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Using the Jacobian matrix, we obtain a theoretical expression of rigidity and the density of states of two-
dimensional amorphous solids consisting of frictional grains in the linear response to an infinitesimal strain, in
which we ignore the dynamical friction caused by the slip processes of contact points. The theoretical rigidity
agrees with that obtained by molecular dynamics simulations. We confirm that the rigidity is smoothly connected
to the value in the frictionless limit. We find that there are two modes in the density of states for sufficiently small
kT /kN , which is the ratio of the tangential to normal stiffness. Rotational modes exist at low frequencies or small
eigenvalues, whereas translational modes exist at high frequencies or large eigenvalues. The location of the
rotational band shifts to the high-frequency region with an increase in kT /kN and becomes indistinguishable
from the translational band for large kT /kN .
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I. INTRODUCTION

Amorphous materials consisting of dispersed grains such
as powders, colloids, bubbles, and emulsions are ubiquitous in
nature [1–4]. These materials behave like liquids at low den-
sities and exhibit solidlike mechanical responses above their
jamming point [5]. In systems consisting of frictionless grains,
the rigidity changes continuously, but the coordination num-
ber of grains changes discontinuously at the jamming point
as a function of density [2,3,6]. The critical behavior near the
jamming point is of interest to physicists as a nonequilibrium
phase transition [7–11]. Dispersed grains above the jamming
point are fragile and exhibit softening and yielding transition
under certain loads [12–21].

For amorphous solids consisting of frictionless grains, it is
useful to analyze the dynamical matrix or the Hessian matrix,
which is defined as the second derivative of the potential
of a collection of grains with respect to the displacements
from their stable configuration [3,4,22–26]. For instance, the
rigidity can be determined by eigenvalues and eigenvectors
[27–32]. It has been reported that the minimum nonzero
eigenvalue of the Hessian matrix decreases with increasing
strain and eventually becomes negative, where an irreversible
stress drop takes place [29,30,33–35].

It has long been known that amorphous solids have
characteristic properties at low temperatures (e.g., thermal
conductivity and specific heat) that are quite different from
those of crystalline solids [36]. These days, we have recog-
nized that amorphous solids consisting of dispersed grains
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exhibit unique elastic-plastic behavior as a mechanical re-
sponse to an applied strain [37]. Because these properties
are related to the density of states (DOS), there have been
many studies on the DOS [6,24,38–40]. The DOSs for sys-
tems composed of anisotropic grains, such as ellipses, dimers,
deformable grains, and grains with rough surfaces, have been
studied with the aid of the Hessian matrix [41–51]. Because of
the rotation of such anisotropic grains, there exists a rotational
band in the DOS that is distinguishable from the translational
band [42,44,45,48,50,51].

Even for systems of spherical grains that cannot be free
from interparticle friction, similar results are expected as a
result of grain rotations. However, few studies have reported
the existence of rotational bands in the DOS. Because the
frictional force between the grains depends on the contact his-
tory, it cannot be expressed as a conservative force. Therefore,
stability analysis for frictional grains based on the Hessian
cannot be used. Nevertheless, the Hessian analysis using an
effective potential for frictional grains has been performed
[52,53]. Recently, Liu et al. suggested that the Hessian anal-
ysis with another effective potential can be used even if slip
processes exist [54]. Previous studies [52,53] reported that
friction between grains causes a continuous change in the
functional form of the DOS from that of frictionless systems.
However, there are only a few reports on whether an isolated
band in the DOS originating from friction between grains is
visible at lower frequencies.

Recently, Chattoraj et al. discussed the stability of the grain
configuration under strain using the Jacobian matrix of fric-
tional grains [55]. They performed eigenvalue analysis under
athermal quasistatic shear processes, and they determined the
existence of oscillatory instability originating from interparti-
cle friction at a certain strain [55–57]. However, they did not
discuss the rigidity or the DOS.
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FIG. 1. Schematics of our system.

The theoretical determination of the rigidity of amorphous
solids consisting of frictional grains is important for con-
trolling amorphous solids. However, we do not know how
to determine the rigidity from the Jacobian for the frictional
grains.

