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Role of composition in fracture behavior of two-phase solids
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In a two-phase solid, we examine the growth of a preexisting macroscopic crack based on simulations of
a random spring network model. We find that the enhancement in toughness, as well as strength, is strongly
dependent on the ratio of elastic moduli as well as on the relative proportion of the phases. We find that the
mechanism that leads to enhancement in toughness is not the same as that for enhancement in strength; however,
the overall enhancement is similar in mode I and mixed-mode loading. Based on the crack paths, and the spread
of the fracture process zone, we identify the type of fracture to transition from nucleation type, for close to
single-phase compositions, whether hard or soft, to avalanche type for more mixed compositions. We also show
that the associated avalanche distributions exhibit power-law statistics with different exponents for each phase.
The significance of variations in the avalanche exponents with the relative proportion of phases and possible
connections to the fracture types are discussed in detail.
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I. INTRODUCTION

Biological materials such as wood, bone, and nacre are
inherently multiphased in their constitution. In such natural
materials, even with the same constituents, by controlling the
relative proportion of the phases and their spatial arrange-
ments, a wide range of effective mechanical and fracture
properties can be achieved [1–5]. For man-made materials
also, with advancements in manufacturing technologies, it is
possible to control and fine tune the composition, even at the
microscopic scale [6,7]. There is continuing effort towards
development of novel multiphase materials that can be used
in engineering applications and determination of optimum
combinations of phases as well as development of better man-
ufacturing techniques that induce minimal undesirable side
effects [8–10]. For reliable use, as well as optimum design
of man-made multiphase solids, developing insights by mod-
eling their fracture behavior assumes paramount significance.

One of the biggest advantages of multiphase materials is
the enhancement of effective fracture resistance in comparison
to that of their constituent phases. Even with inherently brittle
constituents, it is possible to achieve stable propagation of
damage, prior to final failure [11,12]. In addition, fracture
paths can often be controlled by arranging compliant inclu-
sions in the path of a propagating crack, thereby increasing
the resistance to crack growth [11]. Further increase in perfor-
mance can be obtained by spatial patterning. In some natural
materials like nacre, deep sea sponge, and bone the multi-
phase constituents are distributed in specific spatial patterns.
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In artificial multiphase material created through 3D printing,
it has been shown that specific morphological arrangement of
hard and soft phases leads to superior mechanical and fracture
properties compared to their constituents [12,13]. However,
design and development of these material systems require
understanding of the role of composition on all the other
performance indices as well, such as strength, stiffness, and
damage nucleation and growth. These indices, in addition to
the percentage of each phase, also strongly depend on the
comparative elastic and fracture properties of the individual
phases [14,15].

Damage in heterogeneous or multiphase materials, typ-
ically in the form of microcracks, nucleates at multiple
independent sites. Further microcracking occurs not only in
the neighborhood of these microcracks but also at other lo-
cations in the domain even without any stress concentrators.
These microcracking events typically occur intermittently
and are known to release elastic stress waves referred to as
acoustic emission (AE) activity. Clusters or avalanches of AE
signals are recorded as damage grows until catastrophic fail-
ure. The distribution of the cluster or avalanche sizes, energy,
duration, and waiting time between two successive events has
been shown for several heterogeneous materials to exhibit
power-law behavior that spans several decades [16–19].

Classical fracture theory-based failure criteria have limited
capability in predicting fracture in heterogeneous materials
due to subcritical nucleation and growth of interacting mul-
tiple microcracks. Among the various numerical techniques
that have been used to simulate fracture processes in hetero-
geneous materials, discrete lattice-based models have found
wide popularity [20,21]. These models have been shown to be
effective in reproducing several features of experimental frac-
ture data of heterogeneous media, such as power-law statics
of cracking events [22–25], quasibrittle macroscopic response

2470-0045/2023/107(5)/055002(12) 055002-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9974-3247
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.055002&domain=pdf&date_stamp=2023-05-03
https://doi.org/10.1103/PhysRevE.107.055002


SENAPATI, BANERJEE, AND RAJESH PHYSICAL REVIEW E 107, 055002 (2023)

FIG. 1. Discretization of a continuum domain into a spring
network.

resulting from inherent disorder [26,27], prepeak and post-
peak response [28–32], complex failure paths [16,31,33],
etc. Additionally, from the simulations it is possible to gain
insights into the mechanisms that lead to enhancement of
toughness, such as formation of large process zones, increased
delocalization of singular stresses, crack path deflection, etc.
[34–37]. The factors that control these mechanisms have been
identified to be relative proportion of phases, elastic ratio
between the phases [38,39], spatial patterns [36], differences
in fracture characteristics of the phases [21], hierarchical
architecture of phases [33], etc. While the primary focus
of studies on the effect of heterogeneity on fracture have
focused on mode I crack growth, various aspects of crack
growth under more realistic mixed-mode conditions have also
garnered interest, such as determining failure criteria based
on mode I fracture parameters [40], finding the effect of
elastic modulus ratio on global fracture parameter (stress
intensity factor) expressions as well as crack paths [38], find-
ing the effect of elastic and local fracture characteristics in
simulation of continued stable crack growth in a composite
laminate [21], etc.

