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Counterflow-induced clustering: Exact results
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We analyze the cluster formation in a nonergodic stochastic system as a result of counterflow, with the aid
of an exactly solvable model. To illustrate the clustering, a two species asymmetric simple exclusion process
with impurities on a periodic lattice is considered, where the impurity can activate flips between the two
nonconserved species. Exact analytical results, supported by Monte Carlo simulations, show two distinct phases,
free-flowing phase and clustering phase. The clustering phase is characterized by constant density and vanishing
current of the nonconserved species, whereas the free-flowing phase is identified with nonmonotonic density
and nonmonotonic finite current of the same. The n-point spatial correlation between n consecutive vacancies
grows with increasing n in the clustering phase, indicating the formation of two macroscopic clusters in this
phase, one of the vacancies and the other consisting of all the particles. We define a rearrangement parameter
that permutes the ordering of particles in the initial configuration, keeping all the input parameters fixed. This
rearrangement parameter reveals the significant effect of nonergodicity on the onset of clustering. For a special
choice of the microscopic dynamics, we connect the present model to a system of run-and-tumble particles used
to model active matter, where the two species having opposite net bias manifest the two possible run directions
of the run-and-tumble particles, and the impurities act as tumbling reagents that enable the tumbling process.
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I. INTRODUCTION

Clustering of nonattractive elements is an intriguing phe-
nomenon occurring in diverse areas of science and society. It
appears in various fields such as granular materials [1–3], ve-
hicular and pedestrian traffic flows [4–7], active matter [8,9],
biology [10,11], etc. At the heart of the clustering phenom-
ena lies a transition between free-flowing phase and jammed
phase where motion becomes highly restrictive, as some suit-
able system parameter is tuned. The tuning parameter for
granular material is packing fraction, it is car or pedestrian
density for traffic flow and self-propulsion force in case of
dense active matter. In fact, a jamming phase diagram has
been proposed keeping in mind the generality of such tran-
sitions [1] and there are experiments conducted on colloidal
particles supporting the concept of this generic phase diagram
such as Ref. [12]. The control of clustering is important in
daily life. Indeed, understanding the formation of jamming
and finding ways to transit to unjammed state, has immense
importance in traffic science. The other applications include
occurrence of cellular jamming transitions in cancer [10,11].
Analysis of clustering, as a phase transition in interacting
many body systems, constitutes an interesting topic from
the physics point of view. Thus, it seems natural to investi-
gate the clustering phenomena through the lens of statistical
mechanics.
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One possible mechanism of clustering is the presence
of counterflow in a system. Counterflows arise naturally in
real life situations, e.g., pedestrian traffic flow [7] in nar-
row lanes, busy pedestrian zones, crossings between two
footpaths, etc. In these situations, we often observe pedes-
trians moving in opposite directions, automatically create
counterflow situations. Counterflows in pedestrian dynam-
ics can result in interesting phenomena like traffic jam at
high densities [13,14], self-organized lane formations [15,16],
oscillatory changes in the dominant direction of motion at
bottlenecks [17]; as well as unexpected events like panic
and crowd disasters [18]. Interesting experimental results re-
garding counterflows have revealed that the total flow in a
counterflow situation can be greater than the sum of the two
comparable unidirectional flows [16,19]. Numerical studies
show that the existence of counterflowing agents ignoring
traffic rules can surprisingly lower the possibility of traffic
jam [20]. Apart from the pedestrian dynamics, counterflow
occurs in nature and has been incorporated in industries. In
fact, countercurrent exchange of heat or chemicals between
two oppositely flowing fluids (i.e., counterflow situation), has
been proved to be much more efficient than cocurrent ex-
change of the same between two parallel flowing fluids. Such
principles are often used to devise heat exchangers [21] used
in industries and are found in nature, e.g., salt glands in sea
and desert birds [22,23], mammalian kidneys [24], etc.

In the context of cluster formation resulting from counter-
flow, spontaneous symmetry breaking in a model with two
oppositely moving particles with exchange interaction, has
been discussed with periodic boundaries [25,26] and open
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boundaries [27]. Notably, later it has been proved that the
spatial condensation of particles under periodic boundary con-
dition [26] is not associated with a phase transition in the
grand canonical ensemble [28,29]. There exist several mod-
els in nonequilibrium statistical mechanics that exhibit phase
transitions in one dimension [30–41]. However, considerably
few one-dimensional nonequilibrium models with simplified
local dynamics, are amenable to exact analytical calculations
which provide much insights to the microscopic origins of the
phase transitions [36,40–43]. In context of cluster formations
in exactly solvable disordered systems, Bose-Einstein conden-
sates have been studied in multispecies asymmetric simple
exclusion processes [44,45], utilizing matrix product ansatz
[46] and zero range process [47,48]. Traffic jam in more real-
istic traffic models, like bus route models, has been considered
[49,50], and its connection to Nagel-Schreckenberg model of
traffic flow has been explored in details [51]. There are various
other interesting studies of one-dimensional traffic flows un-
der periodic boundary conditions [4–7,52–55]. Notably, once
a formed cluster is stable and moves in one direction, it is
similar to the time crystal [56–60]. To avoid such clustering,
model with bypassing defects through long-range hopping,
has been analyzed [61]. Notably, exact analytical results
showing clustering phenomenon has been considerably few.

Recently, clustering of self-propelled objects like bacteria
have gained much attention [62,63]. Such active matter can
exhibit motility-induced phase separation by accumulating in
regions with slow movement [64–66], or they can aggregate
near chemical nutrients [63]. The motion of self-propelled ob-
jects including bacteria, is often described by run-and-tumble
particles (RTPs) [67–74]. Analytical solutions of run-and-
tumble models are few, including exact solution for one and
two RTPs [69–73], mean-field analysis of many interacting
RTPs [75] and approximate solution for restricted RTPs [73].
The tumbling dynamics corresponds to occasional change
in direction of motion, which specifically in one dimension
would correspond to flip between right and left moving ob-
jects. Thus, it would be interesting to ask how to accommodate
such flip dynamics of RTPs in simple lattice models that are
exactly solvable, contain many interacting RTPs and exhibit
clustering.

In this work, we provide exact results showing cluster
formation on a one-dimensional periodic lattice, when coun-
terflow and flip dynamics are present in the system. As a
model, we consider the two species asymmetric simple exclu-
sion process with impurity activated flips (2-ASEP-IAF) [76].
We show the existence of two different phases, namely, the
free-flowing phase and the clustering phase, and characterize
them using observables like average density, drift current and
spatial correlations, obtained analytically and supported by
Monte Carlo simulations. Interestingly, in the counterflow
situation, with a special choice of the microscopic hop rates,
the 2-ASEP-IAF can be interpreted as a system of many
RTPs in presence of tumbling reagents. Since the RTPs have
been extremely useful to model active matter on lattices,
we would discuss separately the clustering in this special
case in some details. Also, the 2-ASEP-IAF has plausible
mappings to two-lane ASEP with bridges [76] and enzy-
matic chemical reactions [76], explained briefly in the next
section.

In Sec. II we define the model and briefly describe its
connection to the two-lane model, enzymatic chemical reac-
tions and RTPs. Section III describes the steps to obtain the
exact matrix product steady state of the model with infinite-
dimensional matrices. The model being nonergodic, we state
the choice of initial configuration considered here in Sec. IV
and calculate the partition function showcasing the important
steps. In Sec. V we discuss in details the analytical results for
density, current and spatial correlations which establish the
existence of two different phases. The role of initial configura-
tions on the onset of the clustering, is investigated in Sec. VI.
The special constraint on the microscopic rates, for which the
2-ASEP-IAF can be mapped to a model of run-and-tumble
particles, is analyzed in detail in Sec. VII. We summarize our
main results and future directions in Sec. VIII. Appendix A
provides expressions and brief derivations of some observ-
ables. The explicit form of the density-fugacity relation and a
special case that leads to a closed form solution of the fugacity,
are presented in Appendix B. In Appendix C we clarify on
the variations of the initial configuration considered in the
main text, that can give rise to similar clustering. We show the
convergence of our results with system size in Appendix D.
The comparison of our model to the Arndt-Heinzel-Rittenberg
model of counterflow, is briefly discussed in Appendix E.

II. MODEL

We consider two different species (1 and 2) along with
impurities (+) and vacancies (0) on a one-dimensional peri-
odic lattice with L sites, i = 1, 2, . . . , L. Species 1 and species
2 can hop to right with rates p1 and p2, respectively, or to
left with rates q1 and q2, respectively, if the target site is
vacant. The motion of the impurity is restricted only toward
right, with rate ε. The unidirectional motion of the impurity
is a characteristic that differentiates it from the two species.
Further, this assumption turns out to be crucial to obtain
the exact steady-state probability distribution. Alongside the
hopping dynamics, species 1 and 2 can transform into each
other with rates w12 and w21, such flipping being activated
only in presence of impurity. Following the nomenclature
of Ref. [76], we refer this model as 2-ASEP-IAF, where
ASEP represents asymmetric simple exclusion process and
IAF stands for impurity activated flips. The microscopic dy-
namics of 2-ASEP-IAF is represented as

10
p1−⇀↽−
q1

01, 20
p2−⇀↽−
q2

02,

+ 0
ε−→ 0+, 1+ w12−−⇀↽−−

w21

2 + . (1)

The 2-ASEP-IAF can be restated as a four-state model
where each lattice site can be in either of the four pos-
sible states 1 or 2 or + or 0. The input parameter space
for the model contains several parameters, more precisely
given by (p1, p2, q1, q2, ε,w12,w21, ρ0, ρ+). The parameters
ρ0 = N0/L and ρ+ = N+/L are the conserved densities of the
vacancies and the impurities, respectively, with N0 and N+
being the number of vacancies and impurities in the system.
In this paper, we aim to investigate the effect of counterflow
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on the system, and to do so, we pick out q1 to be the tuning
parameter, keeping all other rates fixed. We fix p2 > q2 (apart
from the discussion in Sec. VII) and ε > 0. Subsequently, if
q1 < p1, all particles have net bias along the same direction,
keeping the system in natural flow situation. However, when
q1 > p1, species 1 has net bias in the direction opposite to
the net bias of species 2 and impurities, thereby species 1
opposes the motion of other components and creates a coun-
terflow situation. Since the tuning parameter q1 can control the
flow situation in the system, we denote it as the counterflow
parameter.