The purpose of this study is to clarify the role of mutual
friction between grains in terms of the rigidity and DOS. We
focus on the response to an infinitesimal strain from a stable
configuration of grains without any strain to obtain tangible
results. In this study, we assume that there is no slip between
grains because of an infinitesimal strain, and we then deal with
friction as static friction.

The remainder of this paper is organized as follows. In the
next section, we introduce the numerical method. In Sec. III,
we introduce the Jacobian. Section IV consists of Sec IV A,
which deals with the theoretical prediction of rigidity in the
linear response regime, and Sec. IV B, which deals with the
DOS. In the final section, we summarize the results of our
study and discuss future work. In Appendix A, we summarize
the method for preparing a stable grain configuration before
applying shear. In Appendix B, we explain the implemen-
tation of the numerical integration method in the proposed
system. In Appendix C, we summarize some properties of the
Jacobian. In Appendix D, we present the explicit expressions
of the Jacobian. In Appendix E, we investigate the effects of
rattlers. In Appendix F, we write down the explicit results
of the Jacobian. In Appendix G, we derive the theoretical
prediction of rigidity using the Jacobian. In Appendix H, we
introduce the DOS using the Hessian analysis. In Appendix I,
we investigate the system size dependence of the DOS. In
Appendix J, we study the density dependence of the DOS.

II. NUMERICAL MODEL

Our system contains N frictional spherical particles em-
bedded in a monolayer configuration. We treat this system
as a two-dimensional system (see Fig. 1). To prevent the
system from crystallizing [58], we prepare an equal number of
particles with diameters d and d/1.4. We assume that the mass
of particle i is proportional to d2

i , where di is the diameter of
the ith particle. We introduce m as the mass of a particle with
diameter d . In this study, xi, yi, and θi denote x, y coordi-
nates and the rotational angle of the ith particle, respectively.
We introduce the generalized coordinates of the ith particle
qi := (rT

i , �i )T with qi := (xi, yi )T and �i := diθi/2, where the
superscript T denotes the transposition.

Let the force and the z-component of the torque acting on
the ith particle be F i := (F x

i , F y
i )T and Ti, respectively. Then,

the equations of motion of the ith particle are expressed as

mi
d2ri

dt2
= F i, (1)

Ii
d2θi

dt2
= Ti (2)

with the mass mi and the momentum of inertia Ii := mid2
i /8

of the ith particle. In a system without volume forces such as
gravity, we can write

F i =
∑
j �=i

f i j, (3)

Ti =
∑
j �=i

Ti j, (4)

where f i j and Ti j are the force and z-component of the torque
acting on the ith particle from the jth particle, respectively.
Here, Ti j is given by

Ti j = −di

2

(
nx

i j f y
i j − ny

i j f x
i j

)
, (5)

where we have introduced the normal unit vector between i
and j particles as ni j := ri j/|ri j | := (ri − r j )/|ri − r j |. Here,
nζ

i j and f ζ
i j refer to ζ -components of ni j and f i j , respectively.

Note that ζ expresses ζ = x or y throughout this study. The
force f i j can be divided into normal f N,i j and tangential f T,i j
parts as

f i j = ( f N,i j + f T,i j )�(di j/2 − |ri j |), (6)

where di j := di + d j , and �(x) is the Heaviside step func-
tion, taking �(x) = 1 for x > 0 and �(x) = 0 otherwise. We
model the repulsive force between the contacted particles i
and j as the Hertzian force in addition to the dissipative force
proportional to the relative velocity with a damping constant
ηD [54] as follows:

f N,i j : = kNξ
3/2
N,i jni j − ηDvN,i j, (7)

f T,i j : = kT ξ
1/2
N,i jξT,i jt i j − ηDvT,i j, (8)

where kN and kT are the stiffness parameters of normal and
tangential contacts, respectively. The normal compression
length and its velocity are denoted as ξN,i j := di j/2 − |ri j | and
vN,i j = (ṙi j · ni j )ni j , respectively. For the tangential deforma-
tion, with the aid of ui j := (ny

i j,−nx
i j )

T, the tangential velocity
vT,i j is defined as vT,i j := ṙi j − vN,i j + ui j (diωi + d jω j )/2,
where we have introduced