The type of fracture, based on simulations of a lattice-
based random fuse network model, has been shown to be of
three types: nucleation, avalanche, or percolation type. For a
given sample size, the avalanche-type fracture transitions to
nucleation type for small disorder and to percolation for the
limit of large disorder [22]. Similar transitions can be driven
by the variations in the hardening behavior of a quasibrittle
solid [23]. In these studies the system was taken to be elasti-
cally homogeneous, and the disorder was only in the fracture
characteristics.

In the fracture of multiphase solids, is the observed en-
hancement in mode I toughness strongly dependent on the
ratio of elastic moduli? Do the mechanisms that operate in
mode I also occur in mixed mode, and is the enhancement
similar? How are the avalanche statistics different from a
single-phase disordered solid? And is there any transition
between the fracture types at different compositions? In the
present work, using a random spring network model we
simulate the growth of a preexisting macroscopic crack in
a two-phase solid. The elastic behavior of springs is taken
to be either a hard phase or a compliant soft phase, with
the hard phase being the less dissipative one. We find the
enhancement in toughness as well as strength to be strongly
dependent on the elastic moduli as well as on the relative

FIG. 2. Fixture for simulating mixed-mode fracture.

proportion of the phases. We find that the mechanism that
leads to enhancement in toughness is not the same as that for
enhancement in strength; however, the overall enhancement is
similar in mode I and mixed-mode loading. We also develop
a discussion of the type of fracture based on the crack paths
and the spread of the fracture process zone. We show that the
associated avalanche distributions exhibit power-law statistics
with different exponents for each phase. The significance of
variations in the avalanche exponents with the relative propor-
tion of phases and possible connections to the fracture types
are discussed in detail.

II. MODEL

Domain discretization

A rectangular domain representing a solid with a macro-
scopic edge crack is discretized using a 100 × 100 square
lattice of lattice spacing a0, as shown in Fig. 1(a). Each lattice
site (p) is connected with its nearest (q) and next nearest
neighbors (r) with extensional springs of spring constants
kpq and kpr respectively, while every triad of sites 〈qpr〉 is
connected with a rotational spring of spring constant cqpr , as
shown in Fig. 1(b).

To simulate mixed-mode loading, the lattice sites at the top
edge are connected to a loading pin through struts and those at
the bottom edge to a fixed pin, as shown in Fig. 2. The angle
between the loading axis and the initial crack plane is denoted
by φ. Thus, for φ = 90◦, crack growth occurs in opening
mode (mode I), while for φ = 45◦, crack growth occurs in
mixed mode.

The elastic behavior of the springs is determined based on
the continuum properties of the representative solid [41,42].
The relation between the continuum and the spring network
is established through the equivalence of their stored energy
densities. The spring network has both extensional and rota-
tional springs, hence the potential energy � has an extensional
component �ext and a rotational component �rot:

� = �ext + �rot. (1)

The net extensional potential energy of the system is

�ext =
∑
〈i j〉

1

2
ki j (|�ri − �r j | − ai j )

2, (2)

where ki j is the stiffness of spring connecting lattice points
i and its neighbor j and the sum is over all pairs of sites
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connected by extensional springs including nearest and next-
nearest pairs. ai j denotes the undeformed distance between
points i and j, and �ri and �r j are their respective position
vectors. Similarly, the rotational potential energy component
of the system is calculated as

�rot =
∑
〈pqr〉

1

2
cpqr

(
θpqr − π

4

)2
, (3)

where cpqr represents the rotational stiffness of the spring
connecting the triad of sites 〈pqr〉 [see Fig. 1(b)] and the
summation 〈pqr〉 is over all possible triads. In the undeformed
lattice configuration θpqr = π

4 [Fig. 1(b)]. The potential en-
ergy � in Eq. (1) per unit volume is equated with the strain
energy density of the continuum to express the elastic param-
eters Young’s modulus E and Poisson’s ratio ν in terms of
lattice parameters. For a homogeneous isotropic system, it can
be shown that [41]

E =
8k

(
k + c

a2
0

)
3k + c

a2
0

, (4)

ν =
(
k − c

a2
0

)
3k + c

a2
0

, (5)

where 2k is the spring constant of nearest-neighbor springs,
k is the spring constant of the next-nearest neighbor springs,
cpqr = c, and a0 = 0.5 mm is the undeformed distance be-
tween nearest-neighbor sites.

We now explain how the two-phase solid is modeled using
the spring network model. To model a two-phase material
that is obtained by randomly mixing hard and soft phases,
each lattice site is first assigned to be either soft or hard.
We denote the fraction of sites that are soft by r. Thus r = 0
and r = 1 correspond to homogeneous hard and soft phases,
respectively. We fix the elastic modulus of the hard phase to
be Eh = 200 GPa. The elastic modulus of the soft material
Es is chosen to be Es = Eh/α, where α > 1. The Poisson’s
ratio is chosen to be same for both, ν = 0.3. The choice of
the magnitude of the parameters falls in the ranges of ce-
ramic matrix composites and metal-ceramic composites. To
assign the spring constants, we proceed as follows. First, we
determine values of the spring constants for a homogeneous
system of either only soft bonds or only hard bonds. Then, for
each lattice site, the springs connecting it to the sites in the
south, southwest, west, and northwest are assigned according
to the elastic properties of that site. The spring constants of all
eight rotational springs associated with the site are assigned
according to the elastic properties of the site. This ensures a
unique assignment of spring constants, once the hard and soft
phases are distributed [41].