We mention three interesting plausible mappings of the
present model [Eq. (1)] to other systems of interest. These
three systems, as briefly explained below, are (i) run-and-
tumble particles, (ii) enzymatic chemical reaction, and (iii)
two-lane ASEP.

(i) To study active matter on lattices, run-and-tumble par-
ticles (RTPs) constitute useful models [68], notably with
considerably few analytical results [69–74]. The RTPs keep
moving along a particular direction until they tumble, i.e.,
change the direction of motion. The two different species
having net bias toward opposite directions in 2-ASEP-IAF,
can be considered as two possible orientations of the RTP,
only if the counterflow situation is considered. Basically the
RTP is a two-state particle where its two possible states or run
directions are imitated by species 1 and 2 of the 2-ASEP-IAF.
A particularly relevant case is when p2 − q2 = q1 − p1, i.e.,
the RTP moves with same speed in both directions with inter-
mediate tumbling, in accordance with the recently proposed
restricted tumbling model [73] and the continuum active ran-
dom walk model [74]. Notably, in our mapping, the impurities
act as the mediators for the tumbling process. This special case
which maps the 2-ASEP-IAF to RTPs, would be discussed in
more details in Sec. VII.

(ii) The 2-ASEP-IAF can be connected to an enzy-
matic chemical reaction in a narrow channel of diffusing
chemical reagents. In this case, the impurity represent the
enzymes which initiate the reaction between substrate and
products, that amounts to the flip dynamics in the present
model [76].

(iii) The 2-ASEP-IAF can be mapped to a two-lane ASEP,
a simple model for two-lane traffic flow, where the species 1
and 2 play the roles of particles hopping with different rates
in the two different lanes and the impurities in 2-ASEP-IAF
mimic the bridges connecting the two lanes in the two-lane
ASEP [76]. Thus the flip dynamics between two species acti-
vated by impurities represent the lane change dynamics of the
particles in the two-lane ASEP model.

Due to such connections of the 2-ASEP-IAF to several
other important models, we study analytically the possibility
of cluster formation in the model in presence of counterflow,
which can possibly provide information about clustering in
the connected models.

III. STEADY STATE

The probability P({si}) of any configuration {si} (si = 1
or 2 or 0 or +, denoting the constituent at site i), in the
nonequilibrium steady state corresponding to the microscopic

dynamics Eq. (1), is obtained in the following matrix product
form:

P({si}) ∝ Tr

[
L∏

i=1

Xi

]
,

where Xi = D1δsi,1 + D2δsi,2 + Aδsi,+ + Eδsi,0. (2)

In Eq. (2), the matrix Xi represents the component si at site
i and δ(.,.) is Kronecker δ symbol. Specifically, the matri-
ces D1, D2, E , A correspond to species 1, species 2, vacancy,
and impurity, respectively. The configurations of the system
evolve according to the master equation

d|P(t )〉
dt

= M|P(t )〉, (3)

where the matrix M is the rate matrix containing transition
rates between configurations and |P(t )〉 is the column vector
whose elements are time dependent probabilities P({si}, t )
for all possible configurations {si}. In the steady state, the
probabilities P({si}, t ) converge to the time independent val-
ues P({si}) mentioned in Eq. (2). For 2-ASEP-IAF with
two-site local dynamics [Eq. (1)], the rate matrix can be
decomposed as

M =
L∑

i=1

(I ⊗ . . . I ⊗ Mi,i+1 ⊗ I · · · ⊗ I ), (4)

where Mi,i+1 is a 16 × 16 matrix acting on the pair of
sites (i, i + 1) and I is 4 × 4 identity matrix placed at every
site except the pair (i, i + 1). In steady state M|P〉 = 0. The
steady state can be achieved using the following two-site flux-
cancellation condition

Mi,i+1Xi ⊗ Xi+1 = X̃i ⊗ Xi+1 − Xi ⊗ X̃i+1, (5)

where

X = (E , A, D1, D2)T ,

X̃ = (Ẽ , Ã, D̃1, D̃2)T , (6)

where (.)T denotes the transpose of the row vector (.) and
Ẽ , Ã, D̃1.D̃2 are auxiliary matrices that are introduced to sat-
isfy the steady-state equation and these have to be found
out consistently along with the matrix representations for
E , A, D1, D2. We find that suitable choices for the auxiliary
matrices in this case are

Ẽ = 1, Ã = 0, D̃1 = 0, D̃2 = 0. (7)

Using the above choices of the auxiliary matrices in Eq. (5),
we arrive at the following matrix algebra:

p1D1E − q1ED1 = D1,

p2D2E − q2ED2 = D2,

εAE = A,

w12D1A = w21D2A. (8)
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We find that Eq. (8) is satisfied by the infinite-dimensional
matrix representations given below:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . .

1 0 0 0 . .

0 1 0 0 . .

0 0 1 0 . .

0 0 0 1
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1
ε

1
ε2

1
ε3 . .

0 0 0 0 . .

0 0 0 0 . .

. . . . . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎠,

DI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,1
I d1,2

I d1,3
I d1,4

I . .

0 d2,2
I d2,3

I d2,4
I . .

0 0 d3,3
I d3,4

I . .

0 0 0 d4,4
I . .

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, I = 1, 2,

dm,m+r
I = (m)r

r! pr
I

(
qI

pI

)m−1

d1,1
I , ∀r � 0,

d1,1
1 = w21, d1,1

2 = w12. (9)

The notation (m)r corresponds to Pochhammer symbol for ris-
ing factorials, (m)r := m(m + 1)(m + 2) . . . (m + r − 1). In
Eq. (9), the matrices D1 and D2, representing the two noncon-
served species, are upper triangular matrices, whose elements
involve their corresponding hop rates and the flip rate from
the other species (e.g., D1 involves p1, q1,w21). The impurity
is represented by the matrix A which has nonzero elements in
the first row only, the elements being functions of the impurity
hop rate ε. The matrix E , characterizing vacancy, is a lower
shift matrix.

We should mention that the matrix representations for any
number of nonconserved species μ (μ = 2 for the present
discussion), i.e., μ-ASEP-IAF, has been obtained recently
in Ref. [76]. However, we emphasize that the exact analyti-
cal calculations of observables and their properties strongly
depend on the choice of initial configurations, owing to
the nonergodicity resulting from the microscopic dynamics
Eq. (1). Particularly, the initial configuration considered in
Ref. [76] is only a special case of the one that would be
discussed in the next section (Sec. IV). In fact, interestingly,
as we would show later, the onset of clustering and its demar-
cation from the free-flowing phase, crucially depend on the
choice of initial configuration (Sec. VI).

IV. INITIAL CONFIGURATION AND PARTITION
FUNCTION

In spite of the presence of flip-dynamics, the microscopic
dynamics in Eq. (1) preserves certain orderings of the different
species and impurities from initial configuration. It implies
that the system is nonergodic and can access only a subspace

of the whole configuration space, starting from a particular
initial configuration. To demonstrate the cluster formation in
2-ASEP-IAF, we consider the following initial configuration
(represented by corresponding matrices),

D2A . . . D2A D1A . . . D1A D1 . . . D1 E . . . E . (10)

The dots in Y . . .Y (Y = D2A, D1A, D1 and E ) represent an
uninterrupted sequence of the unit Y . Note that, there are two
types of species 1 particles in Eq. (10). One type is those
which can flip, belongs to the sequence Y = D1A, while the
others are nonflipping species 1 particles belonging to the
sequence Y = D1. The density of such nonflipping species 1
particles is denoted by

ρ̄ := N̄

L
, (11)

where the number of particles of species 1 that cannot flip to
species 2 is given by N̄ . We do not require to introduce such
symbol for species 2 since the number of nonflipping species
2 particles is zero in Eq. (10). A careful look at the initial
configuration [Eq. (10)] and the dynamics [Eq. (1)] reveals
that each configuration in the system can be identified as a
sequence of intervals between impurities. Each interval con-
tains one species 1 or species 2 particle and vacancies, except
one interval that contains additional N̄ nonflipping species 1
particles apart from the one particle that can flip. The species
1 and species 2 particles can hop to right or left within this
interval and can flip into each other at the two boundaries
(i.e., impurities) of the interval. Each interval can increase
or decrease in size by the incoming or outgoing vacancies
at the right and left interval boundaries, respectively. This
effectively gives rise to a cyclic motion of the intervals toward
right.

