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Impact of a pressurized membrane: Coefficient of restitution
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Pressurized membranes are usually used for low cost structures (e.g., inflatable beds), impact protections (e.g.,
airbags), or sport balls. The last two examples deal with impacts on the human body. Underinflated protective
membranes are not effective whereas overinflated objects can cause injury at impact. The coefficient of restitution
represents the ability of a membrane to dissipate energy during an impact. Its dependence on membrane prop-
erties and inflation pressure is investigated on a model experiment using a spherical membrane. The coefficient
of restitution increases with inflation pressure but decreases with impact speed. For a spherical membrane, it is
shown that kinetic energy is lost by transfer to vibration modes. A physical modeling of a spherical membrane
impact is built considering a quasistatic impact with small indentation. Finally, the dependency of the coefficient
of restitution with mechanical parameters, pressurization, and impact characteristics is given.
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I. INTRODUCTION

Pressurized elastic shells are ubiquitous, whether as nat-
ural or artificial systems. The latter case includes airbags
[1], inflated helmets [2], inflated shoes [3,4], airbag suits [5],
inflatable structures [6,7], and sport balls [8]. The inflation
pressure allows one to adjust the mechanical properties of
these systems, as an increase in pressure increases the rigidity
of the shell. The fact that the mechanical properties of these
systems can be easily changed makes them suitable for the in-
teraction with humans and in particular for protection against
impacts.

The mechanical response of pressurized shells has been
investigated in the limit of quasistatic deformations. A pres-
surized spherical shell indented locally has been shown to
experience a wrinkling instability above a critical indentation
[9]. This observation was rationalized by considering that
the overpressure introduces an effective bending stiffness in
the system that competes with the natural bending stiffness
of the shell. The wrinkling pattern that develops above the
instability threshold was later captured by a linear stability
analysis of the problem [10].

The limit of rapid deformations has been extensively stud-
ied in the case of a pressurized membrane impacting a rigid
substrate [11]. In this situation, the contact dynamics between
the pressurized shell and the substrate can be characterized
by a coefficient of restitution. This quantity corresponds to
the ratio between the ingoing speed and the outgoing speed
η = |Uout/U0|. The coefficient of restitution reflects the loss
of kinetic energy during the impact. η is unity for lossless
impacts. However, the simplicity of the definition of the co-
efficient of restitution masks the multiple possible physical
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origins of energy loss for a pressurized membrane. A fraction
of the membrane kinetic energy may be transferred to (i)
membrane vibrations [12], (ii) the ambient media vibrations
(sound [13] and ground vibrations), heat converted by (iii)
viscous dissipation in the membrane, (iv) friction with the
ground, or (v) thermally exchanged during impact (nona-
diabatic compression-expansion cycle of the internal gas).
Deciphering between those physical origins of energy dissipa-
tion will shape a theory to predict the evolution of coefficient
of restitution with inflation pressure, membrane mechanical
parameters, and impact speed.

Specifically for spherical shells, two different physical
explanations have been proposed to account for the loss of
energy during the impact of a pressurized membrane, the mo-
mentum flux force [8] and the viscoelastic dissipation within
the membrane [14]. The momentum flux force theory does
not specify the physical phenomena responsible for energy
loss. It stands that the work of the force corresponding to the
nonlinear acceleration of the membrane during the compres-
sion phase is not restored during the expansion phase. In a
different manner, viscoelastic dissipation corresponds to heat
production within the membrane material. This dissipation
has been modeled with a linear damping force proportional
to indentation velocity [14]. This empirical model did not link
explicitly the damping coefficient to the mechanical parame-
ters of the pressurized membrane.

In this paper, we investigate the dependence of the co-
efficient of restitution with the mechanical properties of the
pressurized membrane. We chose to study a thin spherical
membrane made of elastomer and inflated with air as a model
system. We first present two sets of measurements of coef-
ficient of restitution by systematically varying impact speed
and inflation pressure for a small and a large membrane.
Second, we observe the part of the pressurized membrane
in contact with the ground during the impact and rule out
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losses by friction. Then, we compare the different predictions
of the coefficient of restitution and show that vibrations of
the membrane are the main sources of energy losses. This
is rationalized combining idealized kinematics of ball impact
[15] and a minimal 1-mode vibration modeling. Finally, the
dependence of the coefficient of restitution with pressure,
impact speed, and membrane mechanical parameters is estab-
lished.

