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Random sequential adsorption of aligned regular polygons and rounded squares:
Transition in the kinetics of packing growth
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We study two-dimensional random sequential adsorption (RSA) of flat polygons and rounded squares aligned
in parallel to find a transition in the asymptotic behavior of the kinetics of packing growth. Differences in the
kinetics for RSA of disks and parallel squares were confirmed in previous analytical and numerical reports. Here,
by analyzing the two classes of shapes in question we can precisely control the shape of the packed figures and
thus localize the transition. Additionally, we study how the asymptotic properties of the kinetics depend on the
packing size. We also provide accurate estimations of saturated packing fractions. The microstructural properties
of generated packings are analyzed in terms of the density autocorrelation function.
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I. INTRODUCTION

Random sequential adsorption (RSA) is a numerical proto-
col used for generating random packings [1–3]. According to
it, the shapes are placed randomly one after another, however,
the placing occurs only if the next shape does not overlap any
of the previously added shapes. After placing, the position and
orientation of each figure remain unchanged. The procedure
continues until the packing is saturated—there is no place
for any other shape. In contrast to the so-called random close
packings (RCPs) where the neighboring particles typically are
in contact [4], here the packing is rather loose, and the mean
packing fraction is significantly smaller.

Although the history of RSA begins in 1939 when Flory
used the random process described above to study the struc-
ture of a linear polymer to which some groups of molecules
can be attached at random places [5], the real interest in
RSA began in 1980 when Feder noticed that the structure
of such two-dimensional random packings resembles mono-
layers produced in irreversible adsorption experiments [6].
The similarities were so substantial that saturated packing
fractions of disks on a flat surface were determined using
adsorption experiments [7]. On the other hand, the numerical
generation of large, strictly saturated packings was ineffective
because when the packing is almost saturated, the probability
that a randomly placed and oriented object will not intersect
with any previously added one is tiny. Thus, the number of
such attempts has to be very large to place the next figure.
Although for some specific shapes, there exist methods over-
coming this problem, e.g., Refs. [8–10], the properties of the
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saturated state are still often estimated using the kinetics of
packing growth computed for almost saturated packings. For a
majority of shapes, the asymptotic kinetics is given by Feder’s
law

θ − θ (t ) ∼ t− 1
d , (1)

when the packing is close to a saturated state. Here, θ is the
saturated packing fraction and θ (t ) is the packing fraction
after t tries of adding a shape to the packing. Parameter d
depends on shape and packing dimensionality. For example,
for k-dimensional (hyper)spheres packed in the (hyper)space
of the same dimensionality, d = k, while for anisotropic,
randomly oriented two-dimensional shapes placed on the two-
dimensional flat surface d = 3 [9,11,12]. On the other hand,
for parallel squares or rectangles,

θ − θ (t ) ∼ log t

t
. (2)

Both these relations were confirmed analytically [13,14] and
numerically, e.g., Refs. [9,11,12,15,16].

Here, we want to study the transition between these two
regimes. We tried to achieve this in two ways. The first one
is to generate two-dimensional random packings composed
of flat regular polygons aligned in parallel. For the RSA of
squares, as noted above, the kinetics of the packing growth
is governed by Eq. (2). When the number of regular polygon
sides grows, its shape approaches the disk for which kinetics
is given by Eq. (1) with parameter d = 2. A similar study
was recently presented in Ref. [17], but the author focused on
saturated packing fractions while the presented results on the
RSA kinetics of squares did not agree with the analytical law
Eq. (2). The second way is to generate packings built of
aligned squares with rounded corners. By increasing the ra-
dius of this rounding, the shape approaches the disk, thus the
transition in the packing’s growth kinetics should be visible.
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The second method seems to be superior to the first one
because the radius can be changed continuously, while the
number of regular polygon’s sides is a discrete value and the
disk is approached only in the limit of an infinite number of
sides.

II. NUMERICAL DETAILS

The RSA protocol consists of iterations of the following
steps: (1) Select the position of a virtual polygon randomly
with the probability uniformly distributed over the packing;
(2) check if the virtual particle does not overlap with any
polygon inside the packing; and (3) if it does not, add it to
the packing, otherwise, remove and abandon it.