For convenience, we calculate the partition function cor-
responding to the initial configuration Eq. (10) in the grand
canonical ensemble, by associating the fugacity z0 with the
vacancies (0). Consequently, the partition function would be

Q =
∞∑

m1=0

· · ·
∞∑

mN+ =0

∞∑
m̄1=0

· · ·
∞∑

m̄N+ =0

∞∑
n1=0

· · ·
∞∑

nN̄ =0

Tr

×
⎡
⎣
⎛
⎝ N+∏

i=1

(D1 + D2)(z0E )mi A(z0E )m̄i

⎞
⎠

×
⎛
⎝ N̄∏

j=1

D1(z0E )n j

⎞
⎠
⎤
⎦. (12)

The emergence of the products inside the trace in Eq. (12) can
be understood from the interpretation of each configuration as
a sequence of intervals between impurities discussed above.
Since we have N+ impurities in the periodic system, that leads
to N+ intervals each bounded by impurities at both ends.
This corresponds to the product of N+ intervals in the first
term inside the trace in Eq. (12). Each product in the first
term inside the trace correspond to interval containing one
particle that can flip, whereas the last product term denotes
the sequence of N̄ nonflipping species 1 particles inside the
one exceptional interval. We would use the explicit matrix
representations from Eq. (9) to calculate the partition function
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in Eq. (12). It is suitable to write down the matrices in the
concise form as

E =
∞∑

γ=1

|γ + 1〉〈γ | ⇒ En =
∞∑

γ=1

|γ + n〉〈γ |,

D1,2 =
∞∑

α=1

∞∑
β=α

(d1,2)α,β |α〉〈β|,

(d1,2)α,β := (β − 1)!

(α − 1)!(β − α)!

qα−1
1,2

pβ−1
1,2

,

A =
∞∑

δ=1

1

εδ−1
|1〉〈δ|, (13)

where 〈k| = (0, 0, . . . 1, . . . 0) is a standard basis vector
with only nonzero element 1 at the kth place and |k〉 =
(0, 0, . . . 1, . . . 0)T , where the superscript T denotes transpose
of the vector under consideration. With the above expressions,
we can simplify the matrix strings in Eq. (12). For example,
we obtain

N̄∏
j=1

D1(z0E )n j =
∑

n1

· · ·
∑
nN̄

∑
α1

∑
α2

· · ·
∑
αN̄

∑
βN̄

zn1+···+nN̄
0

× (d1)α1,α2+n1 . . . (d1)αN̄−1,αN̄ +nN̄−1

× (d1)αN̄ ,βN̄ +nN̄
|α1〉〈βN̄ |. (14)

We incorporate the explicit form of (d1)α,β from Eq. (13) to
evaluate the sums in Eq. (14). However, it is instructive to
perform the above calculation recursively, i.e., first for single
D1, then two D1, followed by three D1 and finally generalize
the result for N̄ D1-s by noting the trend. However, after
invoking Eq. (13), the other string of matrices in Eq. (12)
reduces to

N+∏
i=1

(D1 + D2)(z0E )mi A(z0E )m̄i

=
⎧⎨
⎩
∑
m1

zm1
0

∑
α1

[(d1)α1,1+m1 + (d2)α1,1+m1 ]|α1〉
⎫⎬
⎭

×
{∑

m

∑
n

zm+n
0

εn−1

∑
α

[
(d1)α,1+m

εα
+ (d2)α,1+m

εα

]}N+−1

×
∑
m̄N+

z
m̄N+
0

∑
δN+

〈δN+|
εδN+−1+m̄N+

. (15)

Using Eqs. (14) and (15) in Eq. (12), along with the explicit
forms of (d1,2)α,β from Eq. (13), we finally arrive at the
following expression of the partition function

Q =
(

1

1 − z0
ε

)N+[
w21

1 − z0
p1

− z0
ε

q1

p1

+ w12

1 − z0
p2

− z0
ε

q2

p2

]N+−1

×
N̄∏

k=1

w21

1 − z0
p1

Sk−1
×

[
w21

1 − z0
p1

SN̄
+ w12

1 − z0
p2

− q2

p2

z0
p1

SN̄−1

]
,

(16)

where

Sk :=
k∑

j=0

(
q1

p1

) j

+
(

q1

p1

)k q1

ε

=
p1

{( q1

p1

)k+1
[(k + 1)(p1 − q1) − ε] + ε

}
(p1 − q1)ε

. (17)

The fugacity z0 is computed from the density-fugacity relation

ρ0 = z0

L

d

dz0
lnQ. (18)

Thus, we have obtained the analytical form of the partition
function Eq. (17) corresponding to the initial configuration
Eq. (10).

V. TWO PHASES: ANALYTICAL RESULTS

In this section, we discuss exact results for observables,
showing the emergence of two different phases in the 2-
ASEP-IAF, with the variation of the parameter q1. Starting
from the initial configuration Eq. (10), the analytical calcu-
lations are performed following the footsteps sketched in the
previous section, where we use the explicit representations of
the matrices from Eq. (9). Before entering into the detailed
discussions of the observables, below we briefly summarize
our main findings.

(i) The analytical results for one-point (average species
densities), two-point (drift current) and n-point functions (cor-
relation between consecutive vacancies) exhibit the existence
of two-different phases: the free-flowing phase and the clus-
tering phase. In Figs. 1(a) and 1(b), we present the heat
maps for average species density and average drift current
(for species 1), respectively, in the parameter plane p1-q1.
Figure 1(b) prominently distinguishes two phases separated
by the line q1 = p1. Figure 1(a) also shows two distinct phases
demarcated by a region around the line q1 = p1.

(ii) The average species density (of species 1), when plot-
ted against q1, remarkably exhibits two different behaviors for
q1 < p1 and q1 > p1. For q1 < p1, defining the free-flowing
phase, the density is nonmonotonic, whereas it remains con-
stant for q1 > p1 that constitutes the clustering phase. Thus
the nonconservation plays an important role in identifying the
two different phases through a simple one point function.

(iii) The average drift current (of species 1) is nonzero in
the free-flowing phase, followed by a sharp descent toward
zero near q1 = p1, and remains vanishingly small in the clus-
tering phase.

(iv) The n-point correlation function between n consecu-
tive vacancies increases with increasing n in the counterflow
phase, directly pointing toward the formation of vacancy clus-
ter and consequently that of particle cluster.

A. Average species density

We first consider the one-point functions, i.e., the average
species densities ρ1 = 〈1〉 and ρ2 = 〈2〉 of the nonconserved
species 1 and 2, respectively, where 〈.〉 denotes ensemble
average in the steady state. Since, the total density of the two
species remain constant (ρ1 + ρ2 = ρ̄ + ρ+), it would be suf-
ficient to focus only on the density behavior of one of the
species, say ρ1. The formal expression for 〈1〉 that has been

054905-5



AMIT KUMAR CHATTERJEE AND HISAO HAYAKAWA PHYSICAL REVIEW E 107, 054905 (2023)

(a)

(b)

FIG. 1. Panels (a) and (b) show heat-maps for density ρ1 and
current J10, respectively, for species 1, in the p1-q1 parameter plane.
Both of them, particularly panel (b) clearly exhibits that q1 = p1

separates two different phases. Panel (a) also implies the nonmono-
tonicity of the density. The parameters used are L = 103, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

used to calculate ρ1, is presented in Eq. (A1) of Appendix A.
With the aid of Eqs. (14) and (15), the Eq. (A1) leads to the
following exact formula

ρ1 = ρ̄ +
(

ρ+ − 1

L

) w21

1− z0
p1

S0[
w21

1− z0
p1

S0
+ w12

1− z0
p2

(1+ q2
p1

S−1 )

]

+ 1

L

w21

1− z0
p1

SN̄[
w21

1− z0
p1

SN̄
+ w12

1− z0
p2

(1+ q2
p1

SN̄−1 )

] , (19)

where Sk (k = 0 or −1 or N or N − 1) is given by Eq. (17).
To express the density in Eq. (19) as a function of the input
parameters only, it is required to solve for z0, the density-
fugacity relation Eq. (18) which more explicitly takes the form
Eq. (B1). However, the closed form solution of Eq. (B1) is
difficult to obtain. The solution of z0 obtained from Math-

FIG. 2. The figure shows the behavior of the average species
density as a function of the counterflow parameter, obtained from
analytical result (brown solid line) and Monte Carlo simulation (red
dots). Two different phases are apparent, separated by the transition
point q1 = p1. For q1 < p1, the density exhibits nonmonotonicity
whereas for q1 > p1 the density remains constant. The inset presents
the variation of z0 with q1. The fugacity exhibits a sharp decrease
toward zero in q1 � p1 and remains close to zero for q1 > p1.
The parameters used are L = 103, p1 = 0.4, p2 = 1.0, q2 = 0.5, ε =
0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

ematica, is used to replace it in Eq. (19). We present the
corresponding analytical results (solid line) for ρ1, agreeing
with Monte Carlo simulation results (dots) as a function of
q1 in Fig. 2. It is fascinating that even the simplest one-point
function, namely the average species density, clearly indicates
the existence of two different phases. In one phase, occur-
ring in the parameter region q1 < p1, the density exhibits a
nonmonotonic behavior. Whereas it remains constant in the
other phase, characterizing the parameter region q1 > p1. As
one increases q1 starting from zero, the hopping of species
1 particles to left, becomes increasingly likely. This means
lesser chances for species 1 particles to have impurities as
their right nearest neighbors. Consequently, the flipping of
species 1 to 2 decreases with increasing q1, and therefore ρ1

increases. After reaching the maximum density, ρ1 starts de-
creasing, that results in a steep fall near q1 � p1. For q1 > p1,
the density remains constant indicating that the drift process
no longer can affect ρ1, meaning the species 1 particles cannot
access vacancies due to possible clustering. The point q1 = p1

demarcating two different phases, is regarded as the transition
point. Note that the Fig. 2 is a cross section of Fig. 1(a) at
p1 = 0.4, and further clarifies the behavior of ρ1 observed in
the heat-map in Fig. 1(a).