II. IMPACTS OF PRESSURIZED MEMBRANES:
EXPERIMENTS

A. Characteristics of the pressurized membranes

For spherical membranes, we used a set of four small
beach volleyballs (BV100 Fun, Decathlon KIPSTA) of de-
flated radius R = 8.2 ± 0.1 cm, and one large gym ball (gym
ball size 3, Decathlon DOMYOS) of deflated radius R =
31.3 ± 0.4 cm [see Fig. 1(a)]. Those spherical membranes
were chosen for their minimal composition: they consist of
a single layer of elastomer with a valve for inflation. We
set the inflation pressure P − Patm where P is the absolute
inner pressure in the membrane and Patm is the atmospheric
pressure. The small membrane weighed m = 179 g and the
large membrane weighed m = 2.6 kg. Both membranes had a
thickness e = 2.0 ± 0.12 mm. We verified that the mass of the
membrane corresponds to m = 4πρR2e with ρ the density of
the elastomeric material constituting the membrane.

The membrane elastomer was isotropic and was charac-
terized with a dynamical viscometer to determine the storage
modulus E ′ and loss modulus E ′′. The pieces of elastomer
tested on the viscometer were rectangles of width 9 ± 0.1 mm
and length 20.6 ± 0.1 mm. They were clamped on their width
and the test temperature was 25 ◦C. Over the range of tested
frequencies, E ′ was almost constant E ′ � 5.9 ± 1.0 MPa and
E ′′ varied linearly with frequency leading to E ′′/ f = 2πμ �
27 ± 3 kPa s, see Fig. 1(b), where μ is the effective viscos-
ity of the material. The Young modulus of the membrane
at rest (i.e., f = 0 Hz) was E = 4.2 ± 0.1 MPa. The loss
modulus was measured on non-prestretched samples of elas-
tomer; see Fig. 1(b). However, when the membrane is inflated,
the elastomer is necessarily prestretched. In our conditions,
the prestretching of the membrane has been estimated to be
smaller than 20% [15] and is expected to slightly decrease the
loss modulus E ′′ [16].

B. Coefficient of restitution as a function of inflation pressure
and impact speed

We report here measurements of the impact properties
of the pressurized membranes varying impact speed U0 and
inflation pressure P − Patm. Experimental data of the coeffi-
cient of restitution for small membranes impacts were already
reported in a previous publication [15] but data regarding
the large gym ball are original. For both series of measure-
ments, we followed the same protocol where the ball was
dropped from a height h on a rigid substrate and a high speed
camera allowed us to determine the ingoing and outgoing
speeds of the ball, providing an estimate for η = |Uout/U0|.
A homemade Matlab code detected the circular shape of
the membrane. It provided the position of the circle in time

(a)

(b)

FIG. 1. (a) Small ball and large ball considered as models of
pressurized membranes in this paper. (b) Mechanical properties of
the elastomer of membranes (BV100 Fun) as a function of forcing
frequency with an elongation of 1% and preload of 0.1%. (•): E ′ and
(�): E ′′. Gray dashed line slope corresponds to 2πμ = 27 kPa s.

filtering out deformations and vibrations of the membrane.
The coefficient of restitution η is plotted in Fig. 2(a) [re-
spectively Fig. 2(b)] as a function of the inflation pressure
P − Patm (respectively impact speed U0). In the range of low
speeds (U0 < 2 m s−1), the coefficient of restitution increases
with the impact speed whereas for larger impact speeds U0 >

2 m s−1 it decreases. In the following, we focus on impact
speeds larger than 2 m s−1. In this range, the coefficient of
restitution increases slightly with inflation pressure but de-
creases with impact speed.

C. Deformations at the contact

Tests of membrane deformation kinematics were carried
out on small membranes (BV100 Fun) using a stereo-imaging
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FIG. 2. (a) Coefficient of restitution η as a function of inflation
pressure P − Patm. Open symbols: Small membrane. Filled symbols:
Large membrane. Colors give information about impact velocity.
(b) Coefficient of restitution η as a function of impact velocity U0.
Open symbols: Small membrane. Filled symbols: Large membrane.
Colors give information about inflation pressure.

digital image correlation setup (DIC standard 3D, Dantec
Dynamics); see Fig. 3(a). The membrane was inflated at rec-
ommended pressure P − Patm = 15 kPa. It was then prepared
for image correlation: first the ball surface was gently sanded
using fine-grained sandpaper to remove superficial paint. The
clean white membrane was then finely sprayed black to create
a synthetic Schlieren for image correlation.

