
��χ + 1

Ỹ
�−4

M χ = K̄0 Monopole.

Our study demonstrates that the different screening regimes
are characterized by different length scales, �P and �M , which
act as new moduli that extend classical elasticity. The theories

of Dipole and Monopole screening predict nonaffine deforma-
tions in response to uniform external loads and are expected
to be relevant to any solid whose mechanics is controlled by
local relaxation mechanisms, such as local rearrangements in
amorphous solids, wrinkles in confined thin sheets, and T1
transitions in living cellular tissue.

The possible extensions of continuum mechanical screen-
ing are summarized in the bottom panel of Fig. 1. In this
work we focus on the yellow-colored boxes representing lin-
ear dipole and monopole screenings, in which an unusual or
anomalous mechanical behavior is predicted.

Our theory allows studying new problems that the non-
geometric formulation in [21,22] could not address. For
example, we show that a monopole elastic charge screened by
dipoles is mechanically equivalent to a disclination screened
by dislocations in the hexatic phase. Furthermore, we study
how screened defects interact via the screening field. These
and other predictions are proposed as test measurements for
identifying mechanical screening. Surprisingly, the geometric
approach to mechanical screening uncovered an explicit link
between the mechanics of the hexatic phase within the theory
of melting and the mechanics of screened solids, even in the
absence of underlying order.

The structure of this paper is as follows: We start with
introducing an electrostatic analog in Sec. II, where we derive
electrostatic screening theories from energy functional min-
imization, an approach that is more natural when athermal
mechanical systems are considered. In Sec. III we develop
the general framework of geometric screening in elastic-like
solids. In Sec. IV we derive equilibrium equations for the
different screening modes, followed by the development of a
generalized screened Airy stress function approach in Sec. V.
In Sec. VI we study the implications of mechanical screening
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FIG. 2. Diagrammatic representation of screening hierarchy in
electrostatic media. The equation for the electric field depends on
the induced polarization P, which depends on the electric field via a
constitutive relation, illustrated here for each screening regime.

on basic physical properties such as the Green’s function asso-
ciated with each screening mode and the interactions between
sources of stresses in the presence of screening. In Sec. VII we
conclude by discussing the future road map towards a general
theory of screening in solids.

II. THE ELECTROSTATIC ANALOG

A familiar implementation of screening theory is within
electrostatics of continuous media. As such, we find it instruc-
tive to start with the electrostatic analog and later implement
the same ideas, with the necessary adjustments, to elastic
solids. The main idea behind the analogy is the hierarchical
structure of linear and nonlinear electrostatic screening as
summarized in Fig. 2.

The potential energy density stored in the electric field is
U = 1

2ε0E2, and the work done on the system by assembling
a charge density ρ f is W = ρ f φ. The electrostatic free energy
in a domain M is therefore

F =
∫
M

(U − W )dS =
∫
M

(
1

2
ε0E2 − ρ f φ

)
dS (2)

with E = −∇φ the electric field derived from a potential, and
ε0 the vacuum permittivity. If the domain M is filled with
matter, atoms and molecules may polarize in response to the
electric field, creating electric dipoles that modify the electric
field. At the continuum level the dipoles are described by the
polarization density P [1]. The self-interaction energy of a
dipole, or the work required for its nucleation, is material
dependent and reflects the microscopic origin of the charge
separation within the atom or the molecule. To account for
this effect we note that the energetic cost is quadratic in the
polarization, and that dipoles interact with each other via the
total electric field, so

U = 1

2
ε0E2 + E · P,

W = 1

2ε0χe
P2 + ρ f φ. (3)

Here χe is the electric susceptibility, and as before, U quan-
tifies the energy stored in the electric field and W the work
done on the system by assembling the monopole and dipole

densities ρ f and P. The equilibrium equations are then

P = ε0χeE,

∇ · E = 1

ε0
(ρ f − ∇ · P). (4)

Upon substituting the first relation in the second we get

∇ · E = 1

ε0(1 + χe)
ρ f = 1

ε
ρ f . (5)

Thus, we see that the permittivity constant is renormalized by
the induced dipoles. These equations are the basis for linear
dielectrics.

An important observation is that the form of W in Eq. (3) is
not the most general one. Upon assuming that W is an analytic
function of P and its derivative, the most general form that
preserves the symmetries to rotations and translations is

W = ρ f φ + 1
2α2P2 + 1

24α4P4 + · · ·
+ 1

2β2(∇ · P)2 + 1
24β4(∇ · P)4 + · · ·

+ 1
2γ2(∇ × P)2 + 1

24γ4(∇ × P)4 + · · · .

Within a linear theory, only three terms contribute with
nonzero α2, β2, γ2. However, from a physical perspective, the
multipole expansion

ρ = ρ f + ∇ · P + ∇∇Qe + · · · , (6)

together with the interpretation of P as a polarization field
(and Qe the electrostatic quadrupole charge density), implies
that ∇ × P does not contribute to the charge distribution.
Hence, in electrostatic systems we expect γ2 = 0. In fact,
quadratic terms with higher order derivatives, e.g., �(∇ · P),
are also consistent with order expansion and symmetry con-
siderations, but are neglected for their absence from the
multipole expansion, leaving the general form

W = ρ f φ + 1
2α2P2 + 1

2β2(∇ · P)2. (7)

The term proportional to (∇ · P)2 represents the nucleation
cost associated with effective monopoles, created by nonuni-
formly distributed dipoles. The two coefficients correspond

to an inherent length scale � ≡
√

β2

α2
. When compared with

system size, the dielectric state corresponds to � � L. In the
other limit, L � �, the term P2 is negligible, and Eq. (3) takes
the form

U = 1

2
ε0E2 + E · P,

W = 1

2�2
0

(∇ · P)2 + ρ f φ. (8)

Upon minimizing F = ∫
M(U − W )dS the equilibrium equa-

tions are

∇(∇ · P) = −ε0�
−2
0 E,

�φ = − 1

ε0
(ρ f − ∇ · P). (9)

The first equation can be written as

∇(∇ · P − ε0�
−2
0 φ

) = 0, (10)
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TABLE I. Reference curvature multipoles and possible realizations.