To simulate fracture, we impose a criterion for a spring
to break. We adopt a common stress threshold for all bonds,
irrespective of whether it is soft or hard. This will correspond
to different strain thresholds for the soft and hard bonds. In the
absence of any disorder, the anisotropy of the lattice plays a
role in mixed-mode fracture [43]. This issue is resolved in the
presence of a small amount of disorder, which is introduced
by choosing the threshold values for stress from a normal
distribution of mean 2.5 kN/mm2 and standard deviation
equaling 4% of the mean. A spring breaks when its length

increases beyond a threshold. The rotational bonds associated
with a broken bond are also considered to be broken.

For fracture analysis, an edge crack of size 30 mm is
inserted exactly at the midpoint of the y plane by removing
bonds common to the 50th and 51st rows of the network, as
shown in Fig. 1(a).

To study the effect of heterogeneity, we have considered
r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and to see the
effect of elastic modulus ratio α, we have studied three values
of α = 20, 10, and 5. In systems having different α values,
the Eh = 200 GPa is fixed, and the corresponding Es are cal-
culated using respective α. For every system having a unique
combination of α and r, 20 realizations are simulated for frac-
ture related studies and 60 realizations for avalanche studies.
This ensures that the results are not sensitive to a particular
choice of spatial assignment of hard and soft phases.

The system is loaded by displacing the loading pin quasi
statically at 0.01 mm per loading step. In the choice of step
size, we have checked for the independence of the avalanche
statistics and macroscopic response on the step size by sim-
ulating with half the step size as well as double the step
size (for select parameters) with no change in exponents or
overall response. The applied displacement is transmitted to
the network through stiff trusses as shown in Fig. 2. The dis-
placement components of the lattice point p are converted into
respective force components using Newton’s law of motion.
An extra dissipative force term is added for quick equilibration
of the system. The net force interaction of the lattice point
with its neighbors is calculated as

�ap = −∇�rpφ, (6)

where mass is set to unity. To attain equilibrium we introduce
a dissipative force, −γ �vp, where the damping coefficient γ is
set to be 0.8. Once �ap is known, the corresponding position
vector at time t + 	t is calculated in terms of the position
vector of the last two time steps, �rp(t ) and �rp(t − 	t ), using
the Verlet algorithm as

�rp(t + 	t ) = �rp(t )(2 − γ	t )

− �rp(t − 	t )(1 − γ	t ) + �ap(	t )2. (7)

In the derivation for the dissipative term, the velocity is eval-
uated by the backward difference formulas �vp(t ) = [r(t ) −
r(t − 	t )]/	t + O(	t ). The position vector �rp is calculated
iteratively using Eq. (7) till the system reaches static equi-
librium. Static equilibrium is assumed to be reached when
the kinetic energy of each particle is lower than a predefined
threshold. We further check that the total forces in the top and
bottom loading pins are equal. After equilibration, the springs
are checked for breakage, the system is reequilibrated, and the
steps are repeated until no further breakage occurs within the
increment.

III. RESULTS

A. Mechanical properties

We first determine the effect of the relative composition
of the two phases on the effective macroscopic response.
Simulations of deformation and fracture of the rectangular
domain with a preexisting edge crack, of size 0.6 times the
width, were performed by applying the displacement load at
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FIG. 3. Averaged force-deflection curve for α = 10, and differ-
ent r for (a) mode I and (b) mixed mode.

the loading pin incrementally, and the corresponding reaction
forces at the loading pin were calculated in the direction
of applied displacement. Figure 3(a) shows the macroscopic
response for mode I loading, obtained for a range of composi-
tions, r, with fixed α = 10, and each data point is averaged
over 20 realizations. For both single phases (r = 0 and 1),
the response is nearly linear up to the peak load, and upon
further extension, the resulting response shows a sharp de-
cline in the load-bearing capacity. For two-phase composition
(0 < r < 1), however, after the initial linear elastic response,
there is nonlinearity prior to the peak load. This is a conse-
quence of springs breaking at multiple locations. Compared
to the overall response of the homogeneous phase, there are
enhancements in strength as well as energy dissipated during
the crack growth until complete failure.

The macroscopic response to mixed-mode loading, pre-
sented in Fig. 3(b), has similar features to that for mode I
loading, in terms of the initial linear response followed by
nonlinearity prior to peak load. The load drop, however, is
significantly more gradual than mode I for higher r. The
enhancement in strength with r shows a similar trend as seen
in mode I.

To establish the effect of α, the ratio between the elastic
moduli of the two phases, on the extent of enhancement of
strength, similar sets of analyses were performed keeping
Eh = 200 GPa for α = 5 and 20 also. In Figs. 4(a) and 4(b),
the strengths are normalized by the strength at r = 0. As
evident in Fig. 4(a), for mode I the normalized strength has
an optimum range for r between 0.1 and 0.6, for which the
strength is near its highest. Moreover, at least 20% increment
in strength is observed for all α in the range of r = [0.1–0.7].
For mode I, there is utmost a weak dependency of the gain
in strength on α (at α = 20, the enhancement is somewhat
reduced due to edge effects as many broken springs are close
to the upper and lower edges). Comparatively, in mixed-mode
loading, the enhancement in strength [Fig. 4(b)] is more
sensitive to the ratio α than in mode I. For α = 5, in the
range of r = 0.1–0.8 the strength enhancement is between
10%–15%, whereas for mode I it was 20%–40%. For higher
α, in contrast, the enhancement is comparable to mode I, and
for r = 0.2–0.5, is higher in mixed mode than seen in mode I.