The setup consisted of a suction device to release the ball
without initial velocity or spin from a height h. Suction was
produced thanks to a commercial vacuum cleaner. A large
glass plate was used as transparent substrate. Lighting and
imaging at 300 Hz were done from below. Stereo imaging was
performed with two cameras with a slight angle (6◦) regarding
the vertical.

Image correlation is performed during contact with the
glass plate. Figure 4(a) shows that the pressurized membrane
is flattened on the ground without crumpling, differently as
suggested in the case of basketballs [13]. The deformations
show a radial compression of the flattened part of the mem-
brane. The magnitude of the radial compression increases with
radial distance.

Figure 4(b) shows the difference between an impact image
and the image at the time of largest indentation. The difference

(a)

(b)

FIG. 3. (a) Schematics of the experiment to image membrane
displacements at the contact. The pressurized membrane is released
from a height h. 1© Spherical membrane painted with synthetic
Schlieren. 2© Imaging facility. 3© Clear window for imaging from
below. (b) Parametrization of membrane during contact.

shows a black spot at the contact location indicating that no
or negligible slip occurs during the contact of the membrane
with the glass plate. If buckling had occurred, this would have
created a white spot at the center of the images in Fig. 4(b).
One would also notice arrows pointing toward the ring of the
fold (with reversal inside the ring) which is not the case; see
red arrows in Fig. 4(a). Differently from the contact of rigid
spherical shells where buckling occurs [17,18] and involves
solid friction, the contact of a pressurized membrane involves
neither buckling nor friction in the range of impact conditions
explored here.

This difference could result from the fact that internal pres-
sure prevents the buckling transition. The effect of the internal
pressure on the onset of wrinkling of an elastic membrane
submitted to a point load has been studied by Vella et al. [9].
In the limit of high pressure, they showed that wrinkles appear
above a critical indentation xc,

xc

R
= 2.52

(P − Patm )R

Ee
. (1)

Considering typical experimental values used here, P −
Patm = 15 kPa, R = 8 cm, e = 2 mm, E = 4 MPa, the
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FIG. 4. Contact kinematics of the membrane. (a) Contact area between the ball and the glass plate seen from below at different times
after the impact at t = 0 ms. Red arrows (not scaled) indicate the compression displacement field computed by digital image correlation.
(b) Difference between current image and maximal indentation image at 6.67 ms. Scale bar is 1 cm.

criterion given by Eq. (1) yields xc/R � 0.38. In the range
of impact speeds and pressurization explored in this study,
the maximal indentation experienced by the pressurized mem-
brane is xmax/R < 0.20, and the previous criteria are never
reached. This explains why no buckling or wrinkling is ob-
served for sufficiently pressurized membranes in contrast with
previous observations made on shells [17]. A scaling similar
to that of Eq. (1) arises when considering mirror buckling of
the membrane. Pauchard and Rica analyzed mirror buckling
by comparing nonbuckled (I) and buckled (II) energies of non-
pressurized shells indented on a flat surface. In the nonbuckled
state, indentation creates bending in the fold (flat-to-spherical
junction) and stretching in the flat section. Differently, when
buckled, only bending in the fold is present but with a larger
angle. For a nonpressurized shell, energies of states I and II
depend on indentation depth x, see Fig. 3(b), and read

EI = C0

4

Ee5/2

R
x3/2 + C1

Ee

R
x3 and EII = C0

Ee5/2

R
x3/2,

(2)
where C0 and C1 are numerical constants. In order to ac-
count for pressurization in this approach, we consider the
adiabatic gas compression into the energy balance (no thermal
exchange). In state I, gas volume is reduced by the one of the
spherical cap approximated by πRx2, whereas it is reduced by
twice this volume in state II and Eqs. (2) transform as

EI = C0

4

Ee5/2

R
x3/2 + C1

Ee

R
x3 + πR(P − Patm )x2 (3)

and

EII = C0
Ee5/2

R
x3/2 + 2πR(P − Patm )x2. (4)

Buckling is expected when EI > EII which leads to a nonlin-
ear equation with 3 terms,

3C0

4

Ee5/2

R
x3/2 + πR(P − Patm )x2 − C1

Ee

R
x3 = 0. (5)

In the case of pressurized membranes with C0 � 0, the buck-
ling criterion reads

xc

R
= π (P − Patm )R

C1E e
. (6)

This approach gives a similar scaling to the one proposed in
[9] and suggests that this result does not depend crucially
on the geometry of the deformed area. Thus, the conclusion
drawn above should be valid for spherical membranes indent-
ing a flat surface, considering a different prefactor.