Type K̄ Realization

Monopole m δ(x) Disclination
Dipole p · ∇δ(x) Dislocation
Quadrupole (∇T · q · ∇)δ(x) Dislocation pair, interstitial

implying that the expression in brackets is a constant which
can be set to zero using the potential gauge freedom

∇ · P − ε0�
−2
0 φ = 0. (11)

Since the gauge is fixed, from this point onward we should
no longer expect the equations to be invariant under gauge
transformations. Upon substituting Eq. (11) in Eq. (9) we find

�φ − �−2
0 φ = − 1

ε0
ρ f . (12)

This is the Helmholtz equation from the Debye-Hückel the-
ory, describing screening by mobile monopole charges in an
ionic liquid. We emphasize that in both dipole and monopole
screenings, the fundamental fields with respect to which the
energy is minimized are the electric potential and the polar-
ization field. In the monopole screening case, the variation
with respect to the polarization enforces the conservation
of total charge. Equation (12) is traditionally derived from
the Poisson-Boltzman equation using a detailed microscopic
theory, which gives an explicit expression for the Debye-
screening length �0 in terms of temperature, ionic strength,
etc.

Our minimization approach avoids the microscopic statis-
tical picture, and thus provides no details on the parameter �0.
Despite this weakness, such an approach is advantageous in
this work, since the systems we are interested in are mostly
athermal and disordered.

III. PURE AND SCREENED ELASTICITY

One challenge in writing a screening theory for solids is
the identification of the basic screening element, which arises
naturally from a geometric approach to elasticity [27]. In this
formulation the reference state of a solid M is defined by the
rest distances between material elements, and quantified by
the reference metric ḡ0 via dl2

0 = ḡ0
μνdxμdxν . A configuration

is described by the metric g, quantifying the actual (poten-
tially deformed) distances between material elements given by
dl2 = gμνdxμdxν . Contrary to the reference metric, the actual
one is induced from an embedding φ:M → R2 describing the
material configuration with g = ∇φT ∇φ. The strain is defined
as the deviation of g from its rest state u = 1

2 (g − ḡ0). A key
property in this formulation is the curvature associated with
the reference metric. A stress free configuration is available if
the reference Gaussian curvatures K̄0 associated with ḡ0 van-
ishes. Therefore K̄0 is a measure of geometric incompatibility,
and consequently for sources of residual stresses. Singular
sources of stresses are described by singular K̄0, exhibiting
a natural multipolar hierarchy, as shown in Table I.

In a continuum limit, the reference curvature describes
distributed multipoles

K̄0 = M(x) + ∇̄αPα (x) + ∇̄αβQαβ (x) + · · · (13)

with M, P, and Q distributions of disclinations, dislocations,
and quadrupoles [28]. Singular multipoles are materialized
via anelastic deformations which modify the reference metric.
The simplest anelastic deformation is a local change in the
reference state,

ḡαβ = ḡ0
αβ + δ(n)(x) qαβ . (14)

The trace of q corresponds to an area change, and the traceless
symmetric part corresponds to local shear. This type of metric
deformation describes a wide variety of screening mecha-
nism, as illustrated in Fig. 1. For small anelastic deformations
the leading order of the reference curvature associated with
ḡ is

K̄ = K̄0 + Qαβ∇̄αβδ(x) (15)

with Qαβ = ε̄αμε̄βνqμν and ε̄ are the Levi-Civita tensors with
respect to ḡ0 [29]. In light of the multipole expansion in
Eq. (13) we find that a local material rearrangement induces a
localized quadrupolar elastic charge.

This reflects a deeper property of elastic charges: In [27]
it was proved that the lowest order elastic multipole that can
be nucleated by a local material deformation is quadrupolar.
The proof relies on global geometric properties which are
impossible to change via local deformations. This geometric
conservation law makes the elastic quadrupoles analogous to
electric dipoles, which are the lowest order electric charges
that can be nucleated locally without violating conservation
of charge. The inevitable conclusion is that the quadrupolar
field Qαβ (x) is, in principle, the natural screening field in
solids. Motivated by these observations we turn to derive
a screening theory of elastic-like solids by accounting for
induced quadrupoles and their nucleation cost. For that we
briefly review the geometric approach to elasticity and the
possible screening modes.

A. Elasticity

For a purely elastic material the reference metric ḡ0 is fixed,
and does not change in response to external loads. The elastic
strain is then

uel = 1
2 (g − ḡ0). (16)

The equilibrium equations are derived from a mechanical free
energy

F =
∫
M

(U − W ) dSḡ0 −
∫

∂M
WB dlḡ0 , (17)

where U is the elastic energy density, while W and WB en-
code the work density done on the system, e.g., by external
forces acting either in the bulk or on the boundary, respec-
tively. Upon assuming small strains, the elastic energy is
Hookean

U = 1
2A

αβγ δuel
αβuel

βγ . (18)
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In the absence of body forces and in the presence of traction
forces the work densities are

W = 0, (19)

WB = t · d. (20)

Here d is the displacement field defined relative to the ground
state, t are the imposed traction forces, and A is the elastic
tensor encoding material properties. In a homogeneous and
isotropic material

Aαβγ δ = ν Y

1 − ν2

(
ḡαβ ḡγ δ + 1 − ν

2ν
(ḡαγ ḡβδ + ḡαδ ḡβγ )

)
,

(21)

with Y the Young’s modulus and ν Poisson’s ratio. The stress
tensor is defined by the variation of energy density with re-
spect to the elastic strain, leading to Hooke’s law

σαβ = Aαβγ δuγ δ. (22)

Upon minimizing Eq. (27) with respect to the embedding φ

we obtain the equilibrium equation divσ = 0, which takes the
explicit form

∇̄μσμν + (
�ν

αβ − �̄ν
αβ

)
σαβ = 0, (23)

along with the boundary conditions

nασαβ = tβ. (24)

This form of the equilibrium equation accounts for geometric
nonlinearities and was first introduced in [30], and it is given
in Appendix A. A systematic method for solving it nonlinearly
in the case of a non-Euclidean reference metric was intro-
duced in [31].