ξT,i j :=
∫

Ci j

dtvT,i j −
[(∫

Ci j

dtvT,i j

)
· ni j

]
ni j, (9)

with ξT,i j := |ξT,i j | and t i j := −ξT,i j/ξT,i j . Here, Ȧ :=
dA/dt , and

∫
Ci j

dt is the integration over the duration time
of contact between i and j particles. Although the dissipative
force between grains interacting with the Hertzian force is
proportional to the product of the relative velocity and ξ

1/2
N,i j

[59–61], we adopt simple dissipative forces as in Eqs. (7)
and (8) because we are not interested in the relaxation dy-
namics. We note that Eqs. (7) and (8) assume the Hertzian
contact force for the static repulsion of contacting spheres,
but all calculations in this study are those for two-dimensional
systems. Here, we do not consider the effects of slips in the
tangential equation of motion. This treatment can be justified
if we restrict our interest in the linear response regime to
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a stable configuration of particles without any strain. This
situation corresponds to frictional grains with an infinitely
large dynamical friction constant, in which the friction is only
characterized by static friction. Therefore, our analysis does
not apply to systems with finite strain [62], where the effect of
slip is important.

To generate a stable configuration of frictional particles,
we prepare a stable configuration of frictionless particles in
a square box of linear size L using a fast inertial relaxation
engine (FIRE) [63]. Subsequently, we turn on the tangential
force using Eqs. (1) and (2) to achieve a stable configuration
in the force-balanced (FB) state for frictional particle1 (see
Appendix A for details). Here, the FB state satisfies the FB
conditions |F ζ

i | = 0 and |Ti| = 0 for arbitrary particles. Note
that we set θi = 0 when the tangential force is turned on.

We impose the Lees-Edwards boundary condition [64,65],
where the direction parallel to the shear strain is the x-
direction. After applying a step strain 	γ to all particles,
the x-coordinate of the position of the ith particle is shifted
by an affine displacement 	xi(	γ ) := 	γ yFB

i (0), where the
superscript FB denotes the FB state. The system is then
relaxed to the FB state by the contact forces between the
particles expressed in Eqs. (7) and (8). Here, ζ -components
of translational 	r̊ζ

i (	γ ) and rotational 	�̊i(	γ ) nonaffine
displacements of the ith particle after the relaxation process
are, respectively, defined as

	r̊ζ
i (	γ ) : = rFB,ζ

i (	γ ) − rFB,ζ
i (0) − δζx	γ yFB

i (0), (10)

	�̊i : = �FB
i (	γ ) − �FB

i (0). (11)

Using Eqs. (10) and (11), we introduce the rate of nonaffine
displacements as

dr̊ζ
i

dγ
: = lim

	γ→0

	r̊ζ
i (	γ )

	γ

1For simplicity, we prepare the configuration before applying shear
for frictionless particles at first, and then we consider the friction be-
tween particles. If we prepare a configuration before applying shear
by compressing frictional particles, we confirm that the configura-
tion had an oscillatory instability that resulted from the appearance
of a pair of imaginary eigenvalues of the Jacobian divided by the
mass matrix: λ′ = λ′

r ± iλ′
i [55–57], where λ′, λ′

r , and λ′
i are the

complex, real, and imaginary eigenvalues of M−1J , respectively.
Here, J is the Jacobian defined in Eq. (18), and M is the mass

matrix whose explicit form is given by M =
[

M1
. . .

MN

]
, where

Mi :=
[

mi

mi

4Ii/d2
i

]
. Because the linearized equation of motion

is expressed as d2qα
i /dt2 = −∑

k,κ

∑
j,β (Mακ

ik )−1J κβ

k j qβ

j , there are

four fundamental solutions q ∝ eiω′
nt , where iω′

n consists of iω′
±1 =

ω′
i ± iω′

r and iω′
±2 = −ω′

i ± iω′
r . Here, ω′

r and ω′
i satisfy the relation

ω′
r ± iω′

i = √
λ′

r ± iλ′
i. Thus, to avoid the oscillatory instability of

the configuration before applying shear, we adopt the protocol of
creating the configuration with frictionless particles, and then let the
system relax by adding static friction between particles.