III. COEFFICIENT OF RESTITUTION OF A
PRESSURIZED MEMBRANE

The coefficient of restitution corresponds to a loss of ki-
netic energy during the impact. This energy may be lost
in different manners, either from viscous dissipation in the
membrane (in the curved fold or in the stretched flat part),
or by transfer to mechanical vibrations of the membrane. The
other physical phenomena involved during the impact (sound
emission [13], thermal exchange through the membrane [15],
and friction/buckling; see above) are much less energetic.

A. Predictions of dissipated power

1. Dissipated power by stretching

During the impact, a fraction of the membrane changes its
shape from a spherical shell to a flat surface of radius r [see
Fig. 3(b)]. In order to adapt to this change, the membrane
must stretch. As the material constituting the membrane is
viscoelastic, this deformation induces a loss of energy. In
order to estimate this dissipation, we look at the deformation
of the membrane during the impact in the region of the fold.
Locally, the membrane forms an angle θ with the ground
which respects sin θ = r/R. At this location, a small portion
of the spherical part of length � has to compress by a length
�� = � (cos θ − 1) to become flat. Thus, the membrane ex-
periences a deformation εs = ��/� = cos θ − 1. In the limit
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(a) (b)

FIG. 5. (a) Toy model of the 2-mass system. (b) Parity plot of Eqs. (16) in green, (17) in red, and (18) in blue. Open symbols correspond
to the small membrane and filled symbols correspond to the large membrane. Dashed line: Parity ηmodel = ηexp. Dotted line: Fit 1 − ηmodel =
0.63(1 − ηexp).

of small indentations (x � R), corresponding to θ � 1, the
membrane deformation becomes εs � −θ2/2 and the angle
reduces to θ � r/R. The viscous energy associated to a de-
formation occurring in a volume dV is dEstrech = μεsε̇sdV .
Considering a portion of the membrane located in the inter-
val r and r + dr, the deformation affects a material volume
2πredr and we get the following expression for the power
dissipated by stretching,

dEstrech

dt
= πμe

r4ṙ2

R4
. (7)

In the limit of small indentations (x � R), the radius of
contact is related to the indentation of the spherical membrane
by r2 � 2Rx [see Fig. 3(b)] and Eq. (7) becomes

dEstrech

dt
= 2πμe

xẋ2

R
. (8)

2. Dissipated power by bending in the fold

The flat part of the membrane is connected to the spherical
part of the membrane by a fold. The characteristic size of the
fold δ is fixed by a competition between bending and stretch-
ing energies as described in [17], leading to δ � √

eR. The
fold volume is Vfold = 2πreδ � 2πR

√
2xe3 since the contact

radius is r � √
2Rx when x � R. The radius of curvature

of the fold scales as 1/C ∼ δ/θ , where θ � √
2x/R is the

contact angle of the membrane; see Fig. 3(b). The bending
deformations in the fold scale as εb ∼ e C ∼ √

2xe/R during
the typical deformation time τ ∼ δ/ṙ ∼ √

2xe/ẋ that corre-
sponds to the fold dimension divided by the fold velocity. The
viscous stresses are thus σ ∼ μεb/τ where μ is the equivalent
viscosity of the membrane. Finally, the dissipated power in the
fold scales as

dEfold

dt
∼ μ

ε2
b

τ 2
Vfold ∼ μ

e3/2√xẋ2

R
. (9)