The effect of α on the total energy supplied (EnS) or
toughness, which is the area under the force-deflection curve,

FIG. 4. Effect of r and α on normalized strength for (a) mode I
and (b) mixed mode, and on normalized energy supplied (EnS) for
(c) mode I and (d) mixed mode.

is shown in Figs. 4(c) and 4(d). EnS is dependent on both
effective stiffness and the fracture events happening during
loading. EnS has two contributions. The first is from the initial
portion of the force-deflection curve where there are very few
fracture events and the contribution to EnS is strongly depen-
dent on the effective compliance of the system. The second
part is from the later portion of the force-deflection curve
and the contribution to EnS is determined by fracture events.
Figure 4(c) for mode I fracture shows that a less compliant
sample can have a larger EnS, as is clear from the behavior
close to r = 1. However, for mixed-mode loading, this feature
is absent, as can be seen from Fig. 4(d). Also, it is seen in
Fig. 4(c) that in mode I fracture the enhancement in EnS is
significant for higher fractions of softer phase (r > 0.5). It is
interesting to note that while the modulus ratio has a strong
effect on the enhancement in total energy supplied, the effect
on strength is comparatively insignificant. In contrast to mode
I, in mixed mode the enhancement in the energy supplied for
failure is seen to increase with r till it saturates beyond r = 0.7
as shown in Fig. 4(d). The optimum seen in mode I normalized
EnS is absent for mixed mode.

B. Microscopic details of fracture process

To gain an insight into the mechanisms of observed
enhancement of both strength and toughness, as well as in-
crease of quasibritility with heterogeneity, we now study the
microscopic details of the fracture process such as the extent
of damage and statistics of broken bonds of different phases.

First, to understand the enhancement in strength, we exam-
ine the damage patterns at peak load of a single realization,
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FIG. 5. Failure path at peak load of a single realization for mode
I with (a) r = 0.2, (c) r = 0.5, and (e) r = 0.8 and for mixed mode
with (b) r = 0.2, (d) r = 0.5, and (f) r = 0.8. Gray corresponds to
unbroken bonds, blue to broken soft bonds, and red to broken hard
bonds.

as shown in Fig. 5, where unbroken bonds are gray, broken
soft bonds are blue, and broken hard bonds are red. When the
domain is predominantly hard phase (r = 0.2), as in Fig. 5(a)
for mode I, the damage is localized in the hard phase ahead of
the crack tip and appears as contiguous clusters in red aligned
to the initial crack plane. There is no noticeable breakage in
the soft phase. Similarly, for r = 0.8 in Fig. 5(e), which is
predominantly soft phase, the cluster (blue) formation is now
in soft phase and is aligned with the initial crack plane with
marginal damage in hard phase.

For the evenly mixed composition at r = 0.5, which be-
longs to the range of compositions in which considerable
enhancement of strength is seen for all α, there is signifi-
cant damage nucleation ahead of the crack tip in the hard
phase, appearing as neighboring clusters in red, in contrast to
r = 0.2, 0.8, which deviates from the initial crack plane [see

FIG. 6. Contours of failure paths averaged over 20 realizations
for α = 20 under mode I loading with (a) r = 0.1, (b) r = 0.6, and
(c) r = 1.0 and under mixed-mode loading with (d) r = 0.1, (e)
r = 0.6, and (f) r = 1.0. Bonds that have probability of failure in
the ranges 0%–25%, 25%–50%, and greater than 50% are colored
yellow, green, and black, respectively. The bonds that are not broken
in any of the realizations are colored red (hard) and blue (soft), based
on the composition of a single realization.

Fig. 5(c)]. There is also diffused damage growth in the hard
phase farther from the crack tip. In the soft phase, however,
the cluster formation is marginal except very near the crack
tip as a connection between two red clusters. The correlation
of the damage pattern at r = 0.5 with enhancement in strength
suggests the mechanism of strength enhancement to be due to
(1) localized damage growth in hard phase as growing clusters
ahead of crack tip that are not aligned with the initial crack
plane and (2) the higher resistance (dissipation energy) of
the softer phase, which disallows coalescence of red clusters
of broken hard phase up to peak load before formation of
the eventually connected crack path. As a consequence, the
resulting crack paths are expected to be more tortuous at
r = 0.5. Damage growth patterns in mixed mode have similar
mechanisms as in mode I, as seen in Figs. 5(b), 5(d), and 5(f),
with the damage oriented asymmetrically at an angle to the
initial crack plane consistent with the mixed-mode nature of
applied load.