B. Screened elasticity

When strain relaxation mechanisms are available, the ref-
erence metric is no longer fixed but can evolve in response
to deformations. We therefore distinguish between the (fixed)
initial reference metric ḡ0, and the temporary reference metric
relative to which elastic deformations are measured,

ḡ = ḡ0 + q. (25)

Here q is the density of quadrupole perturbation to the
reference metric ḡ0. Correspondingly, the elastic tensor A, co-
variant derivatives ∇̄, and the raising and lowering of indices
are all defined with the fixed reference metric ḡ0. The elastic
strain is the deviation of the current metric from the updated
reference metric

uel = 1
2 (g − ḡ) = 1

2

(
g − ḡ0 − q

) = u − 1
2 q, (26)

where u = 1
2 (g − ḡ0) is the total strain, measuring the de-

formation relative to the initial configuration. The screened
elastic energy stored in the system still has the form (18),

FSc =
∫
M

(U − W ) dSḡ0 −
∫

∂M
WB dlḡ0 , (27)

with

U = 1
2A

αβγ δuel
αβuel

βγ = 1
2A

αβγ δuαβuβγ

− 1
2A

αβγ δuαβqβγ + 1
8A

αβγ δqαβqβγ . (28)

This form of the energy uncovers the elastic interactions be-
tween the induced quadrupoles: the first term in the second
row represents the elastic interaction between the quadrupole
q at point x with the background stress and all the other
quadrupoles, and the last term represents the self-interaction
elastic energy corresponding to the energy stored in the elas-
tic field induced by a single quadrupole. Another important
contribution to the self-interaction term is the work done on
the system in order to nucleate the quadrupole core. This
material-dependent property is therefore contributing to the
work term in Eq. (27),

W = W[q]. (29)

Here W is a functional whose specific form depends on the
underlying screening mechanism and material properties.

At this point we draw inspiration from the electrostatic
analog, specifically from Eq. (7), which builds on the mul-
tipole expansion, and write the general form of W reflecting
screening by quadrupoles, dipoles, and monopoles

W = 1
2�

Q
αβγ δQαβQγ δ + 1

2�P
αβPαPβ + 1

2�MM2, (30)

where

Qαβ = ε̄αμε̄βνqμν, Pα = ∇̄μQαμ, M = ∇̄αβQαβ. (31)

From homogeneity, isotropy, and the dimensions of W we find

�
Q
αβγ δ = λQḡ0

αβ ḡ0
γ δ + μQ

(
ḡ0

αγ ḡ0
βδ + ḡ0

αδ ḡ0
βγ

)
,

�P
αβ = 1

2Y �2
Pḡ0

αβ,

�M = Y �4
M, (32)

with Y the Young’s modulus and �P, �M the typical
length scales associated with each screening multipole. The
quadrupole term in Eq. (30) represents the nucleation cost of
a quadrupole field describing a distribution of local metric
perturbations to ḡ0. In this case the anelastic response of
the material is quantified by the value of Q, describing the
average uniform Eshelby-like deformation. This is similar to
the weak screening by dislocation pairs (quadrupoles) in the
solid phase of 2D crystalline materials. The second term in
Eq. (30) describes the effective nucleation cost for dipoles
that emerge from nonuniform distribution of quadrupoles. In
this case the anelastic response of the material is quantified
by the spatial variation of Q encoded in its divergence and is
similar to screening by dislocations (dipoles) in the hexatic
phase of 2D crystalline materials. The last term in Eq. (30)
describes the effective nucleation cost for monopoles, which
is analogous to screening by disclinations (monopoles) in a
melted 2D crystalline.

The geometric realization of a screening quadrupole and a
dipole is visualized in Fig. 3, where the semitransparent and
opaque configurations describe the rest states before and after
the anelastic deformations, on a finite region. These anelas-
tic deformations are derived by calculating the displacement
field induced from uniform distribution of each multipole:
The deformation induced by a uniform Q corresponds to a
uniform strain and is visualized in Fig. 3(a). To interpret the
dipole term we take a spatially varying quadrupole with uni-
form dipole P = P0ŷ. The induced deformation is visualized
in Fig. 3(b), indicating a non-Eshelby deformation that is of
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FIG. 3. Anelastic deformations induced by (a) a uniform
quadrupole and (b) a uniform dipole on a finite region. The de-
formed states are superimposed on the (semitransparent) undeformed
configuration.

lower order in the multipole expansion. This is analogous to
creating electric monopole from nonuniform dipole field. As
for the monopole term in Eq. (30), this screening mechanism
induces nonzero curvature, and thus cannot be visualized via
a planar deformation.

According to Eq. (30) and Eq. (32), in principle all three
screening mechanisms can act simultaneously. However, elas-
tic materials correspond to large �P and �M , suppressing
nucleation of dipoles and monopoles. When λQ, μQ → 0 the
nucleation cost of dipoles (the scale �P) may become finite,
and when �P → 0, the cost of monopoles (�M) may become
finite as well. This hierarchy of screening is based on scale
separation of �P, �M and is in line with the scale separa-
tion discussed after Eq. (7) in the electrostatic analog. It
is also analogous to the hierarchy of Solid-Hexatic-Liquid
phases, where dipole and monopole screenings correspond
to the unbinding of dislocations (dipoles) and disclinations
(monopoles) with finite nucleation energy in the hexatic and
liquid phases, respectively [3,11]. The mapping between the
theories is discussed in Sec. VII.

In light of this argument, in what follows we study the
mechanics of the three screening modes separately, and we
assume three distinct situations in which each of the terms in
Eq. (30) dominates.

IV. EQUILIBRIUM EQUATIONS

Here we derive equilibrium equations for each of the
quadrupole, dipole, and monopole screening regimes. The
detailed derivation is given in Appendix A.