To generate strictly saturated packings according to the
RSA protocol we traced the regions where subsequent par-
ticles can be added. This idea was used for the first time by
Akeda et al. in the case of packings built of parallel squares
[18] and by Wang for disks [8]. The method is based on
the division of the packing into small regions called voxels,
and each voxel is tested if there is a possibility to place on
it the center of the next shape without overlapping existing
polygons. If not, such a voxel is removed from the list of
existing voxels. Thus, the random sampling of the position
of the virtual shape is limited only to the voxels that are on
the list, which speeds up the packing generation. The voxels
can be divided into smaller ones to better estimate the region
when placing is possible. The simulation ends where there
are no voxels left, thus the packing is saturated. A variant
of this method for polygons was invented by Zhang [19]
and improved further in Ref. [20] and the details about the
voxel removal criterion can be found there. Although in its
original version, this method was designed for the generation
of saturated packings built of arbitrarily oriented polygons, its
restriction to a single orientation is straightforward.

It should be mentioned that when the sampling of the
virtual shape position covers only existing voxels occupying
a fraction of the whole packing surface area S, one iteration
corresponds to S/Sv iterations in the original RSA protocol,
where Sv is the total surface area of these voxels. Additionally,
to compare the results obtained for different sizes of packings,
the number of iterations is expressed in the so-called dimen-
sionless time units where one unit contains S/Sp iterations.
Here, Sp is the surface area of a single polygon. Throughout
this paper, the number of iterations shall be expressed in these
units and denoted as t .

We studied saturated RSA packings built of regular poly-
gons of the number of sides ranging from 3 to 1000. To
estimate the kinetics and other properties, we generated 100
independent random packings for each type of polygon. The
figures were placed on the square of the surface area S = 106,
while the surface area of a single polygon was normalized
to Sp = 1. To minimize finite-size effects, periodic boundary
conditions were used [10]. The number of iterations needed
to form a saturated packing differs significantly between inde-
pendent packings, as it, in general is distributed according to
a heavy tail probability distribution function [21]. Therefore,
to estimate the asymptotic value of the parameter d in the
power law Eq. (1) we restricted the analysis to the data from
the range [tmin/100, tmin], where tmin is the dimensionless time

FIG. 1. Parametrization of a rounded square. The circumscribed
circle of the square has a unit radius and the circumscribed circle of
the rounded square has a radius of 1 + r.

when the first packing becomes saturated. Such an approach
guarantees sufficient statistics and also probes kinetics close
to saturation. It is worth noting that log[θ (2t ) − θ (t )] exhibits
the same asymptotic scaling as Eq. (1) when plotted against
log(t ) [22,23], which gives another way to determine the
exponent d .

Similarly, we studied RSA packings of rounded squares.
The shape is parametrized by one additional parameter r
which corresponds to the circle radius at each corner of the
square—see Fig. 1.

Parameter r can vary from 0 (square) to infinity (disk), but
here it was restricted to r ∈ [0, 1]. The surface area of the
shape in Fig. 1 is Sr = 2 + 4r

√
2 + πr2, and the linear size

of the rounded square was always rescaled to obtain Sr = 1.
This parametrization was used in Ref. [24], where one can
also find a detailed description of the method for generating
saturated RSA packings built of rounded polygons.

III. RESULTS

Example saturated packings built of polygons aligned in
parallel are shown in Fig. 2. Note that the square with rounded
corners characterized by r = 0.2 is visually indistinguishable
from a normal square.

A. Kinetics of packing growth

The kinetics is presented in Figs. 3 and 4. Figure 3 shows
the data according to Eq. (2). The only case where a straight
line is observed corresponds to packings built of squares (n =
4). In analogy, we can analyze the data according to Eq. (1).
The dependence of the fitted value of the parameter d from
Eq. (1) on the number of regular polygon sides n is presented
in Fig. 4. We observe that only in the case of packings built
of squares the parameter d describing the kinetics of pack-
ing growth significantly differs from 2. For all other regular
polygons the kinetics seems to be governed by the power law
with d = 2—the same as for spheres, which is consistent with
the argument that d corresponds to the number of particles’
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FIG. 2. Example saturated packings built of equilateral trian-
gles, squares, pentagons, and rounded squares for r = 0.2 aligned
in parallel. The packing size is S = 400 and the periodic boundary
conditions are used.

degrees of freedom [25,26]. Here, for all shapes, even for
squares, there are only two degrees of freedom corresponding
to the position of the center of a two-dimensional shape. For
squares, as derived by Swendsen, the kinetics does not follow
the power law Eq. (1) but the one described by Eq. (2) [14].
However, for timescales t < tmin appearing in our study, it is
hard to distinguish between log t/t and t−α with α slightly
smaller than 1 (d slightly larger than 1). Thus, although the
RSA kinetics for parallel squares is governed by Eq. (2) (see
Fig. 3), we can successfully fit the power law to it (see Fig. 4),
with the fitted value of parameter d slightly larger than 1.