To see how the two different behaviors of ρ1, nonmono-
tonic (in q1 < p1) and constant (in q1 > p1), are influenced by
that of the fugacity z0, we show the variation of z0 with q1 in
the inset of Fig. 2. The inset shows that z0 has a sharp decrease
near q1 = p1 and it is almost zero in the regime q1 > p1.
Consequently, we can take the limit z0 → 0 in Eq. (19) which
would give us the working formula for ρ1 in the constant
density phase. This leads us to the following formula:

ρ1 = ρ̄ + w21

w12 + w21
ρ+, for q1 > p1. (20)
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Equation (20) clearly manifests that ρ1 essentially becomes
independent of the parameter q1 in the regime q1 > p1. The
exact above expression for the average species density can be
obtained in a situation where we have two species 1 and 2
along with impurities in a system, but no vacancies, meaning

the only dynamics is 1+ w12−−⇀↽−−
w21

2+ and there is no drift since

there are no vacancies. Such analysis strongly points toward
the existence of a single cluster consisting of all the particles
accompanied by another cluster consisting of only vacancies
in our system in the parameter region q1 > p1. Consequently,
this phase is referred as the clustering phase. However, for
q1 < p1, the drift process is significant with flows of particles
and vacancies, thereafter named as the free-flowing phase. In
the free-flowing phase, near the transition point, i.e., q1 � p1,
we find from Eq. (19) that the fall of ρ1 toward the constant
value [Eq. (20)] takes the form below:

ρ1 ≈ ρ̄ + w21

w12 + w21
ρ+

+ z0
w21w12

(w12 + w21)2
(A1 + A2) for q1 � p1, (21)

where A1 = ( 1
p1

+ 1
ε

− 1
p2

− q2

p2ε
)(ρ+ − 1

L ) and A2 = ( 1
p1

+
1
ε

)[ρ̄(1 − q2

p2
) + 1

L ] − 1
p2L , we have neglected higher orders of

z0. It is evident from Eq. (21) that the fall of ρ1 in the regime
q1 � p1 is linear in z0 and would depend on how z0 falls to
zero in q1 � p1 as a function of (p1 − q1).

B. Average drift current

The drift currents for the nonconserved species and the
impurity are given by

J10 = p1〈10〉 − q1〈01〉 = z0ρ1,

J20 = p2〈10〉 − q2〈01〉 = z0ρ2,

J+0 = ε〈+0〉 = z0ρ+. (22)

The average steady-state densities of the nonconserved
species are provided in Eq. (19) whereas the impurity density
ρ+ is a conserved quantity. The fugacity z0 obeys Eq. (18),
more precisely, is the solution of Eq. (B1). The analytical
result for J10 has been presented as a heat-map in Fig. 1(b)
which prominently exhibits the existence of two difference
phases, demarcated by the line q1 = p1. In Fig. 3, we present
a cross section of Fig. 1(b) at p1 = 0.4. We observe that the
current, starting from nonzero value in the free-flowing phase
(q1 < p1), shows a weak increase. This is due to the increasing
density in this parameter regime (Fig. 2). However, the slope
of the increase of J10 (Fig. 3) is much smaller than that of ρ1

(Fig. 2), because J10 = z0ρ1 and z0 decreases with q1 in the
same parameter regime (inset of Fig. 2). After reaching the
maximum, J10 exhibits a sharp fall near the transition point
q1 = p1, and it remains almost zero (i.e., vanishingly small
values) in the clustering phase (q1 > p1). This observation
is consistent with the emergence of the cluster formation for
q1 > p1 corresponding to the approximate situation where the
vacancies merely play any role, i.e., the drift process is almost
absent. As mentioned in the previous section, this gives rise to
two macroscopic clusters, one consisting of all particles and
the other made of only vacancies. With the drift becoming

FIG. 3. The figure demonstrates two different phases manifested
by the drift current, obtained from analytical result (orange solid line)
and Monte Carlo simulation (blue dots). In the parameter regime
q1 < p1, the current is finite whereas it falls abruptly to vanishingly
small values at q1 = p1 and remains so for q1 > p1. The parame-
ters used are L = 103, p1 = 0.4, p2 = 1.0, q2 = 0.5, ε = 0.1, w12 =
1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

negligible in the clustering phase, the density remains constant
[Fig. 2, Eq. (20)] and the current stays vanishingly small
[Fig. 3]. The species 2 and impurity would have similar char-
acteristics of current, therefore we restrict our investigation to
J10 only.

From the analysis of the average species density and aver-
age current, we understand that the 2-ASEP-IAF can exist in
two distinct phases, the free-flowing phase characterized by
nonmonotonic density and nonzero current, and the clustering
phase identified by constant density and vanishing current. It
is important to note that the transition occurs at q1 = p1 mean-
ing that sufficiently small counterflow is enough to impose
clustering in the system.

C. Cluster formation

In Secs. V A and V B, we have inferred the formation of
clusters from the features of the density and the current. In
this section, we discuss the physical origin of the clustering
in 2-ASEP-IAF and provide direct observational evidence of
the cluster formation. To analyze the reason behind clustering,
we remember that every configuration of the system can be
interpreted as a sequence of intervals, as discussed in Sec. IV.
Each interval has two impurities at the interval boundaries and
particles (species 1 and species 2) that drift within intervals
and flip at the boundaries. The total number of particles within
each interval is conserved. The intervals can drift toward
right and increase or decrease in size as vacancies can enter
into and exit from these intervals. The nonflipping species 1
particles inside the rightmost interval presented in Eq. (10),
form a dense region against the impurity to their left. This is
because the impurity can only move to right as opposed to the
nonflipping species 1 sequence that prefers to move left. For
each interval, the vacancies can enter the interval only through
right boundary whereas they can exit from the interval only
through left boundary. Thus, whichever way the vacancies
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are distributed initially within the intervals, at long time they
finally exit through the left boundaries of all the intervals and
aggregate between the left boundary of leftmost interval and
the accumulated species 1 particles in the rightmost interval.
Such clustering of vacancies also imply the formation of a
cluster of all particles (species 1 and species 2 and impu-
rities). Once the two clusters (particles and vacancies) are
formed, the only way for re-entrance of the vacancies inside
the particle cluster is by hopping through the accumulated
nonflipping species 1 particles. This requires right hopping
of these species 1 particles which is less probable as they are
left biased. As the sequence of nonflipping species 1 particles
becomes larger, it takes longer time for a vacancy to travel
thorough the whole particle cluster. It points toward a slow
shift of the particle cluster to right and we expect the velocity
of the shift to become smaller with increasing ρ̄ [Eq. (11)].
We denote the average velocity of the particle cluster by vcl.
From the expressions for currents (as product of density and
velocity) in Eq. (22), the fugacity z0 [Eq. (18)] is identified
to vcl.

Next we show the clustering and the drift of the particle
cluster explicitly. After the cluster is formed, we start our
observation from any configuration and note the position of
the particle cluster (determined by the impurity at the leftmost
end of the particle cluster) at τ = 0. In Monte Carlo simu-
lation, we measure the position of the cluster at different τ .
After time τ , the cluster should shift by an amount of vclτ . It
would be convenient to consider a frame of reference where
the cluster remains stationary. Such stationary cluster frame of
reference can be conceived by using the shifted lattice index
j′(τ ) := j − vclτ . To characterize the position of particles and
vacancies in any configuration, we consider the following
observable in the shifted reference frame:

Cj′(τ ) = 1 if s′
j = 1 or s′

j = 2 or s′
j = +

= 0 if s′
j = 0. (23)

From the Monte Carlo simulation results in Fig. 4, we observe
that two macroscopic clusters are formed in the system at any
τ , one consisting of all the particles and the other made up of
all the vacancies. Further, the cluster is observed to form at the
same position in the shifted frame of reference, for different
τ . This implies that the cluster indeed moves with velocity
vcl in the original frame of reference. The slow shift of the
cluster is similar to time crystals [56–60]. Note that the slow
shift in our model is caused by the unidirectional motion of
impurities, and thus the emergence of this slow shift is not
contradictory with the no-go theorem of time crystals [58].
The inset of Fig. 4 shows the variation of vcl as a function of
the density ρ̄ [Eq. (11)] of the nonflipping species 1 particles.
We observe that, with increasing ρ̄, the cumulative effect
of nonflipping species 1 particles (prone toward left hop-
ping) increases and thereby the cluster velocity (toward right)
decreases.

D. Spatial correlation

An illuminating way to analytically show the formation
of clusters, is to calculate the n-point correlation between
consecutive vacancies (it is more helpful than calculating

FIG. 4. The figure shows the formation of two macroscopic clus-
ters of particles and vacancies for q1 > p1, obtained from Monte
Carlo simulation. The clusters remain stationary in the shifted
reference frame j ′ = j − vclτ , implying the drift of cluster with
velocity vcl in the original frame of reference. The cluster ve-
locity vcl decreases with increasing ρ̄ [Eq. (11)], shown in the
inset. The parameters used are L = 103, p1 = 0.4, q1 = 0.5, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.29 and ρ0 =
1 − 2ρ+ − ρ̄.

correlations between particles, because we have mixture of
different species and impurities inside the particle cluster).
The formal expression for the expression for n-point cor-
relation function between n consecutive vacancies, is the
following

C[n]
0 = 〈00 . . . 0〉 − 〈0〉n. (24)

The superscript [n] in Eq. (24) represents the length of the
uninterrupted sequence of consecutive vacancies (denoted by
0 in the subscript). In fact, the above correlation can be
obtained recursively starting from the two-point correlation
C[2]

0 = 〈00〉 − ρ2
0 . We obtain the following expression for the

two point correlation (see Appendix A for more details),

C[2]
0 = ρ0 − ρ2

0 −
(

ρ+ − 1

L

)
z0

ε
− 1

L

z0

p1

N̄−1∑
k=0

Sk

−
(

ρ+ − 1

L

) w21X1
1−X1

+ w12X2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y1
1−Y1

+ w12Y2
1−Y2

w21
1−Y1

+ w12
1−Y2

, (25)

where Sk is given by Eq. (17) and X1 = z0
p1

+ z0
ε

q1

p1
, X2 = z0

p2
+

z0
ε

q2

p2
,Y1 = z0

p1
SN̄ ,Y2 = z0

p2
+ z0

p1

q2

p2
SN̄−1. The sum 1

L

∑N̄−1
k=0 Sk

in Eq. (25), and consequently C[2]
0 , can be obtained in closed

form, given by Eq. (A8) in Appendix A. We also provide
the successive expressions of C[n]