The relevance of these equations arises from the more
general assumption on dissipative dynamics. When a mechan-
ical or electrostatic system is perturbed, it reaches a new
equilibrium after a sufficiently long timescale that depends,
for example, on viscosity or friction. The simplest dissipative
dynamics for a mechanically screened solid describes the
evolution of the configuration and the reference state, each
with a rate proportional to the corresponding energy gradient

γφφ̇ = −δφF, γqq̇ = −δqF, (33)

with γφ and γq tensorial dissipation constants. Equilibrium
corresponds to φ̇ = 0 and q̇ = 0. Therefore, the equilibrium
equations are derived using the variation of an energy with
respect to the embedding φ describing the configuration and
the induced quadrupole field q. Since W is independent of
the configuration, the variation with respect to φ is the same
in the different screening regimes. Explicitly, the mechanical
free energy to be minimized is

F =
∫
M

(
1

2
Aαβγ δuel

αβuel
γ δ − W[q]

)
dSḡ0

−
∫

∂M
t · d dlḡ0 . (34)

Upon defining the elastic stress

σ
αβ

el = Aαβγ δuel
γ δ = 1

2A
αβγ δ

(
gγ δ − g0

γ δ − qγ δ

)
, (35)

we find the equilibrium equation

∇̄μσ
μν
el + (

�ν
αβ − �̄ν

αβ

)
σ

αβ

el = 0, (36)

along with the boundary conditions

nασ
αβ

el = tβ, (37)

justifying our definition of the elastic stress tensor. We empha-
size that from the solutions for the stress σel and the induced
charges q we can recover the actual metric through

gαβ = ḡ0
αβ + qαβ + 2Aαβγ δσ

γ δ

el . (38)

Here the notation Aαβγ δ is the inverse elastic tensor.
To recover the actual metric and configuration in equilib-

rium, Eq. (36) should be supplemented with an equation for
the induced screening charges, obtained by varying the energy
(34) with respect to q:

δqF =
∫
M

(
−1

2
σ

αβ

el δqαβ − δqW
)

dSḡ0 . (39)

Next we perform the variation of W , which is shown to
strongly depend on the specific screening regime.

Quadrupole screening: In this case

W = 1
2�

Q
αβγ δQαβQγ δ = 1

2�αβγ δ
q qαβqγ δ, (40)

with �q proportional to �Q (see Appendix C). Upon varying
the the total energy with respect to q we find a linear relation
between the induced quadrupole and the elastic stress:

σ
αβ

el + 2ε̄αμε̄βν�
Q
μνγ δQγ δ = 0. (41)

In analogy to models for dielectric media, such as the
Maxwell-Garnett model [32,33], this screening regime de-
scribes a material containing a dilute distribution of
quadrupoles induced in response to external loads.

At this point we can integrate out the quadrupolar degree
of freedom by substituting q either in Eq. (35) or in Eq. (34).
In both cases we end up with an effective elastic energy FQ

that depends only on the total strain

FQ =
∫
M

1

2
Ãαβγ δuαβuγ δ dSḡ0 −

∫
∂M

t · d dlḡ0 , (42)

where Ã is an effective elastic tensor given explicitly in
Appendix C, encoding the mechanical effect of the induced
quadrupoles, leading to a quasielastic theory.
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This result is also similar to dielectrics, where screening
by electric dipoles rescales the dielectric constants without
otherwise modifying the theory.

Dipole screening: In this case

W = 1
2�P

αβPαPβ = 1
2�P

αβ (∇̄μQαμ)(∇̄νQβν ). (43)

Upon substituting the relation between Q and q, and varying
W with respect to q we find

σ
αβ

el + 1
2Y �2

Pε̄μαε̄νβ (∇̄μPν + ∇̄νPμ) = 0, (44)

along with the boundary condition

ε̄μαε̄νβ (nμPν + nνPμ) = 0. (45)

Contrary to the quadrupole screening regime where a linear
relation between stress and induced quadrupoles holds, here
the stress is linearly proportional to the second gradient of
the induced quadrupole field. An immediate consequence is
the relation between elastic pressure and the induced isotropic
quadrupole

Tr σel = ḡαβσ
αβ

el = −Y �2
P∇̄μνQμν. (46)

This situation is similar to its electrostatic analog, where in
a dielectric the induced dipoles are linearly proportional to
the electric field, whereas in Debye-Hückel theory the electric
field is proportional to the second gradient of the induced
dipoles, as in Eq. (9).

Monopole screening: In this case

W = 1
2�MM2 = 1

2�M(∇̄αβQαβ )(∇̄γ δQγ δ ), (47)

and from the variation of W we find

σ
ρσ
el + Y �4

Mεγρεδσ (∇̄γ δ∇̄αβQαβ ) = 0 . (48)

with the boundary condition

ε̄μαε̄νβ (nμ∇̄νM + nν∇̄μM ) = 0. (49)

As in the dipole screening regime, here too we will find
that the pressure, that is, the trace of stress, is useful when
integrating out the quadrupolar degree of freedom, and it takes
the form

Tr σel = −�M(�̄∇̄αβQαβ ). (50)

In summary, the equilibrium equations for each screening
mode are

Equation Mode

σ
αβ

el = −ε̄αμε̄βν�
Q
μνγ δQγ δ Quadrupole

σ
αβ

el = − 1
2Y �2

Pε̄μαε̄νβ (∇̄μPν + ∇̄νPμ) Dipole

σ
αβ

el = −Y �4
M ε̄γ αε̄δβ (∇̄γ δ∇̄μνQμν ) Monopole. (51)

V. POTENTIAL THEORY

To solve the equilibrium equations for the stress and the
induced charges, we develop a potential theory generalizing
the Airy stress function approach. In this approach a repre-
sentation of the stress solving Eq. (36) is given in terms of a
scalar function

σ
μν
el = 1√|ḡ|

1√|g|ε
μαενβ∇g

αβχ. (52)