To further illustrate the effect of heterogeneity on the
spread of the fracture process zone we show the spatial lo-
cation of broken bonds as contour plots, constructed from
20 realizations, in Fig. 6. There are some bonds that are not
broken in any of the 20 realizations. To make the visualization
of the composition into hard and soft phases clearer, we have
colored the unbroken bonds as red (hard) and blue (soft) based
on the composition of a single realization. The bonds that have
probability of failure in the ranges 0%–25%, 25%–50%, and
greater than 50% are colored yellow, green, and black, respec-
tively. Note that we cannot further distinguish these broken
bonds into soft or hard phases because they may not be the
same in the different realizations. We first discuss mode I load-
ing. As seen from Figs. 6(a)–6(c), the probability of breaking
bonds in the initial crack plane remains higher even in the
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FIG. 7. Effect of r and α on crack tortuosity for (a) mode I
loading and (b) mixed-mode loading.

presence of heterogeneity. The breaking of bonds in the region
above and below the crack plane is indicative of tortuous crack
growth. The bigger the size of the process zone, the more
tortuous the crack path. For heterogeneous systems (r �= 0, 1),
from Fig. 6, it can be seen that the tortuosity increases from
r = 0.1 to r = 0.6, and subsequently reduces with further
increase in r. For a given r, the process zone size increases
with α as seen by comparing the process zones in Fig. 6 for
α = 20 with the process zones for α = 10, shown in Fig. 15
in the Appendix. However, when the system is homogeneous
(r = 1), the crack grows mostly along its initial plane, as
seen in Fig. 6(c). It is evident that at higher heterogeneity
(high α and r in the range 0.3–0.7), the growth of damage is
significantly more diffused, and the crack path is not as well
defined as in case of homogeneous composition (r = 0 and 1).
For mixed-mode loading, the observed crack paths, presented
in Figs. 6(d)–6(f), show effects of mode mixity as the crack
paths are inclined to the initial plane of macroscopic crack.
The effect of increasing α resulting in a larger process zone
size is also seen in the growth of the crack under mixed-mode
conditions (see Fig. 15 in the Appendix). For a strongly het-
erogeneous system (higher α and r = 0.3–0.6), in addition to
the process zone around the crack path, bonds near the loading
pin also break. This is because in mixed-mode loading the
loads are more concentrated on the truss members closer to
the top-right and bottom-left corners [see Fig. 6(e)], resulting
in local bond breakages.

We now quantify the tortuosity of the fracture path by
defining crack tortuosity to be the ratio of the overall crack
length to the distance between the endpoints of the crack. The
average crack tortuosity for both mode I and mixed mode,
shown in Figs. 7(a) and 7(b), is seen to be high in the range
of composition, consistent with the enhancement in strength
seen in Figs. 4(a) and 4(b).

In the strength enhancement, shown earlier in Fig. 4(a),
only a weak dependency on α was observed in mode I. This
could be a result of the opposing effects of higher α on
strength: (1) enhancement due to the higher resistance of
the softer phase which results in higher tortuosity and (2)
reduction of strength due to both the system having lower
initial stiffness as well as higher reduction in stiffness (from
initial to the instant at peak load) due to the larger number of
bonds that break up to peak load for higher α, both locally

ahead of the crack tip as well as in the diffused manner farther
away, leading to nonlinearity in the macroscopic response.
Therefore, while higher α encourages more tortuosity in the
path (see Fig. 7), thereby enhancing the strength, it also re-
sults in a more compliant system, resulting in lower buildup
of stresses for the same applied strains, thus, nullifying the
enhancement effect across α in mode I. In the mixed-mode
case the effect of enhancement dominates, while the differ-
ence in tortuosity is significantly higher at α = 20, 1.5 times
that at α = 5, whereas, in mode I, the tortuosity at α = 20
is 1.3 times that of at α = 5, the corresponding differences
between α = 5 and 20 in the initial stiffness, and the change in
stiffness up to peak load is comparable to within 2% between
the modes. This inference is consistent with the significant
role of α on the enhancement of strength observed earlier for
mixed-mode loading in Fig. 4(b).

To quantify the extent of damage about the mean direction
of crack growth, we show the comparative angular distribution
of the number of broken soft and hard bonds (normalized with
the maximum for clarity) in Fig. 8. It is clear that the hard
bonds tend to break for a wider range of angles for higher r.
The softer bonds, however, irrespective of the composition,
break only in a narrow band around the most likely path. For
mode I, the crack grows along 0◦, and for mixed mode, it
grows along −30◦ with respect to the initial crack plane.

We now examine the role of the comparative breakage
of hard and soft bonds towards the enhancement of strength
and toughness. In Fig. 9(a) the number of soft springs that
break until final failure show a nearly proportionate increase
with r. Interestingly, the number of hard bonds that breaks
prior to final separation of solid, as shown in Fig. 9(c), while
initially increasing with r, reaches a maximum beyond which
it decreases with increasing r. It is to be noted that if the
cracks were perfectly linearly along the initial plane, then the
number of broken hard bonds would have decreased linearly
with r. This behavior is manifested in a decrease in the total
number of bonds broken for larger r, as shown in Fig. 9(e). It
is interesting to note that while the number of soft bonds that
break is marginally sensitive to the ratio between the elastic
modulus of the phases, for a similar increase in the modulus
ratio, the number of hard bonds that break shows a significant
increase. This increase of total number of broken bonds with
α is consistent with the increase in process zone size with α,
as seen in Figs. 6 and 15. At lower r, the total number of
bonds broken, as shown in Fig. 9(e), are close to the number
of hard bonds broken, but subsequently, closer to r = 1, the
number of soft bonds broken contributes significantly to the
overall count of broken bonds. This is also seen in Fig. 16(a) in
the Appendix, which summarizes the percentage contribution
of the two phases in the total number of broken bonds. The
higher the ratio between the modulus of the two phases, the
more dominant is the contribution of the breakage of hard
bonds in the combined count. Similar to the fracture process
as seen during mode I crack growth, in mixed mode also
the breakage of hard bonds constitutes a significantly larger
fraction of the total bonds that are broken [see Figs. 9(b), 9(d),
9(f), and 16(b)]. The crossover for α = 5 occurs at r ∼ 0.7
and for higher α shifts further closer to r=1.