3. Dissipated energy by vibrations

Vibrations of the membrane can be described by the vibra-
tion modes of a pressurized spherical shell by decomposition
of the deformed membrane on spherical harmonics as realized
by Feshback et al. [19] (p. 1469). To simplify the description
of vibrations, we consider a minimal model of two masses
connected by a spring; see Fig. 5(a). This model was first de-
veloped to describe the rebound of a water droplet impacting a
hydrophobic surface [20]. In this model, the first mass, mass
1 located in x1, corresponds to the mass of membrane that will
not contact the ground whereas the other mass, mass 2 located
in x2, corresponds to the amount of membrane that will con-
tact the ground at the maximal indentation of the impact. The
two masses m1 and m2 are connected by a linear spring of
rigidity k and rest length l0; see Fig. 5(a). Before contact, both
masses move with a velocity U0 toward the ground. When
mass 2 makes contact with the ground, it stops (U2 = 0) and
mass 1 compresses the spring. The contact ends when the
spring recovers its rest length l0. At this moment mass 2 still
has no velocity. We assume that no dissipation occurs in the
system, which implies that the total kinetic energy is preserved
and mass 1 takes off with velocity U1 = √

1 + m2/m1 U0. The
difference in speed between masses 1 and 2 creates vibrations.
The vibration energy reads

Evib = 1
2 m2U

2
0 , (10)

where m2 is the fraction of the membrane of volume 2πRexmax

in contact with the ground at maximum indentation and which
expresses as

m2 = mxmax

2R
= 1

2

√
m3U 2

0

πR3(P − Patm )
, (11)

as the maximal indentation of the membrane expresses xmax =
U0

√
m/πR(P − Patm ) when the dissipation term is neglected

[15]. The total energy transferred to vibrations according the
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two-mass model is

Evib = 1

4

(
mU 2

0

)3/2√
πR3(P − Patm )

. (12)

This energy is ultimately dissipated as heat in the material.

B. Coefficient of restitution in the limit of small dissipation

In this section, we examine the implications of the previous
energy dissipation scenarios on the coefficient of restitution.
For the sake of simplicity, we assume that the membrane dy-
namics is not affected by the dissipation. This approximation
is motivated by the fact that the pressurized membrane is
equivalent to a damped oscillator system with a quality factor
larger than 10 (η > 0.7). In these conditions, the dissipation
shifts the natural frequency of the system by less than one
percent in relative value. Under these circumstances, the be-
havior of the pressurized membrane at impact is linear and
indentation evolves as [15]

x(t ) =
√

mU 2
0

πR(P − Patm )
sin

(√
πR(P − Patm )

m
t

)
. (13)

In this limit, one can compute the dissipated energy in the
membrane from Eqs. (8) and (9),

Estretch = 2πμe

R

∫ tc

0
ẋ2x dt = 4μemU 3

0

3R2(P − Patm )
, (14)

Efold = μe3/2

R

∫ tc

0
ẋ2

√
x dt = 1.61

μU 5/2
0 e3/2m3/4

(P − Patm )3/4R7/4
, (15)

with tc = π × √
m/[πR(P − Patm )]. Under these conditions,

we derive three predictions for the coefficient of restitution
associated with the different origins of dissipation:

ηstretch =
√

1 − 2Estretch

mU 2
0

� 1 − 4μeU0

3R2(P − Patm )
, (16)

ηfold =
√

1 − 2Efold

mU 2
0

� 1 − 1.61
μU 1/2

0 e3/2

m1/4(P − Patm )3/4R7/4
,

(17)

ηvib =
√

1 − 2Evib

mU 2
0

� 1 −
√

mU 2
0

4
√

πR3(P − Patm )
. (18)

These three predictions for the coefficient of restitution
have different dependencies with the mechanical parameters
of the pressurized membrane. Thus, one can hope to dis-
tinguish between the three scenarios for energy dissipation
by comparing these predictions to experiments. Figure 5(b)
presents the parity plot between the predicted coefficient of
restitution ηmodel from Eqs. (16), (17), and (18) as a function
of the measured coefficient of restitution ηexp for small and
large membranes, and different inflation pressures and impact
speeds. In this representation, experiments match theoretical
predictions when data points align on the y = x line (dashed
line). We observe that both viscoelastic dissipation models fail
in gathering data points showing that this physical background
of energy dissipation is unlikely. However predictions of the
energy dissipated in the two-mass model gather all data points

on a line ηmodel − 1 = 0.63(ηexp − 1) (dotted line). This sug-
gests that the scaling given for energy dissipation is correct
although missing the prefactor on mass 2. This conclusion
is reinforced by the fact that the agreement is valid over a
wide range of parameters: the size of the membrane has been
varied by a factor 4, the impacting speed by a factor 8 and the
inflation pressure by a factor 9.