The above results show the uniqueness of the square shape.
This is the only regular polygon that leads to dissimilar ki-

FIG. 3. The dependence of the packing fraction near saturation
on ln(t )/t for packing built of oriented regular polygons of a different
number of sides. Straight lines correspond to the kinetics governed
by (2).

FIG. 4. The dependence of the fitted value of the parameter d
from Eq. (1) on the number of sides n of the polygon. The dashed
horizontal line corresponds to d = 2 and the dashed vertical line
denotes n = 4. The inset shows the kinetics of packing growth for
several different regular polygons.

netics of RSA packing growth. As noted before, to study
this phenomenon carefully we also analyzed packings built
of squares with rounded corners. The results are presented in
Fig. 5. Here, we observe the transition of d for r between
r = 0.02 and r = 0.12 from d = 1.2 to d = 2.0, respectively.
Note that it is very hard to visually distinguish a square from
a rounded square even with not insignificant rounding r =
0.2—see Fig. 2. It implies that even tiny changes in shape can
significantly influence the RSA kinetics. Similar effects were
studied analytically by Baule for two-dimensional shapes
placed on a one-dimensional line [22] and then supported by
numerical simulations [27]. There, the kinetics depended on
the analytical nature of the contact function, which is defined
as the separation distance at which two particles are in contact.
Interestingly, fine details of the contact function are revealed
in numerical simulations only for some percentage of pack-
ings, and the value of this percentage depends on the packing
size [27]. Therefore, the sharpness and place of the observed

FIG. 5. The dependence of the fitted value of the parameter d
from (1) on the parameter r describing rounded squares. The dashed
line corresponds to d = 2.
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FIG. 6. The dependence of the parameter d from Eq. (1) on the
packing size S for RSA of squares. The inset shows the dependence
of the parameter d on the dimensionless time t at which the packing
generation was stopped for packings of size S = 107.

transition depend on the packing size. Regardless, it does not
explain the uniqueness of the square shape in comparison with
other regular polygons.

The last concept related to the kinetics of packing growth
that we want to explain is the recent result obtained in
Ref. [17], where the kinetics of the RSA of squares is de-
scribed by the power law Eq. (1) with d ≈ 2. The packing
sizes under consideration in the study mentioned are sig-
nificantly smaller than the ones we used. Additionally, the
author worked with nonsaturated configurations. As those two
differences may be the source of the discrepancy, we analyzed
how the exponent in a power-law fit depends on the packing
size and the dimensionless time at which we calculate it.
The results are presented in Fig. 6. The plots clearly show
that the fitted value of the parameter d is larger for both
small and nonsaturated packings, which explains the results
from the former paper. Interestingly, although the saturated
packing fractions can be determined quite accurately using
relatively small packings [10], the study of the kinetics of
packing growth requires a few orders of magnitude larger
packing sizes. This observation agrees with the results for the
kinetics of packing growth for several different figures placed
on a one-dimensional line [27]. It is however important to
recall that the value of d for squares will always depend
on t , regardless of how large it is, because the true asymp-
totic behavior is not described by the power law Eq. (1), but
Eq. (2).

Having obtained saturated packing of squares of different
sizes we are able to use another way to determine the kinetics
of packing growth. It was analytically shown that for disks the
median of dimensionless time at which the last shape is added
to the packing M[tsat] scales with a packing size S as

M[tsat] ∼ Sd , (3)

where d is the same parameter as in Eq. (1) [21]. It seems that
similar relation is also valid for a packing built of oriented
squares—see Fig. 7. Moreover, the fitted value of the ex-
ponent 1.147 ± 0.016 is close to the parameter d determined
from Eq. (1) for S = 107, but here the value is size indepen-
dent.

FIG. 7. The dependence of the median of saturation time tsat on
the packing size S for RSA of squares. Dots are the data determined
numerically using 100 independently generated packings and the
solid line is a fit M[tsat] = 1.4351S1.147.

In the next sections, we study other basic characteristics of
random packings to see if they also reflect the variability of
the kinetics of packing growth.