Breakage of both extensional and torsional bonds releases
the deformation energy stored in them. The comparative
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FIG. 8. For α = 20, the angular distribution of broken hard and
soft bonds, where their θ is measured about the initial crack direction
in the undeformed configuration, for both mode I with (a) r = 0.1,
(c) r = 0.6, and (e) r = 0.9 and mixed-mode loading with (b) r =
0.1, (d) r = 0.6, and (f) r = 0.9.

contributions of the two phases in the release of stored po-
tential energy of the failed springs are presented in Fig. 10.
With increasing r, the variation in the energy released closely
follows the variation in number of bonds for both phases
[Figs. 10(a) and 10(c)], but since the choice of failure thresh-
old is a fixed stress, the energy released by soft bonds for
higher α is higher as seen in Fig. 10(a). Comparatively, even
though in the count of the number of broken bonds the hard
bonds dominate Fig. 9(e), energetically, except for small r, the
contribution from the softer bonds dominates the overall en-
ergy released due to breakage of bonds, as seen in Fig. 10(e).
The same feature is observed for mixed mode [see Figs. 10(b),
10(d), and 10(f)]. Figure 17 in the Appendix shows the con-
tribution of each phase in fracture energy of the system. For
both fracture modes, the trend shows that beyond r = 0.2, the
soft phase contributes more to the net fracture energy, and the
contribution seems to be independent of α. With increasing

FIG. 9. In mode I loading, effect of r and α on (a) soft, (c) hard,
and (e) total broken bonds and in mixed-mode loading on (b) soft,
(d) hard, and (f) total broken bonds.

r, the fraction of total energy due to breakage of hard bonds
steadily decreases. For larger α the decrease is rapid initially,
but for r > 0.3 the dissipation percentage distributes between
the phases in a manner independent of α.

It is to be noted that at a higher α, the higher energy
required to break soft bonds does not directly result in en-
hancement of strength as individually both phases (r = 0 and
1) have strength within 5% of each other, as seen in Figs. 4(a)
and 4(b). Only when the phases are combined does the differ-
ence in the energy required to break their bonds result in more
complex fracture paths and enhanced strength. In context of
energy supplied to the system, however, the higher energy
required to break soft bonds while expected results in higher
macroscopic toughness at r = 1 than at r = 0, as seen in
Figs. 4(c) and 4(d), in the range in between, i.e., 0 < r < 1,
the macroscopic toughness is higher than a linearly interpo-
lated effective toughness, which implies there is enhancement.

Further, at α = 20, we also simulated mode I fracture with
different failure criteria by taking the energy threshold to
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FIG. 10. In mode I loading, effect of r and α on energy dissipa-
tion due to breakage of (a) soft, (c) hard, and (e) total bonds and
in mixed-mode loading on energy dissipation due to breakage of
(b) soft, (d) hard, and (f) total broken bonds.

break the hard and soft phases as the same. We find that the
strength at r = 0.5 is an effective average of the strength at
r = 0 and 1 and there is no additional enhancement, while
the toughness at r = 0.5 is slightly higher (by 4%) than the
effective average. At the same energy threshold for break-
age of both soft and hard phases, thus, enhancement in both
strength and toughness is significantly lower. Correspondingly
the crack paths at r = 0.5 exhibit tortuosity of 1.6 compared to
2.75 for common stress threshold criteria. This suggests that
one phase being significantly more dissipative than the other
as well as a fair proportion of both phases being present are
vital for enhancement in strength and toughness compared to
the linear interpolation between the r = 0 and r = 1 counter-
parts.

Regarding the optimum in EnS, seen earlier in Fig. 4(c) for
mode I, it also correlates with the variations in the tortuosity.
Near r = 1 in mode I, the tortuosity Fig. 7 sharply drops for
higher α. For mixed mode, even though tortuosity is lowest at

FIG. 11. Failure path of a single realization for mode I with
(a) r = 0.2, (c) r = 0.5, and (e) r = 0.8 and for mixed mode with
(b) r = 0.2, (d) r = 0.5, and (f) r = 0.8. Gray corresponds to unbro-
ken bonds, blue to broken soft bonds, and red to broken hard bonds.

r = 1, it is higher than that in mode I. Lower tortuosity implies
fewer bonds broken (consistent with the observation in Fig. 9
for the number of broken soft and hard bonds, respectively)
and thus lower dissipation of energy at r = 1 for mode I.