0 for different n, along with
the corresponding formula for any general n in Eq. (A9)
(Appendix A). The variation of C[n]

0 with the counterflow pa-
rameter q1 for different values of n, is presented in Fig. 5. For
each n the correlation, similar to density and current, displays
the existence of two different phases for q1 < p1 and q1 > p1.
In Fig. 5, we observe a steep increase in the correlations near
q1 � p1. Interestingly, the correlations between consecutive
vacancies increase considerably with increasing n for q1 > p1.
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FIG. 5. The figure shows abrupt change in the n-point correlation
between consecutive vacancies near the transition point q1 = p1. For
q1 > p1, the growth of the correlation with increasing n implies the
tendency of vacancies to form larger cluster. Solid lines and dots
correspond to analytical calculation and Monte Carlo simulation re-
sults, respectively. The parameters used are L = 103, p1 = 0.4, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

This implies more number of vacancies prefer to stick together
in the parameter regime q1 > p1. It appears to be a direct
evidence of macroscopic cluster formation of vacancies in
the clustering phase. We use the fact that z0 remains almost
zero in the clustering phase (inset of Fig. 2), in Eq. (25).
This simplifies the expression for C[2]

0 considerably in the
clustering phase and leads to

C[2]
0 ≈ ρ0 − ρ2

0 , for q1 > p1. (26)

The above result is consistent with C[2]
0 being constant for

q1 > p1 in Fig. 5, with the corresponding value agreeing to
the same given in Eq. (26). In fact, similar arguments apply for
general n, and Eq. (A9) consequently results in the following
particularly simple expression for C[n]

0 in the clustering phase

C[n]
0 ≈ ρ0 − ρn

0 , for q1 > p1. (27)

We understand from Eq. (27) that with increasing n, C[n]
0

approaches to ρ0 which is simply the density of the vacancies,
and this statement is also evident from Fig. 5.

VI. EFFECT OF NONERGODICITY ON CLUSTERING

The discussion of the two different phases up to now, cor-
responds to the initial configuration Eq. (10). The features of
the free-flowing phase and the clustering phase would remain
the same for initial configurations that can be prepared by
permuting the positions of vacancies in Eq. (10). But, owing
to the nonergodic nature of 2-ASEP-IAF, it is important to ask
about the effect of the rearrangement of the two species and
impurities in the initial configuration Eq. (10). To answer this,
in this section we investigate the effect of nonergodicity on the
clustering phenomena. We consider the following variation of
the initial configuration Eq. (10):

D2A..D2A D1D1A..D1D1A D1A..D1A D1..D1 E ..E . (28)

FIG. 6. The figure demonstrates the effect of rearrangement pa-
rameter η (characterizing nonergodicity) on the clustering phase. As
η decreases, the distinction between the free-flowing phase and clus-
tering phase becomes more and more abrupt. Particularly, the density
remains monotonic for large η ≈ 1, whereas it is nonmonotonic for
small and moderate values of η. Solid lines and dots correspond to
analytical calculation and Monte Carlo simulation results, respec-
tively. The parameters used are L = 103, p1 = 0.4, p2 = 1.0, q2 =
0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

We emphasize that all the input parameters
(p1,2, ε,w12,21, ρ0, ρ+, ρ̄ ) are same both for Eqs. (10) and
(29). The difference between these two initial configurations
lies in the rearrangement of the nonflipping species 1
particles. In Eq. (29), we have two types of nonflipping
species 1 particles, isolated (left D1 of unit D1D1A cannot
come in contact with another nonflipping D1), and nonisolated
(belongs to sequence D1..D1). For Eq. (10), we have only the
nonisolated type. However, the total density of nonflipping
D1 is ρ̄, same for both Eq. (10) and Eq. (29). To quantify
their difference, we denote the fraction of isolated nonflipping
species 1 particles in Eq. (29) as η. If we denote the densities
of isolated and nonisolated types of nonflipping species 1
particles by ρiso and ρniso, respectively, then η is given by

η = ρiso

ρ̄
= 1 − ρniso

ρ̄
, (29)

where ρ̄ is defined through Eq. (11). The initial configuration
in Eq. (10) corresponds to η = 0. Since the variation of η sim-
ply rearranges the nonflipping D1-s in the initial configuration,
we denote it as rearrangement parameter. Thus η appears as a
hallmark of nonergodicity. We present the behavior of average
species density ρ1 as a function of η in Fig. 6, obtained in
Eq. (A2) (Appendix A), following similar methods discussed
in Sec. IV. With decreasing η, the distinction between two
phases become more evident in Fig. 6 and the fall of the
density to constant value gets sharper. Intriguingly, for small
or moderate values of rearrangement parameter, the density
is nonmonotonic, contrary to its monotonic nature for η ≈ 1.
Figure 6 thus illustrates that the onset of clustering strongly
depends on η, and therefore on the choice of the initial
configuration. In reality, often there are restrictions on the
tunable range of the tuning parameter. For the variable range
of the parameter under consideration (e.g., say q1 ∈ (0, 1)
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for some system), Fig. 6 tells us which initial configurations
are more prone to clustering in the steady state and which
initial configurations are suitable to avoid such clustering, for
a given value of q1. Taking into consideration the possible
mapping of the present model to a narrow two-lane system
with counterflow, the analysis of diagrams like Fig. 6 might
help in predicting the chances of jamming in the steady state
starting from different initial configurations.

VII. ANALYSIS OF THE CASE q1 − p1 = p2 − q2:
MAPPING TO RUN-AND-TUMBLE PARTICLES

In this section, we consider the subspace of the parame-
ter space that satisfies the constraint q1 − p1 = p2 − q2. This
special case is worthy of some detailed analysis because of its
underlying connection to run-and-tumble particles.

Self-propelled objects such as bacteria respond to chemical
stimulus (e.g., nutrients or harmful substances) present in the
environment through the process of chemotaxis. Chemotaxis,
in a simple language, can be understood as run-and-tumble
motion. Run corresponds to motion along fixed direction and
tumble corresponds to intermediate random reorientation of
direction of motion. Individual swimming flagellated bacteria,
e.g., Escherichia coli in suspensions exhibit run-and-tumble
dynamics [62,77–79]. More interestingly, there are run-and-
tumble wild bacteria, e.g., Vibrio ordalli in oceans, for which
even the chemical stimulus can be dynamic [63]. The creation,
destruction and diffusion of the short-lived chemical stimulus
in ocean create the dynamic chemical gradient [63]. Bacte-
ria like E. coli or V. ordalli can accumulate near chemical
stimulus to create clusters [62,63,77]. Such run-and-tumble
motion and clustering of bacteria can be best described in
two-dimensional continuous space, which poses difficulties
for exact analysis. Rather, one-dimensional discrete lattice
models, although simpler adaptation of the complex bacterial
systems, can capture the run-and-tumble dynamics and cluster
formation. In this connection, it is intriguing to note that the
2-ASEP-IAF [Eq. (1)] can be mapped to a system of many
RTPs, under the special circumstance q1 − p1 = p2 − q2.

In this case, the net bias of the two species are equal and
opposite to each other, and therefore the two species can be
considered as the manifestations of two possible orientations
of RTPs in one dimension. The impurities act as origins of the
tumbling process. The flip between species can be interpreted
as tumbling of directions. Particularly, when the impurity
causes flip to a species that has net bias in the direction same
as that of the impurities, the impurity at that instant can be
thought of a attracting reagent or nutrients. However, when the
resulting species from flip has net bias opposite to the impurity
bias, the impurity at that instant is considered as a repelling
reagent for tumbling process. Note that apart from the RTPs
[constituted by the D1-s and D2-s in the sequences of Y =
D1A, D2A in Eq. (10)] and sources of tumbling process [i.e.,
impurities A in the sequences of Y = D1A, D2A in Eq. (10)],
there are particles which do not tumble in the sense that their
direction of net bias remain unchanged [the nonflipping D1-s
in the sequence of Y = D1 in Eq. (10)]. With this mapping
of the 2-ASEP-IAF to RTPs, we discuss the behaviors of the
average density [Eq. (19)] and current [Eq. (22)] of the species

(a)

(b)

FIG. 7. Panels (a) and (b) show heat-maps for density ρ1 and
current J10, respectively, in the p1-q1 plane, for the special case
q2 − p2 = p1 − q1 that maps the 2-ASEP-IAF to a system of RTPs.
Both figures exhibit the existence of two different phases for q1 > p1

and q1 < p1. The current being close to zero for q1 > p1 in panel
(b) confirms that this parameter region corresponds to the clustering
phase, while q1 < p1 with nonzero current gives the free-flowing
phase. The parameters used are L = 103, p2 = 1.0, ε = 0.1, w12 =
1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

for the special case q1 − p1 = p2 − q2, as a function of the
system parameters.