A geometric compatibility condition is needed to deter-
mine the stress function χ , which is requiring the Gaussian
curvature of the actual metric g to vanish. From the definition
of stress and strain we get an expression for the actual metric

gαβ = ḡ0
αβ + εαμεβνQμν + 2Aαβγ δσ

γ δ

el , (53)

which is implicit due to the complicated dependence of σel

on g.
To calculate the curvature of g and enforce the geometric

compatibility condition we now assume that both the elastic
and the total strains are small, that is, g ≈ ḡ ≈ ḡ0. Within this
approximation a perturbative expansion for the stress potential
is applicable. The leading order term of the curvature takes the
form

0 = K̄0 + ∇αβQαβ − 1

Y
��χ. (54)

The term ∇αβQαβ represents the induced effective
monopoles, which depend on the specific screening regime.
To close the equation, and integrate out the quadrupolar
degrees of freedom, we determined the induced effective
monopoles by substituting Eq. (52) in Eq. (51). We find (see
Appendix D for details)

∇̄αβQαβ = − 1

Y
×

⎧⎨
⎩

0 Quadrupole
�−2

P �̄χ Dipole
�−4

M χ Monopole
. (55)

In the third equation, corresponding to the monopole screen-
ing regime, the induced monopole is determined up to an
arbitrary function satisfying ∇̄αβχg = 0, and we choose a
gauge with χg = 0.

Having found the explicit expression of ∇̄αβQαβ in each
screening mode, Eq. (54) is now closed:

Screened Stress Function Mode

1

Ỹ
��χ = K̄0 Quadrupole

1

Ỹ
��χ + 1

Ỹ
�−2

P �χ = K̄0 Dipole

1

Ỹ
��χ + 1

Ỹ
�−4

M χ = K̄0 Monopole. (56)

These equations are derived based on the assumption of
scale separation, discussed in the introduction. Within this
assumption we can combine them into one equation that holds
when screening is dominated by either quadrupole, dipole, or
monopole charges:

��χ + �−2
P �χ + �−4

M χ = Y K̄0. (57)

Once the equation for χ is solved, the stress tensor can be
calculated and boundary conditions enforced to uniquely de-
termine χ . However, to recover the displacement field it is
required to calculate the actual metric of the embedding, and
therefore the induced quadrupoles. For that the solution for the
elastic stress is substituted in Eq. (51), which then should be
solved for the induced quadrupoles, subjected to the boundary
conditions [Eq. (45) in the dipole regime and Eq. (49) in the
monopole regime].

At this point we identify an explicit link with the theory of
melting in 2D crystals. It was recently shown that the theory of
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defects-mediated melting is dual to a sine-Gordon-like Hamil-
tonian [12,13]. Upon deriving the equilibrium equations from
the proposed Hamiltonian Eq. (57) is recovered. This obser-
vation suggests that the dipole screening regime developed in
this work forms a mechanical realization of the hexatic phase,
which is traditionally associated with structural properties.

A comment on gauge freedom is necessary at this point:
One may suspect that the explicit dependence of Eq. (57) on
the value of the stress function χ violates the gauge freedom
of the stress tensor. However, this reflects only the gauge
choice made when solving for the induced effective monopole
in the monopole screening regime (55). This is similar to loss
of gauge freedom in Debye-Hückel theory as in Eq. (12).

VI. APPLICATIONS

The hierarchical form of Eq. (30) suggests that solids
with a quadrupolar relaxation mechanism are prone to dipole
screening. This hypothesis, if true, unifies a variety of sys-
tems that are fundamentally different from each other, under
the same screening theory. For example, cellular epithelial
tissue responds to mechanical loads by cell rearrangements
[15,34] and shape changes [35,36], both quadrupolar in na-
ture. Holes in perforated (“holey”) mechanical metamaterials
release stresses by forming imaginary quadrupoles [9,37].
Nonuniform hole sizes, as in disordered metamaterials, will
induce spatially varying quadrupoles, potentially leading to
dipole screening. Last but not the least, screening can form
in wrinkled and crumpled thin sheets. The system shown in
Fig. 1(d) demonstrates the quadrupolar nature of local wrin-
kles, which can merge to form long wrinkles, as observed in
other scenarios such as [38]. If a wrinkle ends at the bulk
it leaves a free dipole, supporting the possibility of dipole
screening. We therefore expect our theory to form an effective
2D description of certain wrinkled systems, holey metamate-
rials, glasses, tissue models, and granular matter.

In the next subsections we study the mechanical impli-
cations of dipole and monopole screening on prototypical
mechanical scenarios such as the fields induced by sources
of stresses (defects) and the interactions between them.

A. Screened Green’s function

A prominent manifestation of screening is the modified
form of the potential associated with a point monopole charge.
This potential is of importance for two main reasons: (1)
its functional form characterizes the nature and effect of
screening and (2) it forms a Green’s function for the nonho-
mogeneous equation (56).

Monopolar elastic charges can be created by removal or
insertion of an angular section. In hexagonal crystalline struc-
tures they form five- or sevenfold disclinations. A metric
description of defects generalizes the concept of structural
defects to solids with no underlying order, e.g., amorphous
solids [27,39]. In analogy with the screened fundamental solu-
tion in Debye-Hückel theory, known as the Yukawa potential,
we solve Eq. (56) in each screening regime for a monopolar
source term K̄0 = δ(x).

To solve the equations it is useful to define a Helmholtz
operator

Hθ
� = � + eiθ �−2, (58)

with which Eq. (56) reads

1

Ỹ
H0

0H0
0χ = K̄0 Quadrupole

1

Ỹ
H0

�P
H0

0χ = K̄0 Dipole

1

Ỹ
Hπ/4

�M
H−π/4

�M
χ = K̄0 Monopole. (59)

An important property of H is that the kernels of two
different operators are disjoint. Therefore the homogeneous
equation in the case of dipole and monopole screenings re-
duces to pairs of second-order equations.

In the case of quadrupole screening the Green’s function
GQS coincides with the classical solution of a single discli-
nation. To find the solution in the case of dipole screening
we write the general polar symmetric solutions of the two
equations H0

0χD = 0 and H0
�P

χD = 0, hence

χDS(r) = c1 log(r/�P ) + c2J0(r/�P ) + c3Y0(r/�P ) + c4

(60)

Similarly, the solution in the case of monopole screening is
found by solving H−π/4

�M
χM = 0 and Hπ/4

�M
χM = 0 and reads

χMS(r) = d1J0
(
e

π i
4 r/�M

) + d2J0
(
e

3π i
4 r/�M

)
+ d3Y0

(
e

π i
4 r/�M

) + d4Y0
(
e

3π i
4 r/�M

)
.