C. Fracture type and avalanche statistics

Fracture in heterogeneous media is a competition between
the two types: diffused damage growth due to heterogeneity
and localized damage growth due to local stress concentra-
tions [22]. To gain an insight into the type of damage growth
for different compositions we present the crack path patterns
of a single realization each in Fig. 11. Unbroken bonds are
in gray, broken soft bonds are blue, and broken hard bonds
are red. When the soft phase is 20% of the area, i.e., r = 0.2,
the crack path is predominantly through the hard phase [see
Fig. 11(a)], and the crack path avoids the soft phase. Even
though the resulting crack path meanders around the initial
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crack plane, all the broken springs are largely localized within
the close neighborhood of the path. When the hard phase is
20% of the area, i.e., r = 0.8, as evident in Fig. 11(e), the
crack path is driven primarily by the high strains ahead of the
crack tip and, as any hard phase in the path is easily broken,
the path does not deviate from its initial plane. However, since
the soft phase has a higher strain threshold, there are quite a
few soft springs, as well as hard, that break even farther from
the final crack path. On the other hand, when the two phases
are in equal proportion (r = 0.5), besides crack growth in the
region of high strains ahead of the crack tip, there are a large
number of damage events at multiple sites that grow inde-
pendent of the crack growth. The resulting fracture process
zone is very wide and has limited localization just prior to
final failure as seen in Fig. 11(c). The effect of increasing r is
similar when crack propagates under a remotely mixed-mode
loading as seen in Figs. 11(b), 11(d), and 11(f).

The distinction between the characteristics of the two
fracture types is also known to be manifested in avalanche
statistics exponents [22]. Even though both fracture types
exhibit scale-free power-law behavior, the heterogeneity-
dominated diffused damage events, in the absence of a
macroscopic crack, exhibit higher exponents (≈3.0) while the
statistics of nucleation-type localized damage growth events
are seen to have lower exponents (≈2.5) [22]. However, in
the presence of a macroscopic crack it has been shown that
even a heterogeneous solid can have lower exponents as the
intensification of the stresses near the crack tip dominates,
leading to localized damage growth [36].

In addition to being a signature for the type of dam-
age growth, the study of avalanches is important in its
own right as the avalanches are experimentally observable.
Fracture events in heterogeneous solids are accompanied by
measurable acoustic emission signals. The distribution of en-
ergy, PE (E ), released in each burst of contiguous events (or
avalanche), follows a power law PE (E ) ∼ E−τE [20,44–46].
In fracture simulation using the spring network model, an
avalanche is defined as the number of springs that break in
one increment of remotely applied strain [47–49]. We denote
the probability distribution of avalanche size n by P(n). The
avalanche distribution is known to be a power-law distribu-
tion, P(n) ∼ n−τn for n 	 1. The exponent τn is related to
the exponent τE for the distribution of acoustic emission ener-
gies as τE = (1 + τn)/2. We have checked explicitly through
simulations that this relation also holds for the two-phase
solid for a particular choice of α = 20 and r = 0.4 which has
the highest total number of broken bonds. In RSNM for an
elastically uniform system and in the absence of a crack, but
with disordered failure threshold, numerical studies show that
τn ≈ 2.5 [42].

Initially, we present the avalanche distribution for the
single-phase systems of differing elastic moduli in Fig. 12.
The avalanche exponent is found to be independent of the
elastic moduli, as expected, and also does not appear to de-
pend on the mode of fracture. The exponent (≈1.2) is much
smaller than that reported for single-phase RSNM. However,
in the presence of a macrocrack, it has been earlier observed
that the value of the exponent is smaller and close to 1.2 [36].

To describe avalanches in a two-phase material, we denote
the avalanches in hard and soft phases with the number of

FIG. 12. The probability of an avalanche of size n, P(n), in
single-phase systems for different elastic moduli for (a) mode I and
(b) mixed mode.

bonds broken, nh and ns, respectively. The complete statistics
of the avalanches are then described by the joint distribution
P(nh, ns). However, given the computational constraints, it
is numerically difficult to obtain good statistics for the two-
dimensional avalanche distribution. Hence, we focus on the
marginal distributions:

Ph(nh) =
∫

P(nh, ns)dns, (8)

Ps(ns) =
∫

P(nh, ns)dnh, (9)

P(n) =
∫

P(nh, n − nh)dnh, (10)

where Ph(nh) and Ps(ns) measure the avalanche distribution
for only hard and soft bonds, and P(n), as defined earlier, is the
avalanche distribution for the total number of bonds broken.