B. Mean saturated packing fraction

The mean density of saturated packing is a basic property
of interest. Here, because we generated strictly saturated con-
figurations, we only need to average the obtained densities
without any extrapolation. Because the surface area of a single
figure is always normalized to 1 the density equals the number
of deposited shapes divided by the packing area S = 106. The
results obtained are shown in Fig. 8. For regular polygons, we
see oscillations of packing fractions for even and odd numbers

FIG. 8. The dependence of the packing fraction on the number
of regular polygon sides. The dashed line corresponds to θ = 0.547
approximating the RSA packing fraction of disks [3,6,18]. The inset
shows the dependence of the packing fraction of the rounded square
on parameter r. The dashed lines highlight two limits: θ = 0.547 for
the RSA of disks and θ = 0.562 for the RSA of squares. In both
plots, dots are the values determined from generated packings. The
error bars are smaller than the dot size and thus they are omitted. The
thin solid line connecting the dots are to guide the eye.
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TABLE I. Mean saturated packing fractions obtained from com-
puter simulations. The error of packing fraction θ is the standard
deviation of the mean value. The error of the parameter d was
calculated using the exact differential method applied to the result
of the least-squares fitting of numerical data to relation Eq. (1).

n θ d

3 0.366410 ± 0.000016 1.926 ± 0.025
4 0.5620219 ± 0.0000072 1.100 ± 0.010
5 0.489682 ± 0.000016 2.017 ± 0.035
6 0.549713 ± 0.000016 1.957 ± 0.035
7 0.518584 ± 0.000019 2.025 ± 0.032
8 0.547189 ± 0.000017 2.003 ± 0.025
9 0.530072 ± 0.000018 1.980 ± 0.026
10 0.547463 ± 0.000019 1.960 ± 0.033
14 0.547073 ± 0.000018 1.987 ± 0.031
20 0.547049 ± 0.000018 1.960 ± 0.038
35 0.545938 ± 0.000018 2.013 ± 0.027
50 0.547039 ± 0.000018 2.000 ± 0.027
70 0.547037 ± 0.000018 1.965 ± 0.028
140 0.547037 ± 0.000018 2.028 ± 0.036
200 0.547037 ± 0.000018 1.992 ± 0.031
350 0.547035 ± 0.000018 2.039 ± 0.030
500 0.547035 ± 0.000018 1.988 ± 0.026
700 0.547036 ± 0.000018 1.993 ± 0.032
1000 0.547035 ± 0.000018 1.931 ± 0.036
r θ d
0.0001 0.562032 ± 0.000021 1.1740 ± 0.0041
0.001 0.562031 ± 0.000022 1.1803 ± 0.0040
0.01 0.562026 ± 0.000021 1.1861 ± 0.0063
0.02 0.562007 ± 0.000021 1.2618 ± 0.0070
0.03 0.561985 ± 0.000022 1.441 ± 0.016
0.05 0.561909 ± 0.000021 1.548 ± 0.015
0.07 0.561803 ± 0.000022 1.699 ± 0.021
0.1 0.561600 ± 0.000021 1.750 ± 0.018
0.12 0.561448 ± 0.000022 1.867 ± 0.051
0.15 0.561184 ± 0.000022 1.973 ± 0.046
0.2 0.560686 ± 0.000024 1.987 ± 0.054
0.3 0.559581 ± 0.000025 1.964 ± 0.055
0.5 0.557365 ± 0.000023 2.044 ± 0.059
0.7 0.555407 ± 0.000021 1.838 ± 0.045
1.0 0.553160 ± 0.000019 2.024 ± 0.024
2.0 0.549539 ± 0.000018 2.015 ± 0.066
5.0 0.547549 ± 0.000016 1.989 ± 0.050
10.0 0.547177 ± 0.000017 2.016 ± 0.042

of polygon sides. This effect was already observed in previous
studies [17,19]. The values presented here are, in general, in
agreement with these results—note that in Ref. [19] the RSA
of unoriented polygons was studied. The packing fraction for
rounded squares shows the transition between two limits—the
upper one for aligned squares and the lower one for disks.
However, this transition occurs for larger r—it starts at r =
0.1 and approaches the packing fraction of disks near r = 1,
while the kinetics for rounded squares is indistinguishable
from the one for disks at r ≈ 0.1. It shows that the behavior
of packing fractions is weakly correlated with the kinetics of
packings for the systems in question. For convenience, the
presented data have been collected in Table I.