The coefficients ci and di are determined by boundary condi-
tions, and by a topological condition obtained by integrating
both sides of Eq. (59) with K̄ = δ(x) over the area. In the case
of monopole screening we also set the value of stress function
at infinity, reflecting the gauge choice made in Eq. (55). The
case of traction-free boundary conditions in a finite systems
is detailed in Appendix F. The Green’s function is obtained
by solving the problem in an infinite system with vanishing
stress at infinity. The solutions for the three screening regimes
are plotted in Fig. 4 and are given by

GQS(x, x′) = Y |x − x′|2
8π

log
|x − x′|

�P
,

GDS(x, x′) = Y �2
P

2π
log

|x − x′|
�P

,

GMS(x, x′) = Y �2
M

8

[
H0

(
e

iπ
4
|x − x′|

�M

)

− H0

(
e− iπ

4
|x − x′|

�M

)]
(61)

with H0 the Hankel function defined by

H0(z) = J0(z) + iY0(z). (62)

The Green’s function screened by dipoles GDS in Eq. (61)
is consistent with the potential induced by a disclination in the
hexatic phase and forms the basis for the sequential transition
from hexatic to fluid phase. Furthermore, this result provides
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FIG. 4. Green’s functions associated with the inhomogeneous
screened equations (56) plotted on a semilog scale. The blue, yellow,
and green curves represent the stress function associated with a
monopole screened by quadrupoles, dipoles, and monopoles.

a potential explanation for a problem presented in a visionary
study [40]. In that work the authors studied the elastic fields
induced by edge and screw dislocations in a Lennard-Jones
model of amorphous solid. They discovered that the stress
fields of a screw dislocation are elastic-like, whereas those
of edge dislocation are smeared out. In our theory an edge
dislocation is dipolar and therefore is significantly screened
by dipoles as expressed by GDS. This is contrary to the screw
dislocation, which is not dipolar and therefore cannot be effec-
tively screened by dipoles. A systematic study of this problem
from the perspective of screening that will compare theoretical
predictions with numerical simulations of amorphous solids is
left for a future work.

B. Screened geometric charges and their interactions

In this section we highlight several key results that follow
from the fundamental solution GDS in the dipole-screening
regime. Additionally, we study the interactions between
screened geometric charges.

It was shown in [27,39] that defects and other sources
of stresses can be defined geometrically regardless of a spe-
cific physical model. In this theory sources of stresses are
singularities of K̄ . For example, a dislocation correspond to
K̄ = b · ∇δ(x), and an isotropic Eshelby inclusion corre-
sponds to K̄ = p�δ(x).

From linearity of Eq. (59), and from commutation of
derivatives with the H operator, taking the derivative of both
sides with K̄ = δ(x) yields new solutions for higher order
sources of stresses.

For example, the stress function of a dipole described by
K̄ = b · ∇δ(x) and analogous to a dislocation in the hexatic
phase is

χb = b · ∇GDS = Y �2
P

2π

b · x
r2

. (63)

The stresses derived from this solution decay rapidly with r.
Upon substituting in the energy density one finds that the total
energy of a screened dislocation converges at infinite systems
and reflects only the core energy.

The second example is that of an isotropic Eshelby inclu-
sion, whose solution is

χIso(r) = p�GDS(r) = pδ(x). (64)

This indicates that an isotropic inclusion in an infinite medium
will be completely screened by emergent dipoles. It is impor-
tant to note that the response to a localized expansion in a
finite system is different (see solution in Appendix F), and it
exhibits spatial oscillations as previously reported by some of
the authors [21–26].

The stress functions of the screened dislocation and
isotropic inclusion solve the homogeneous equation (59), thus
in the kernel of the relevant differential operator. A compre-
hensive analysis of the kernel of Hϕ

� is needed in order to
classify and derive all singular solutions and is an ongoing
research topic and will be pursued in future studies.

Next we examine the interactions between screened
sources of stress. It is well established that in the elastic
regime, the energy stored in the medium can be represented
by the stress function and charge distribution [28]

U =
∫

χ K̄dS. (65)

In Appendix E we show that this relation holds also in the
screened regime, hence we can use it to study the interac-
tions between basic sources of stresses. For example, it is
known that isotropic inclusions do not interact in the elastic
framework [28]. However, still in the elastic framework, a
disclination does interact with an inclusion. This is seen by
taking K̄disc = qδ(x) and χIso = p log(x − x0). From Eq. (66)
we find that the interaction between an inclusion and disclina-
tion is

U = q p log(r), (66)

where r is the distance between the two charges.
In the case of dipole screening we still have K̄disc = qδ(x);

however, the screened stress function of the inclusion is
χDS

Iso = pδ(x − x0). In that case the interaction is zero, and the
induced dipole field completely screens out the interaction.
The interactions between other multipoles are calculated in
the same way.

VII. SUMMARY AND DISCUSSION

In this work we developed a hierarchy of continuum
screening theories that generalize classical elasticity and are
expected to be applicable to a variety of different solid-
like systems, such as granular materials, cellular tissue, and
mechanical metamaterials. While the traditional approach to
nonmechanical screening theories is based on statistical and
thermodynamic arguments, our theory is based on geometric
arguments under the assumption that a long-wavelength de-
scription of screened solids is valid.

Based on the conservation laws associated with the geom-
etry of 2D Riemannian manifolds, our theory predicts three
states of solid-like matter: quasielastic quadrupole-screened,
anomalous dipole-screened, and monopole-screened solids.
The case of dipole screening exhibits mechanical behavior
that is similar to the hexatic phase and thus forms an in-
termediate state between a solid and liquid. The existence
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of dipole screening has been fully confirmed in a series of
recent works on granular and glassy matter. The predictions
from the monopole screening regime have not yet been ob-
served in athermal systems. The success of dipole screening
in recent works together with the geometric derivation of me-
chanical screening in the current work calls for a systematic
coarse-graining procedure of our theory out of microscopic
mechanisms.