IV. DISCUSSION

The fact that the pressurized membrane dissipates the
energy into vibrations has several consequences which are
discussed in this section. First, the energy dissipated does not
depend on the loss modulus μ of the elastomer constituting
the membrane [see Eq. (18)]. Thus, the viscoelastic dissipative
properties of the membrane do not affect its bouncing quality.
Second, Eq. (18) predicts that the coefficient of restitution
decreases linearly with U0 and with 1/

√
P − Patm. This allows

us to rationalize the decrease of η with U0 and its increase with
P − Patm observed experimentally for impact speeds U0 > 2
m s−1.

The expression for the coefficient of restitution given by
Eq. (18) relies on several assumptions. First, the pressurized
membrane is modeled by two masses connected by a linear
spring, a hypothesis that is valid only at small indentations.
For large indentations, the nonlinear elastic behavior of the
pressurized membrane due to gas compression has to be
considered. This effect, described in [15], corresponds to a
strain-stiffening behavior; it reduces both contact time and
maximal indentation. Compared to the prediction of the linear
model, the membrane is expected to be less deformed and thus
to dissipate less energy. Second, we assume that the impact
dynamics of the pressurized membrane is only marginally
modified by the dissipation at small indentations. At larger
indentations, energy dissipation would have to be taken into
account in the impact dynamics and would modify Eq. (13).
Accounting for dissipation in the impact dynamics would
increase the contact time.

In the present modeling, we assumed that the inflation-
induced prestretching of the membrane was constant and
that all results were derived linearly around this reference
state. When indentation of the membrane is large, the lin-
ear mechanics hypothesis breaks down. The impact becomes
nonlinear because of both large displacements with geomet-
rical stiffening [15] and nonlinear material behavior such as
strain stiffening or strain softening. The geometrical stiffening
would reduce the amount of deformed material and decrease
dissipation.

The knowledge of the origin of the dissipation in the impact
is interesting for practical situations where low or high coef-
ficients of restitution may be required. For impact protection
applications, a low coefficient of restitution helps to reduce the
amount of momentum exchanged during the impact. When
a pressurized membrane of mass m impacts onto a massive
ground, the change of momentum of the membrane is 2mU0

in a perfectly elastic case, twice the exchange of momentum
that occurs during a perfectly inelastic impact mU0. For sport
balls, a minimal coefficient or restitution is prescribed by the
rules in order to ensure that the ball can be released with
sufficient speed. In sports, a maximal inner pressure is also
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prescribed (which corresponds to a maximal coefficient of
restitution for a given impact speed). This may be related to
the decrease of contact time as the inner pressure increases.
This change of contact time increases the rate of exchange of
momentum (i.e., impact inertial forces) and thus the severity
of impact-related damages. It also reduces the possibility for
the player to control the ball trajectory during contact.

This study considers the origin of dissipation when a pres-
surized membrane impacts a rigid ground. The coefficient of
restitution of small and large inflated membranes has been
measured for a wide range of internal pressures and impact
speeds. Four possible sources of energy dissipation in this
problem have been considered. Solid friction has been dis-
carded by performing image visualization in the contact area.
The other possible sources of dissipation are the compression
of the flattened membrane, the bending of the viscoelastic
membrane in the fold, and the energy transferred to vibrations.
A physical prediction for each dissipation scenario has been
computed and compared to measurements. The deformation
of the pressurized membrane during the impact was consid-
ered through the framework of linear mechanics around the
reference state of the pressurized shell. Impact-induced defor-
mations are mainly the consequence of the impact kinematics.

Based on experimental data, we concluded that during the
impact of a pressurized membrane with a rigid ground, the

energy is dissipated in vibrations and this may be predicted
by a two-mass model. Identifying the source of dissipation in
this problem should help in improving the design of impact
protections and a better understanding of the role of ball infla-
tion pressure in sport. This work opens multiple perspectives
as improving the modeling of membrane vibrations beyond
the simple model of two masses connected by a linear spring,
characterizing the membrane vibrations after impact which is
challenging from a technical point of view and considering the
effect of the impactor geometry on the dissipation that takes
place during impact.
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