We present the heat-maps of the average density ρ1 and
current J10 in Figs. 7(a) and 7(b), in the p1-q1 plane. It should
be mentioned that the mapping discussed in this section forces
us to consider q2 − p2 = p1 − q1, i.e., Fig. 7 strictly corre-
sponds to the counterflow situation (both for q1 < p1 and
q1 > p1). This is contrary to the setup in Fig. 1 where we have
natural flow for q1 < p1 and counterflow for q1 > p1. In spite
of this, we observe from Fig. 7 that, even within the counter-
flow scenario, two different phases emerge showing distinct
features for q1 < p1 and q1 > p1 that are qualitatively similar
to Fig. 1. For further analysis, in Figs. 8(a) and 8(b), we
present cross sections of Figs. 7(a) and 7(b), respectively, at
fixed p1. Both Figs. 8(a) and 8(b) exhibit two different phases,
the free-flowing phase and the clustering phase. For q1 < p1

and q2 > p2, both the density and current vary nonmonoton-
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(a)

(b)

FIG. 8. Panels (a) and (b) show two different phases for the
RTPs, through the variation of average species density ρ1 and av-
erage drift current J10, respectively, as functions of the parameter
q1. For q1 > p1 and q2 < p2, ρ1 is constant and J10 is vanishingly
small, characterizing the phase as clustering phase. For q1 < p1

and q2 > p2, we observe the free-flowing phase where both density
and current vary considerably with q1. The solid lines and the dots
correspond to analytical and Monte Carlo simulation results, respec-
tively. The parameters used are L = 103, p1 = 0.4, p2 = 1.0, ε =
0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

ically with q1, which we understand to be the free-flowing
phase. Whereas, for q1 > p1 and q2 < p2, both ρ1 and J10

remain constant, specifically the current is vanishingly small
identifying the phase as the clustering phase. In comparison
to Fig. 2 where ρ1 attains maximum value in the free-flowing
phase, the maximum density for Fig. 8(a) is achieved in the
clustering phase. The cluster formation owes to the cumula-
tive effect emerging from the presence of the nontumbling
sequence of Y = D1 in the initial configuration Eq. (10). We
should mention that there is disagreement to some extent be-
tween our exact results and the Monte Carlo simulation results
near q1 = p1 in the clustering phase observed in Fig. 8(a),
whereas both results match well for all other values of q1. This
discrepancy, as per our current understanding, is due to the
restriction of insufficient ensemble average near the transition
point.

(a)

(b)

FIG. 9. Panels (a) and (b) illustrate the effect of the tumbling
rate w12 on the two phases. Panel (a) exhibits similar qualitative
behavior (monotonic decrease) of the density ρ1 in both phases.
Panel (b) shows that the clustering phase remains unaffected with
the change of w12, whereas the current decreases monotonically with
w12 in the free-flowing phase. The solid lines and the dots corre-
spond to analytical and Monte Carlo simulation results, respectively.
The parameters used are L = 103, ε = 0.1, w21 = 0.1, ρ+ = 0.25,

ρ0 = 0.4.

It is quite natural to ask the effect of tumbling rates (w12

and w21) on the two phases. To investigate this, we present the
variation of ρ1 and J10 as functions of the tumbling rate w12 in
Figs. 9(a) and 9(b), respectively, using our analytical findings
(solid lines) from Eqs. (19) and (22), supported by Monte
Carlo simulation results (dots). In each figure, we consider
two situations, one corresponding to q1 < p1 and q2 > p2,
and the other to q1 > p1 and q2 < p2. Particularly, Fig. 9(b)
clearly shows the current remains vanishingly small for any
value of w12, in the case q1 > p1 and q2 < p2, suggesting that
the formed cluster is stable to change of the tumbling rates.
However, for q1 < p1 and q2 > p2, the current of species 1
decreases monotonically with increasing tumbling rate w12

(species 1 to species 2) as expected. However, the fact that
the change of tumbling rate does not have any effect on the
formed clusters, is not visible from the density characteristics
in Fig. 9(a) which shows similar qualitative nature for both
the free-flowing and clustering phase. We would also like to
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(a)

(b)

FIG. 10. Panels (a) and (b) illustrate the effect of the drift ε

of tumbling reagents (i.e., impurities) on the two phases. Both the
density and current, in panels (a) and (b), respectively, show that the
variation of ε has no effect in the clustering phase, whereas both
the observables increase monotonically with ε in the free-flowing
phase. The solid lines and the dots correspond to analytical and
Monte Carlo simulation results, respectively. The parameters used
are L = 103,w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

explore the effect of the drift process of the impurities, that
act as attracting reagent (nutrient) or repelling reagent causing
the tumbles, on the two phases. The observables ρ1 and J10 in
Figs. 10(a) and 10(b), respectively, exhibit that the clustering
phase is undisturbed by the change of the impurity drift rate
ε, where as both the average density and current increases
with increasing ε in the free-flowing phase. Thus, we have
shown that, starting from initial configuration Eq. (10), the
system of RTPs (along with attracting or repelling reagents
causing tumbles) can transit between free-flowing phase and
clustering phase, with the variation of the control parameter
q1 that tunes the net biases of the two tumbling directions.
Interestingly, the formed clusters are stable against any change
of the tumbling rates w12 (and w21) and reagent (i.e., impurity
causing tumble) drift rate ε.

VIII. SUMMARY

We have demonstrated the formation of clusters induced by
counterflow in a nonergodic system. To illustrate this, we have

considered two species asymmetric simple exclusion process
along with impurities. Apart from the drift of the species and
impurities, additionally the impurities activate flips between
the two species. The exact analytical results obtained for
the observables (average species density, drift current, spatial
correlation), show two distinct phases, free-flowing phase and
clustering phase, as functions of the counterflow parameter
q1, which basically controls the flow direction of species 1
by tuning its net bias. The free-flowing phase is specified
by nonmonotonic density and nonmonotonic finite current,
whereas the clustering phase is characterized by constant
density and vanishing current. The clustering situation can be
thought as an equivalent system almost devoid of vacancies,
where the drift dynamics is almost absent. This is compatible
with the vanishing current and the constant density in the
clustering phase. Specifically, the growth of n-point spatial
correlation between n consecutive vacancies with increasing
n, directly implies the accumulation of vacancies to form one
macroscopic cluster, along with another macroscopic cluster
formed by all the particles. The heat maps of density and
current in p1-q1 plane show that the two phases are demar-
cated by the line q1 = p1 (p1 and q1 being right and left hop
rates of species 1, respectively). This is further clarified by the
sharp descents of density and current and the sharp ascent in
spatial correlation between vacancies near q1 = p1. The slow
drift of the cluster in the clustering phase can be observed by
tracking individual configurations over long time. The effect
of nonergodicity on the system is characterized through a
rearrangement parameter, which only permutes the positions
of some particles while keeping all the input parameters fixed.
We observe that the choice of initial configuration affects
the onset of clustering significantly. In fact, for certain initial
configurations, we do not see signatures of clustering for finite
values of q1 and the corresponding densities increase mono-
tonically in contrast to the nonmonotonic densities for initial
configurations showing cluster formations. Interestingly, for
a special case of the microscopic dynamics when the net
bias of the two species are equal and opposite to each other,
we map the 2-ASEP-IAF to a system of RTPs. The species
with net bias to right (left) can be considered as right (left)
running RTPs, where the impurities act as tumbling reagents
that cause the tumbling of RTPs, equivalent to the flip process
in 2-ASEP-IAF. Notably, although this mapping is valid only
in the counterflow situation, we still observe two different
phases, the free-flowing phase and the clustering phase. We
further find that the clustering phase remains stable against
the variation of the tumbling rate and drift of the tumbling
reagents. We believe that our analysis supported by exact
analytical results enlightens the understanding of clustering
phenomena.

The model studied here, having resemblance to two-lane
traffics and RTPs in active matter, points toward analytical
understanding of traffic jams and clustering active matter
systems. Further careful and thorough investigations are re-
quired to establish such connections. It would be interesting
to study variations of the local microscopic dynamics consid-
ered here, that can produce dynamical ways to get rid of the
clustering phase. It would be important to explore the effects
of boundary conditions, e.g., allowing entries and exits of

054905-12



COUNTERFLOW-INDUCED CLUSTERING: EXACT … PHYSICAL REVIEW E 107, 054905 (2023)

selective particles or all particles, on the different phases of
the system.

ACKNOWLEDGMENTS

This work is partially supported by the Grants-in-
Aid for Scientific Research (JSPS KAKENHI Grant No.
JP21H01006). A.K.C. gratefully acknowledges postdoctoral

fellowship from the YITP. The numerical calculations have
been done on the cluster Yukawa-21 at the YITP.

APPENDIX A: DERIVATION OF OBSERVABLES

In this Appendix, we sketch the steps for calculating the
average species densities and n-point correlation function be-
tween consecutive vacancies. These steps essentially follow
the methods discussed in obtaining the partition function in
Sec. IV. The average density ρ1 of species 1, can be written as

ρ1 = 〈1〉 = ρ̄ +
(
ρ+ − 1

L

)
Q

∞∑
m1=0

· · ·
∞∑

nN̄ =0

Tr

⎡
⎣D1(z0E )m1 A(z0E )m̄1

N+∏
i=2

(D1 + D2)(z0E )mi A(z0E )m̄i

N̄∏
j=1

D1(z0E )n j

⎤
⎦

+ 1

L

1

Q

∞∑
m1=0

· · ·
∞∑

nN̄ =0

Tr

⎡
⎣N+−1∏

i=1

(D1 + D2)(z0E )mi A(z0E )m̄i D1(z0E )mN+ A(z0E )m̄N+
N̄∏

j=1

D1(z0E )n j

⎤
⎦. (A1)

The term ρ̄ appears directly due to the initial density ρ̄ of
the nonflipping species 1 particles. In the second part with
prefactor (ρ+ − 1

L ), we place at least one D1 in a flipping
term, whereas any other flipping term can have D1 or D2; the
density of such terms is (ρ+ − 1

L ). The last part contributes
due to the D1 that is placed in the last flipping term after which
the nonflipping D1-s start. To proceed, we would use the

explicit matrix representations in Eq. (9) and the expressions
derived in Eqs. (14) and (15) to evaluate the matrix strings in
Eq. (A1). This leads us to the final formula for the average
species density in Eq. (19). We can follow similar procedure
to calculate the average species densities for the general initial
configuration Eq. (29) with nonzero η in Sec. VI. In this case,
we get

ρ1(η) = ρ̄ +
(

ρ+ − 1

L
− ηρ̄

) w21

1− z0
p1

S0[
w21

1− z0
p1

S0
+ w12

1− z0
p2

(1+ q2
p1

S−1 )

] + ηρ̄

w21

1− z0
p1

S1[
w21

1− z0
p1

S1
+ w12

1− z0
p2

(1+ q2
p1

S0 )

]

+ 1

L

w21

1− z0
p1

S(1−η)N̄[
w21

1− z0
p1

S(1−η)N̄
+ w12

1− z0
p2

(1+ q2
p1

S(1−η)N̄−1 )

] ,
ρ2(η) = ρ̄ + ρ+ − ρ1(η), (A2)

It is straightforward to check that η = 0 in Eq. (A2) gives the
density in Eq. (19).