Our findings suggest that the current understanding of the
jamming transition in granular matter is incomplete. For ex-
ample, it is widely accepted that upon decreasing the pressure
from a dense granular material, at a critical packing fraction,
the material undergoes an unjamming transition to a liquid-
like state that does not support shear. Instead, based on our
theory, we expect a sequential transition from a dense granular
solid, to a dipole-screened solid-like state, and then to an
unjammed state described by monopole screening, similar to
the liquid state in the melting of 2D crystals.

The effect of mechanical screening, in principle, is not
limited to quasistatic deformations, as studied in this work,
and is expected to have implications on the mechanics of both
inertial and dissipative systems. Furthermore, well-studied
phenomena such as fracturing can now be studied within the
framework of screened elasticity. These and other research
questions are left for future study.
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APPENDIX A: DERIVATION OF EQUILIBRIUM
EQUATION FOR THE ELASTIC STRESS

In this Appendix we derive the nonlinear equilibrium equa-
tions for the elastic stress and the corresponding boundary
conditions.

An important quantity that will come back later is the
coordinate transformation of a vector from one coordinate
system to another. Consider two manifolds M,N on which
coordinate systems are denoted with Greek indices μ, ν, . . .,
and roman indices i, j, . . . respectively. Given a mapping
φ:M → N the transformation of a vector from M to N is
given by

vi
N = ∂φi

∂xμ
v

μ

M. (A1)

The material is modeled as a manifold M equipped with
a reference metric ḡ = ḡ0 + q. A configuration is an embed-
ding φ:M → R2 from which an actual metric is defined on
M as the pull-back of the Euclidean metric on R2, denoted
g. We denoted by φ∗ the energy-minimizing configuration
in the absence of external loads. The equilibrium equa-
tions are derived from an energy variation with respect to the
embedding φ describing the configuration. The elastic energy
to be minimized is

F =
∫
M

Wel(g, ḡ) dSḡ −
∫

∂M
t · d dlḡ (A2)

with d = φ − φ∗, and

Wel(g, ḡ) = 1
2A

αβγ δuel
αβuel

γ δ. (A3)

Upon defining the elastic stress

σ
αβ

el = Aαβγ δuel
γ δ, (A4)

we find

δφF =
∫
M

1

2
σ

αβ

el δφgαβ dSḡ −
∫

∂M
t · δφ dlḡ, (A5)

where we used δd = δ(φ − φ∗) = δφ.
Writing the metric variation in terms of the configuration

and using δφgαβ = (∂αφ)(∂βδφ) + (∂αδφ)(∂βφ) we find

δφF =
∫
M

σ
αβ

el (∂αφ)(∂βδφ) dSḡ −
∫

∂M
t · δφ dlḡ

=
∫

∂M
σ

αβ

el nβ (∂αφ)δφ dlḡ

−
∫
M

1√
ḡ
∂β

(
σ

αβ

el (∂αφ)
√

ḡ
)
δφ dSḡ

−
∫

∂M
t · δφ dlḡ. (A6)

In the second integral we note that integrand can be written as

divβσ
αβ

el ∂αφ ≡ 1√
ḡ
∂β

(
σ

αβ

el (∂αφ)
√

ḡ
)

= [∇βσ
αβ

el + (
�̄ν

νβ − �ν
νβ

)
σ

αβ

el

]
∂αφ.

In the last integral we transform the vector t to the reference
manifold by setting t = tμ∂μφ. In this form the traction forces
are defined on the reference manifold, which is equivalent to
saying that the position on which forces applied are moving
with the material, as in Lagrangian coordinates. Therefore the
variation takes the form

δφF =
∫

∂M

(
σ

αβ

el nβ − tα
)
(∂αφ)δφ dlḡ

−
∫
M

divβσ
αβ

el ∂αφ δφ dSḡ. (A7)

We conclude that the equilibrium equation is

∇̄μσ
μν
el + (

�ν
αβ − �̄ν

αβ

)
σ

αβ

el = 0, (A8)

along with the boundary conditions

nασ
αβ

el = tβ. (A9)

APPENDIX B: DERIVATION OF EQUILIBRIUM
EQUATION FOR THE INDUCED QUADRUPOLES

Here we derive the relation between the elastic stress and
the induced quadrupoles in each screening regime.

1. Quadrupole screening

The variation of the work term (40) with respect to q yields∫
M

δqW dSḡ0 =
∫
M

(−�αβγ δ
q qγ δδqαβ

)
dSḡ0 . (B1)
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Substituting in Eq. (39) and requiring the variation to vanish
we get a linear relation between the induced quadrupole and
the elastic stress

σ
αβ

el + 2�αβγ δ
q qγ δ = 0. (B2)

Substituting the expressions for q and �q in terms of Q and
�Q we obtain the first equation in Eq. (51).

2. Dipole screening

The variation of the work term in the dipole screening
regime reads∫
M

δW dSḡ0 =
∫

∂M

1

2
λPε̄μαε̄νβ (nμPν + nνPμ)δqαβ dlḡ0

−
∫
M

1

2
λPε̄μαε̄νβ (∇̄μPν + ∇̄νPμ)δqαβ dSḡ0 .

(B3)

Substituting in Eq. (39) and requiring the total variation to
vanish we obtain the second equation in Eq. (51).

3. Monopole screening

To perform the variation in the monopole regime two inte-
grations by parts are required. This is seen from the following:

δW = ∇̄γ δ (�M(∇̄αβQαβ )(δQγ δ )
√

ḡ0)

−2∇̄δ[�M(∇̄γ ∇̄αβQαβ )(δQγ δ )
√

ḡ0]

+ [�M(∇̄γ δ∇̄αβQαβ )(δQγ δ )
√

ḡ0]. (B4)

We substitute M = ∇̄αβQαβ and note that the double integra-
tion by parts performed on the first term vanishes because
∂∂M = 0, that is, the boundary of the boundary is closed.
The variation therefore takes the form∫

M
δW dSḡ0

=
∫
M

λM ε̄μαε̄νβ (∇̄μνM )δqαβ dSḡ0

−
∫

∂M
λM ε̄μαε̄νβ (nμ∇̄νM + nν∇̄μM )δqαβ dlḡ0 .