FIG. 9. The density autocorrelation function for several pack-
ings. The main panel shows the density autocorrelation function for
packings built of regular polygons of n = 3, 4, 5, 6, and 10 sides.
The inset shows the same function but for packings built of rounded
squares of r = 0.02, 0.2, and 0.5.

C. Density autocorrelation function

While the packing fraction describes the global structure
of a set of shapes, the local statistics of their positions can
be better understood by probing the density autocorrelation
function which can be defined as follows,

g(R) = lim
dR→0

〈N (R, R + dR)〉
θ 2πR dR

, (4)

where 〈N (R, R + dR)〉 is the mean number of shapes, whose
centers are placed in the distance between R and R + dR from
the center of a given figure. The presence of θ in the de-
nominator is for normalization g(R → ∞) = 1. The density
autocorrelation functions for several packings are shown in
Fig. 9. The correlation functions have typical features of ones
observed for the RSA packings or equilibrium liquids. It was
shown that for one-dimensional packings g(R) vanishes su-
perexponentially [28], which is also observed here. The plots
partially explain the behavior of the mean saturated packing
fraction. It is the highest for squares, while at the same time,
we observe the shortest distance between neighboring shapes
of this type. On the other hand, the line farthest to the right
corresponds to triangles, which form looser configurations.
The density autocorrelation for packings built of rounded
squares is practically the same as for squares if the rounding
is small r < 0.1. For larger r we observe a second maximum,
which grows as the shape approaches the disk. This maximum
first appears at R = √

2, which corresponds to the slight cusp
in G(R) for squares and appears due to its rapid decay when
squares are not in touch. However, when square corners are
rounded, this distance decreases, and the cusp transforms into
the peak, which travels left with an increasing radius of round-
ing r and grows up to infinity in the limit of touching disks
[13,14]. The effect of rounding the squares on the positioning
of the density autocorrelation function peak could be inter-
esting to study because it would reveal additional factors that
could be used to customize the growth kinetics, saturation, and
tightness of packing. It is intriguing that while both techniques
of interpolating between a square and a circle finally produced
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similar d and saturation densities, their response behavior in
terms of the density autocorrelation function appears to be
different.

The results are expected because if these polygons were
stacked in a lattice pattern, one would expect squares to be
the most densely packed (due to a higher likelihood that the
packing would have no corners that could potentially leave
some of the available space open). Moreover, particles with
odd numbers of sides will undoubtedly have more unoccupied
space as their nearest neighbors cannot occupy the space
near them without overlap. When the number of sides in-
creases, the maximum saturation packing for the disks should
be reached. A regular polygon’s shape may also affect the
volume that it excludes. Because it is more rounded and has
a bigger internal volume than the pentagon with respect to its
circumference, the hexagon has a lower excluded volume than
a regular pentagon of the same size.

IV. CONCLUSIONS

The square appears to be a unique shape in terms of ran-
dom sequential adsorption as the two-dimensional oriented
packings built of particles of this shape are characterized by
significantly different kinetics given by relation Eq. (2) while
packings built of all other regular polygons, as well as the
majority of other shapes obey the power law Eq. (1). By
studying the kinetics of packings built of rounded squares we
show that even quite small rounding, which, in practice, is
not noticeable visually, changes the kinetics to the one typ-
ically observed in similar settings, namely d = 2 for shapes
with two degrees of freedom. This transition is not observed
in other characteristics. It is important to add that to study

the asymptotic properties of the kinetics of packing growth
relatively large packings have to be generated, and preferably
as close as possible to their saturation points, contrary to
the packing fraction which can be quite precisely estimated
using relatively small packings, as long as periodic boundary
conditions are used [10].

For rounded squares, we also observe the transition be-
tween the packing fractions of configurations formed by
squares and disks. However, the transition occurs for signifi-
cantly larger values of parameter r responsible for the amount
of rounding than in the case of packing growth kinetics. The
study of density autocorrelation functions seems to give ad-
ditional details regarding packing densities with, however, no
further insight into the asymptotic behavior.

To handle processing in real applications, such as “Pick-
ering emulsion” and adsorption in catalysts, unique “particle
engineering schemes” are becoming necessary. For instance,
it has been discovered here that for adsorption purposes, items
that at a later time can be imagined as molecules or par-
ticles with square shapes have distinct growth kinetics and
saturation, allowing for customizable levels of adsorbability.
Moreover, rounding techniques and modifications made to
the same methodology may be adjusted to solve the dearth
of theoretical models for two-dimensional adsorption using
RSA.
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