The formal expression for two-point nearest neighbor cor-
relation between vacancies is

C[2]
0 = 〈00〉 − ρ2

0 . (A3)

It is difficult to calculate 〈00〉 directly using the matrix repre-
sentations, rather it is easier to use the following conservation:

〈00〉 + 〈01〉 + 〈02〉 + 〈0+〉 = ρ0. (A4)

Using Eq. (A4) into Eq. (A3), we get

C[2]
0 = ρ0 − ρ2

0 − 〈01〉 − 〈02〉 − 〈0+〉. (A5)

Evaluating 〈01〉, 〈02〉, and 〈0+〉 using the matrix representa-
tions, we finally obtain the following expression for C00:

C[2]
0 = ρ0 − ρ2

0 −
(

ρ+ − 1

L

)
z0

ε
− 1

L

z0

p1

N̄−1∑
k=0

Sk

−
(

ρ+ − 1

L

) w21X1
1−X1

+ w12X2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y1
1−Y1

+ w12Y2
1−Y2

w21
1−Y1

+ w12
1−Y2

, (A6)

where

X1 = z0

p1
+ z0

ε

q1

p1
,

X2 = z0

p2
+ z0

ε

q2

p2
,

Y1 = z0

p1
SN̄ ,

Y2 = z0

p2
+ z0

p1

q2

p2
SN̄−1. (A7)
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Clearly, the two-point correlation would have a closed form if
the sum

∑N̄−1
k=0 Sk has a closed form, and indeed this can be

evaluated as

1

L

N̄−1∑
k=0

Sk = ρ̄
p1

(p1 − q1)
+ 1

L

[
1 −

(
q1

p1

)N̄
]

×
(

p1 − q1

ε
− 1

)
p1q1

(p1 − q1)2
. (A8)

So, we have evaluated the two-point correlation function C[2]
0

exactly. Of course, z0 has to be calculated from the density-
fugacity relation. Importantly in Eq. (A8), note that we could
scale N̄ by system-size L properly in the first term so that it
becomes a function of ρ̄, but this is not possible in the case of
the second term where N̄ appears in the power.

In fact, using the result of C[2]
0 , we can calculate C[3]

0 and
then C[4]

0 using C[3]
0 , and so on. For simplified notations, we

denote C[n]
0 as the correlation between consecutive n vacancies

[Eq. (24)], then we obtain in iterative way,

C[2]
0 = ρ0 − ρ2

0 −
(

ρ+ − 1

L

)
z0

ε
− 1

L

z0

p1

N̄−1∑
k=0

Sk −
(

ρ+ − 1

L

) w21X1
1−X1

+ w12X2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y1
1−Y1

+ w12Y2
1−Y2

w21
1−Y1

+ w12
1−Y2

,

C[3]
0 = C[2]

0 + ρ2
0 − ρ3

0 −
(

ρ+ − 1

L

)( z0

ε

)2
− 1

L

(
z0

p1

)2 N̄−1∑
k=0

(Sk )2 −
(

ρ+ − 1

L

) w21X 2
1

1−X1
+ w12X 2

2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y 2
1

1−Y1
+ w12Y 2

2
1−Y2

w21
1−Y1

+ w12
1−Y2

,

C[4]
0 = C[3]

0 + ρ3
0 − ρ4

0 −
(

ρ+ − 1

L

)( z0

ε

)3
− 1

L

(
z0

p1

)3 N̄−1∑
k=0

(Sk )3 −
(

ρ+ − 1

L

) w21X 3
1

1−X1
+ w12X 3

2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y 3
1

1−Y1
+ w12Y 3

2
1−Y2

w21
1−Y1

+ w12
1−Y2

,

. . . = . . .

C[n]
0 = C[n−1]

0 + ρn−1
0 − ρn

0 −
(

ρ+ − 1

L

)(
z0

ε

)n−1

− 1

L

(
z0

p1

)n−1 N̄−1∑
k=0

(Sk )n−1

−
(

ρ+ − 1

L

) w21X n−1
1

1−X1
+ w12X n−1

2
1−X2

w21
1−X1

+ w12
1−X2

− 1

L

w21Y n−1
1

1−Y1
+ w12Y n−1

2
1−Y2

w21
1−Y1

+ w12
1−Y2

. (A9)

Thus, we have obtained the analytical formulas for aver-
age species densities, drift currents, and n-point correlation
between consecutive vacancies. The results in Eq. (A9) have
been used to present the behavior of the correlations with the
variation of the counterflow parameter q1 in Fig. 5.

APPENDIX B: DENSITY-FUGACITY RELATION:
SOLUTION FOR SPECIAL CASES

Here we state the explicit form of the density-fugacity
relation, calculated from the partition function in Eq. (16).
This relation is used to solve the fugacity z0 as a function
of the input parameters. Consequently, we can replace the
corresponding value of z0 in the expressions of the observ-
ables, e.g., in Eqs. (19), (22), and (25), so that they become
functions of the input parameters only. The formal expression
for the density-fugacity relation is given in Eq. (18). Using
Eq. (16) in Eq. (18), we have the following explicit form of
the density-fugacity relation to solve:

ρ+
1 − z0

ε

+ z0
(
ρ+ − 1

L

)
w21(1 − z0X ′

2) + w12(1 − z0X ′
1)

×
[
w21X ′

1
1 − z0X ′

2

1 − z0X ′
1

+ w12X ′
2

1 − z0X ′
1

1 − z0X ′
2

]

+
z0
L

w21(1 − z0Y ′
2 ) + w12(1 − z0Y ′

1 )

×
[
w21Y

′
1

1 − z0Y ′
2

1 − z0Y ′
1

+ w12Y
′

2
1 − z0Y ′

1

1 − z0Y ′
2

]

+ 1

L

N̄∑
k=1

1

1 − z0
p1

Sk−1
= ρ0 + ρ+ + ρ̄, (B1)

with X ′
1,2 = X1,2/z0 and Y ′

1,2 = Y1,2/z0, where X1,2 and Y1,2

follow Eq. (A7), Sk is given by Eq. (17). The reason behind
such rescaling by z0 is simply to express X ′

1,2 and Y ′
1,2 as

functions of the input parameters only. In general, we have
solved Eq. (B1) in Mathematica to get z0 for a given set of
input parameters. Also note that the complexity of the equa-
tion increases with increasing number of nonflipping species
1 particles N̄ , in terms of the highest degree of z present in
the polynomial of z0 in Eq. (B1). For some special cases with
specific choices of the hop-rates, one can obtain closed form
solutions for the fugacity z0.

A particularly simple case corresponds to N̄ = 0. This also
implies Y ′

1 = X ′
1 and Y ′

2 = X ′
2, which can be seen directly from

Eq. (A7) with the help of Eq. (17). We further consider the
special situation of X ′

1 = X ′
2. The density-fugacity relation

Eq. (B1) simplifies to

z0ρ+X ′
1

1 − z0X ′
1

+ ρ+
1 − z0

ε

= ρ0 + ρ+. (B2)
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The above equation has the following solution:

z0 = (ρ0 + ρ+)(1 + εX ′
1) + √

(ρ0 + ρ+)2(1 + εX ′
1)2 − 4ρ0εX ′

1(ρ0 + 2ρ+)

2(ρ0 + 2ρ+)X ′
1

. (B3)

To better understand the constraint on the hop rates for which
we have got the exact solution Eq. (B3), we explore the situa-
tion X ′

1 = X ′
2, which basically boils down to

ε = q2 p1 − q1 p2

p2 − p1
. (B4)

The above subspace of hop rates can create both natural flow
and counterflow situations and also includes the very special
case p1 = p2 and q1 = q2. We should mention that, even
without the assumption X ′

1 = X ′
2, we have a quartic equation in

z0 that can be solved exactly in Mathematica. However, the
solution of z0 in that case is too lengthy to include here.

Another noteworthy point is the fugacity z0 actually equals
to the cluster velocity vcl discussed in the main text (see inset
of Fig. 4). This is evident from the current-density relation
Eq. (22), which can be considered as J = vclρ in the cluster-
ing phase. In fact, one can check the inset of Fig. 4 in the
main text, obtained from Monte Carlo simulations, can be
reproduced by calculating z0 for the corresponding set of input
parameters.

APPENDIX C: A COMMENT REGARDING THE
INITIAL CONFIGURATION

We have considered steplike initial configuration [Eq. (10)]
in the main text. To elaborate, initially all the particles (both
species and impurities) occupy consecutive lattice sites with
no vacancy between them. Starting from such steplike initial
configuration, in the free-flowing phase, the vacancies get
randomly distributed between the particles. On the other hand,
in the clustering phase, any steady-state configuration remains
steplike, with the particle cluster shifting slowly to right.