Substituting in Eq. (39) and requiring the total variation to
vanish we obtain the third equation in Eq. (51).

APPENDIX C: THE NORMALIZED ELASTIC TENSOR

We first relate �Q with �q as shown in Eq. (40). Since
Qαβ = εαμεβνqμν we find

WQ = 1
2�

Q
αβγ δQαβQγ δ (C1)

= 1
2�

Q
αβγ δε

αμεβνqμνε
γρεδσ qρσ (C2)

≡ 1
2�μνρσ

q qμνqρσ (C3)

with

�μνρσ
q = �

Q
αβγ δε

αμεβνεγρεδσ . (C4)

Next we show how �q normalizes the elastic tensor in
Eq. (B2),

qαβ = − 1
2�

q
αβγ δσ

γ δ

el . (C5)

Substituting in Eq. (35) we find

σ
αβ

el = Aαβγ δuγ δ − 1
2A

αβγ δqγ δ

= Aαβγ δuγ δ − 1
2A

αβγ δ
(− 1

2�
q
γ δμνσ

μν
el

)
. (C6)

Noting that

σ
αβ

el = σ
μν
el iIαβ

μν

iIαβ
μν = 1

2

(
δα

μδβ
ν + δα

νδ
β
μ

)
, (C7)

we get

σ
μν
el

(
iIαβ

μν − 1
4A

αβγ δ�
q
γ δμν

) = Aαβγ δuγ δ. (C8)

Upon denoting

�αβ
μν = iIαβ

μν − 1
4A

αβγ δ�
q
γ δμν (C9)

we get

σ
μν
el = �−1 μν

αβ Aαβγ δuγ δ, (C10)

that is,

Ãαβγ δ = �−1 αβ

μν Aμνγ δ. (C11)

Note that in the absence of quadrupole screening, where all
the coefficients in Eq. (30) vanish, � reduces to the identity,
and the elastic tensor remains intact.

APPENDIX D: DERIVATION OF INDUCED
EFFECTIVE MONOPOLES

To derive the induced monopole charge distribution Mind =
∇̄αβQαβ we use the relation between stress and induced
quadrupoles given in Eq. (51). In the quadrupole screening
regime, in the first equation in Eq. (51), we take the second
divergence to express ∇̄αβQαβ . The divergence of the elastic
stress, and therefore its second divergence as well, vanishes in
equilibrium, hence in this regime ∇̄αβQαβ = 0.

In the dipole screening regime we take the trace of the
second equation in Eq. (51) and find

Tr σel = −Y �2
Pḡ0

αβ ε̄μαε̄νβ (∇̄μPν + ∇̄νPμ). (D1)

Upon substituting P in terms of Q and Tr σel = �̄χ we obtain
the second equation in Eq. (55)

∇̄αβQαβ = − 1

2Y �2
P

�̄χ. (D2)

Last, for the monopole screening regime, substituting
Eq. (52) in Eq. (48) we find

ε̄αμε̄βν∇̄μν

(
χ + Y �4

M∇̄αβQαβ
) = 0. (D3)

We conclude that

χ + Y �4
M∇̄αβQαβ = χg, (D4)

where χg is any function satisfying ∇̄μνχg = 0, reflecting the
gauge freedom of the stress function. Upon setting a gauge
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such that χg = 0 we find

∇̄αβQαβ = − 1

Y �4
M

χ. (D5)

APPENDIX E: INTERACTIONS

In this section we derive the interaction form of the me-
chanical energy stored in the screened solid. The case of
quadrupole screening requires no analysis since the only ef-
fect of the induced quadrupoles is normalizing the elastic
tensor and the interaction remains intact apart from normal-
ized elastic moduli.

In the case of dipole screening, the total energy is

E =
∫
M

(
1

2
Aαβγ δuel

αβuel
γ δ − 1

2
�P

αβPαPβ

)
dSḡ0

=
∫
M

(
1

2
σ

αβ

el uel
αβ − 1

2
λP∇̄μQμαPα

)
dSḡ0

=
∫
M

(
1

2
σ

αβ

el uαβ − 1

4
σ

αβ

el qαβ + 1

2
λPQμα∇̄μPα

)
dSḡ0

−
∫

∂M
λPQμαPαnμdlḡ0 . (E1)

Using the symmetry of Q and substituting it in terms of q
we find that the boundary term vanishes from the boundary

condition in Eq. (45), and the second and third terms in the in-
tegral cancel from the equilibrium equation (44). We therefore
conclude

E =
∫
M

1

2
σ

αβ

el uαβ dSḡ0 . (E2)

Upon expressing σel in terms of the stress function and inte-
grating by parts twice we find that at the linear approximation

E =
∫
M

1

2
σ

αβ

el uαβ dSḡ0 =
∫
M

χ K̄ dSḡ0 . (E3)

APPENDIX F: COMPLETE SOLUTION
FOR GREEN’S FUNCTION

The Green’s function within the screened elasticity setup is
the solution for Eq. (59) with a delta-function singularity, as
solved in Eq. (60) and Eq. (61). The solution is first derived
for a finite domain with traction-free boundary conditions. In
the case of dipole screening the constants of integration are

c1 = q

2πrinrout

rinY1(rin ) − routY1(rout )

Y1(rin )J1(rout ) − J1(rin )Y1(rout )
,

c2 = q

2πrinrout

rinJ1(rin ) − routJ1(rout )

J1(rin )Y1(rout ) − Y1(rin )J1(rout )
,

and here rin and rout are measured in units of rs = √
2�P.

In the limit rout → ∞ both constants vanish, leading to the
Green’s function GDS given in Eq. (61).
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