Examples of these distributions are shown in Fig. 13 when
the composition is r = 0.4 for both mode I and mixed-mode
loading. We find that, like for the single-phase systems, the
distributions are power laws. We check that this is true for
other r also. The distributions can, therefore, be characterized
by exponents as follows:

Ph(nh) = 1

nh
τh

. (11)

Ps(ns) = 1

ns
τs

. (12)

P(n) = 1

nτn
. (13)

The variation of τh, τs, and τn with r is summarized in
Fig. 14 for α = 20 for both modes of loading. First, we ob-
serve that the exponents depend on the composition r, and
range from 1.2 to 2 with the exponent of total avalanches
being maximum for r ≈ 0.5. Second, it is evident that the
power exponent of the total solid, τn, is closely following
the one obtained for the hard phase alone, τh, emphazising
that the damage growth in the hard phase is the dominant
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(a) (b)

(c) (d)

(e) (f)

FIG. 13. For α = 20 and r = 0.4, in mode I loading, the proba-
bility of an avalanche of size (a) ns soft bonds, (c) nh hard bonds, and
(e) n total bonds and in mixed-mode loading, the probability of an
avalanche of size (b) ns soft bonds, (d) nh hard bonds, and (f) n total
bonds.

mechanism of the fracture process except at predominantly
soft phase (r � 0.8). This observation allows us to make a few
conclusions about the joint distribution of avalanches. One is

FIG. 14. The variation of τs, τh, τn with r for α = 20 under
(a) mode I and (b) mixed-mode loading. The distribution is separately
calculated for soft, hard, and total bonds.

FIG. 15. Contours of failure paths averaged over 20 realizations
for α = 10 under mode I loading with (a) r = 0.1, (b) r = 0.6, and
(c) r = 1.0 and under mixed-mode loading with (d) r = 0.1, (e)
r = 0.6, and (f) r = 1.0. Bonds that have probability of failure in
the ranges 0%–25%, 25%–50%, and greater than 50% are colored
yellow, green, and black, respectively. The bonds that are not broken
in any of the realizations are colored red (hard) and blue (soft), based
on the composition of a single realization.

that the hard and soft avalanches are highly correlated. If this
were not the case, then we could have written P(nh, ns) in
product form, P(nh, ns) ≈ Ph(nh)Ps(ns), and an avalanche of
size n would be dominated by soft or hard bonds depending
on whether τs < τh. In other words, we would obtain that τn =
min[τh, τs]. This conclusion is inconsistent with our numerical
results and, hence, suggests strong correlations between the
breakage of hard and soft bonds.

We now connect the avalanches to the type of fracture.
From Fig. 14 we observe that the exponent τn depends on
the composition r and is largest around an evenly mixed
two-phase composition (r ≈ 0.5). This increase in avalanche
exponent is related to the fracture type being avalanche type
and is consistent with the diffused damage growth seen earlier
in Figs. 11(c) and 11(d). At low as well as high r, the exponent
τn is smallest, which is consistent with the damage type being
nucleation dominated as observed in Figs. 11(a) and 11(e) for
mode I and Figs. 11(b) and 11(f) for mixed mode.

IV. CONCLUSION

In the present work, we have used a spring network model
to demonstrate that in a two-phase solid with a macroscopic
crack, the enhancement in the strength of the effective re-
sponse (as high as 40%) is strongly dependent on the elastic
ratio between the phases when the load has mixity (φ = 45◦
here); however, the dependence is marginal in mode I for the
range of elastic ratios considered here. The enhancement is
in both the strength as well as toughness, compared to the
linearly interpolated between r = 0 and r = 1 counterparts. It
is caused by the softer phase being significantly more dissipa-
tive than the harder phase as well as a fair proportion of both
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FIG. 16. Variation in percent of broken soft and hard bonds for
(a) mode I and (b) mixed-mode loading with r.

phases being present as these result in the crack path being
tortuous and its growth more dissipative.

The statistics of avalanche distribution obtained from the
fracture simulations exhibit power-law behavior for both
single-phase compositions as well as various ratios of two-
phase compositions implying scale-free fracture behavior. The
higher avalanche exponents are seen to correspond to evenly
mixed phases for which avalanche-type fracture is observed.
For closer to single-phase composition, whether hard or soft,
the exponents are lower, and the fracture type is nucleation
dominated with higher degree of localization of damage near
the crack path. We also find that the avalanche exponents are
different for the soft and hard phases, an aspect that would be
of interest in the analysis of acoustic emission data of fracture
of multiphase material.

The choice of similar breakage stress threshold used in
the present study achieves a commonly observed comparative
material response, that of stiffer phase being less dissipative
compared to the more compliant phase. It also allows for
direct evidence of strength enhancement without any further
interpretations as both the limiting homogeneous cases r = 0
and r = 1 have the same strength. While the constraint of

FIG. 17. Variation in percent of the total energy that is re-
leased through breakage of soft and hard bonds for (a) mode I and
(b) mixed-mode loading with r.
a common stress threshold would need to be modified in
simulations of actual experimental data, the observed strength
enhancement is expected to be qualitatively similar in a
two-phase solid with a significantly tougher compliant (soft)
phase.

APPENDIX

In this Appendix we give some more details of the micro-
scopic fracture process discussed in Sec. III B.

To show the effect of α on the extent of damage, we show
the fracture process zone for α = 10 in Fig. 15. The color
scheme is same as that used for Fig. 6, which is for α = 20.
It can be seen that the area of the process zone decreases with
decreasing α.

Figure 16 shows the contribution of hard and soft bonds to
the total number of broken bonds in both mode I and mixed
mode. In Fig. 16 we see that with increasing r instead of a lin-
ear interpolation between r = 0 and r = 1, except for r > 0.6,
the percentage of broken hard bonds dominates the overall
number of broken bonds. In contrast, the energy dissipated
due to breakage of bonds is dominated by the contribution
from the breakage of the soft bonds, in both modes as seen in
Fig. 17.
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