Naturally, the question arises if the cluster can be formed
from an initial configuration which is not steplike, rather there
are vacancies distributed between particles. The answer is yes.
If we start from a non-step-like initial configuration given
below,

C(0) = D2Em1 AEm̄1 . . . D2EmN+/2 AEm̄N+/2 D1En1 AEn̄1 . . .

D1EnN+/2 AEn̄N+/2 D1Er1 . . . D1ErN̄ , (C1)

where the total number of vacancies is
N+/2∑
i=1

(mi + m̄i + ni + n̄i ) +
N̄∑

j=1

rk = N0. (C2)

Note that the above initial configuration contains the exact
same ordering of particles as the one [Eq. (10)] studied in the
main text and the total number of vacancies are also the same
for both configurations, the only difference being the initial
configuration [Eq. (10)] in the main text is steplike, whereas
Eq. (C1) is non-step-like. Since the ordering of vacancies
actually do not matter, both of these initial configurations
lead to the same configuration sub-space in the steady state.
Thereby all the characteristics of the system in the steady
state remain same for both of these initial configurations.

Thus we expect to see the clustering phenomena starting from
initial configuration Eq. (C1) just like we did for the one in
the main text (see Fig. 4). Indeed, in Fig. 11, we observe
that the macroscopic cluster is formed in the steady state,
while the initial configuration is non-step-like. So, the only
advantageous and satisfactory thing about Eq. (C1), is the fact
that the cluster is formed in a dynamic way from non-step-like
initial configuration.

APPENDIX D: VARIATION OF OBSERVABLES
WITH SYSTEM SIZE L

In this Appendix, we present the behaviors of average
species density and drift current as function of q1, for different
system sizes L. Note that, the density ρ1 should be an intensive
quantity independent of L and the steady-state current should
also be a constant independent of L. In fact, like the fugacities,
e.g., temperature, chemical potential which are independent
of system size, the fugacity z0 should also be a constant inde-
pendent of system size. Thus, z0, ρ1, and J10 here must show
convergence with increasing L. Indeed, the fugacity obtained
from the exact numerical data by solving Eq. (B1), show
converging behavior with increasing system size in Fig. 12(a).
At the transition point q1 = p1, we investigate the approach
of z0 toward convergence as a function of L, by fitting the
data with the functional form z0 = cLα in Fig. 12(b). Also,
both Figs. 13(a) and 13(b) exhibit convergence of the cor-
responding behaviors of ρ1 and J10 with increasing system

FIG. 11. The figure demonstrates the steplike cluster formation
in the steady state, starting from a non-step-like initial configu-
ration where vacancies are randomly distributed among particles.
Here we consider τ = 0 as the observation time of cluster in
steady state, whereas the initial configuration corresponds to time
t = 0. The parameters used are L = 103, p1 = 0.4, q1 = 0.5, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.29, ρ0 = 0.4.
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(a)

(b)

FIG. 12. Panel (a) illustrates the convergence of the fugacity
behavior with increasing system size L, plotted against the parameter
q1. Panel (b) illustrates the approach of z0 toward this convergence
with varying L, at the transition point q1 = p1. The exact numerical
data obtained from the solution of z0 is fitted with the form z0 = cLα ,
resulting in α ≈ −0.76. The parameters used are p1 = 0.4, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

size. In Fig. 13(b), the current shows rapid convergence in
both the free-flowing phase and clustering phase for L = 103

and more. Notably, in Fig. 13(a), the density shows faster
convergence with increasing L in the free-flowing phase, in
comparison to that of the clustering phase. We should men-
tion that the convergence value of ρ1 in the clustering phase
in Fig. 13(a) agrees with the simplified formula obtained in
Eq. (20). In the insets of Figs. 13(a) and 13(b), we examine
the approach of ρ1 and J10, respectively, toward convergence,
with varying system size L. We fit the corresponding data with
the relations of the form ρ1 = c′′Lδ and J10 = c′Lγ . Keeping
in mind the relation [Eq. (22)] between current, density and
fugacity of the form J10 = z0ρ1, the exponent δ can be deter-
mined from the relation δ = (γ − α). Our findings in Figs. 12
and 13(b) predict δ to be (γ − α) = −0.12. This is close to
but not exactly equal to the δ value (≈−0.078) obtained in the
inset of Fig. 13(a) because of the finite system sizes used in
the discussion.

(a)

(b)

FIG. 13. Panels (a) and (b) show convergence of ρ1 and J10,
respectively, with increasing system size L. The insets (in log scale)
of panels (a) and (b) show the variations of ρ1 and J10, respectively,
with L at the transition point q1 = p1. They follow the relations ρ1 =
ρ̄c′′Lδ and J10 = c′Lγ with exponent values δ ≈ −0.078 and γ ≈
−0.88 obtained from fitting. The parameters used are p1 = 0.4, p2 =
1.0, q2 = 0.5, ε = 0.1, w12 = 1.0, w21 = 0.1, ρ+ = 0.25, ρ0 = 0.4.

APPENDIX E: ARNDT-HEINZEL-RITTENBERG MODEL
OF COUNTERFLOW: COMPARISONS

In this section, we compare the microscopic dynamics of
our model with the dynamics of the Arndt-Heinzel-Rittenberg
(AHR) model that is known to exhibit three different phases
[26,80,81]. The AHR model considers positive (say, species
1) and negative (say, species 2) particles along with vacancies
(0) on a one-dimensional periodic lattice and the follow the
dynamical rules given below

10
λ−→ 01, 02

λ−→ 20,
q−⇀↽−
1

21. (E1)

A straightforward comparison of the AHR model in Eq. (E1)
with our model in Eq. (1) reveal the following factors: (i)
our model allows a nonconserving flip dynamics that activates
transformations between species 1 and 2, which is absent
in the AHR model for which each microscopic dynamics
maintains particle number conservation of every species.
Also, as a consequence, our model requires minimum four
species in total (species 1, species 2, impurity and vacancy)
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to operate both drift and flip dynamics, while the AHR model
deals with three species in total (species 1, species 2, and va-
cancy). (ii) AHR model has an exchange dynamics that allows
the two species to exchange their positions. Such exchange
dynamics is absent in our case. (iii) Our model is nonergodic
in contrast to the ergodic nature of the AHR model.

The exchange rate q is considered as the tuning parameter
for the AHR model and the density ρ of the two species are
taken to be equal [26,81]. Three different phases, namely pure
phase, mixed phase and disordered phase are observed, as q
is varied [26,81]. When q < 1, the species 1 is more probable
to reside at left of species 2 which again likes to be at left of
vacancies. This leads to a complete species segregation with
three types of blocks each purely consisting of one species
(either 1 or 2 or 0), thereby referred to as pure phase. For 1 <

q < qc (where qc depends on λ and ρ), a condensate is formed
that has both species 1 and species 2 mixed up, accompanied
by a fluid consisting of vacancies and some particles of the
two species. This phase is known as the mixed phase. There
is no species segregation or condensate formation for q > qc,
which is the disordered phase. To observe these three phases,
two point functions like drift current and correlations between
different species have been used [26,81].

Interestingly, in our model, due to the presence of non-
conserving flip dynamics, we have even simpler one point
function like average species densities among observables of
interest, and indeed the average species densities clearly show
the existence of two different phase, the free-flowing phase
and the clustering phase. The free-flowing phase in our model
is similar to the disordered phase of AHR model. However,
for the specific choice of initial configuration considered here
and due to the flip dynamics, species segregation in pure form
is not possible in the clustering phase. Rather, we have two
macroscopic clusters, one consisting of only vacancies and the
other consisting of all kinds of particles (species 1 and species
2 and impurities). Although the mixing up of different species
and impurities inside the particle cluster has resemblance to
the mixed phase condensate of AHR model, we do not have a
background fluid in our case. Rather, for any q1 > p1, we have

only two clusters in the clustering phase, a vacancy cluster and
a particle cluster, with the particle cluster drifting along right
with considerably small velocity that depends on the density
of the nonflipping species 1 particles in the system. Another
noteworthy point in our analysis is the rearrangement param-
eter whose variation captures the effect of nonergodicity on
the clustering phenomenon, there is no such counterpart in the
ergodic AHR model.

Note that exact analysis in Refs. [28,29] later revealed
that there is actually no phase transition between mixed and
disordered phase in the AHR model, in the thermodynamic
limit within the grand canonical ensemble framework. This
conclusion is associated with the existence of extremely long
but still finite correlation lengths in the infinite system.

There is an alternative approach to compare the dynamics
of the two models, although the key points of the comparative
analysis between them remain the same. Our tuning parameter
has been the counterflow parameter q1, which is a part of the
drift dynamics. To treat the tuning parameter q of the AHR
model on an equivalent footing, one can relabel species 1,
species 2, and vacancy in AHR model as vacancy, species 1,
and species +, respectively. Thus, one arrives at an alternative
version of the AHR model given below:

0+ λ−→ +0, +1
λ−→ 1+, 10

1−⇀↽−
q

01. (E2)

Here we see, in comparison to our model Eq. (1), the species 2
is absent and we do not term + as impurity because there is no
flip dynamics at all. So + drifts to left only, species 1 drifts to
right or left with rates q and 1, respectively, with an additional
exchange of positions between + and 1. Clearly q > 1 here
corresponds to natural flow situation and q < 1 refers to the
counterflow situation.

The exact steady state of AHR model in Eq. (E1) has been
obtained in matrix product from, which has a two-dimensional
representation in the limit q → ∞ and infinite-dimensional
representations in general [81], which have different struc-
tures in comparison to the infinite-dimensional matrices in our
case Eq. (17).
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