= lim
	γ→0

rFB,ζ
i (	γ ) − rFB,ζ

i (0)

	γ
− δζxyFB

i (0), (12)

d �̊i

dγ
: = lim

	γ→0

	�̊i(	γ )

	γ

= lim
	γ→0

�FB
i (	γ ) − �FB

i (0)

	γ
. (13)

Our system is characterized by the generalized coordi-
nate q(γ ) := (qT

1 (γ ), qT
2 (γ ), . . . , qT

N (γ ))T. The configuration
in the FB state at strain γ is denoted as qFB(γ ) :=
((qFB

1 (γ ))T, (qFB
2 (γ ))T, . . . , (qFB

N (γ ))T)T. The shear stress
σxy(γ ) at qFB(γ ) for one sample is given by

σxy(qFB(γ )) = − 1

L2

∑
i

∑
j>i

f x
i j (q

FB(γ ))ry
i j (q

FB(γ )). (14)

The rigidity g in the linear response regime for one sample is
defined as

g := dσxy(q(γ ))
dγ

∣∣∣∣
q(γ )=qFB(0)

, (15)

where the differentiation on the right-hand side (RHS) of
Eq. (15) is defined as follows:

dσxy(q(γ ))
dγ

∣∣∣∣
q(γ )=qFB(0)

:= lim
	γ→0

σxy(qFB(	γ )) − σxy(qFB(0))
	γ

. (16)

In the numerical calculation, we use a nonzero but sufficiently
small 	γ for the evaluation of g. Then, the rigidity G in the
linear response regime is defined as

G := 〈g〉, (17)

where 〈·〉 is the ensemble average.
For the numerical FB condition, we use the condition

|F̃α
i | < FTh for arbitrary i, where FTh is the threshold force

for the simulation, and F̃ i is the generalized force, defined as
F̃ i := (F̃ x

i , F̃ y
i , F̃ �

i )T := (F x
i , F y

i , 2Ti/di )T.
In our simulation, we adopt ηD = (mkN )1/2d1/4 and FTh =

1.0 × 10−14kN d3/2. The control parameters are the ratio of
the tangential to normal stiffness kT /kN and projected area
fraction to two-dimensional space φ. The operating ranges
of kT /kN and φ are 0.0–10.0 and 0.83–0.90, respectively. In
this study, we mainly present the results for N = 4096 and
	γ = 1.0 × 10−6 with the ensemble averages of 10 samples
for each kT /kN and φ. Some results are obtained with N =
1024, 	γ = 1.0 × 10−6, and five samples for each kT /kN and
φ. We verify that the results are independent of the choice of
	γ for 1.0 × 10−6 � 	γ � 1.0 × 10−4. We ignore the effect
of dissipation between particles because the velocity of each
particle is sufficiently small for infinitesimal agitation from
the FB state. The time step of the simulation, 	t , was set to
	t = 1.0 × 10−2t0, and numerical integration was performed
using the velocity Verlet method (see Appendix B), where
t0 := (m/kN )1/2d1/4. To obtain eigenvalues and eigenvectors
of the Jacobian matrix, which will be introduced in detail in
the next section, we have used the LAPACK, which provides a
template library for linear algebra.
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FIG. 2. Plots of (a) affine displacements and (b) nonaffine dis-
placements of particles with 	γ = 1.0 × 10−6. Here, the magnitudes
of the vectors are multiplied by (a) 0.1	γ −1 and (b) 1.3 for the visu-
alization. These figures are based on numerical results for N = 128.

Figure 2(a) shows an example of the affine displacements
of particles, where the displacements exist only in the shear
direction, and Fig. 2(b) shows the nonaffine displacements.

III. THEORETICAL ANALYSIS

In this section, we introduce the Jacobian, the DOS, and
theoretical expressions of the linear rigidity. Here, we omit
the effects of q̇ because the dissipative term proportional to q̇
vanishes under quasistatic shear.

A. Jacobian and the DOS for frictional particles

In frictional systems, the stability of the system and DOS
at qFB(γ ) are analyzed using the Jacobian (J ) defined as [55]

J αβ
i j := − ∂F̃α

i (q(γ ))

∂qβ
j

∣∣∣∣∣
q(γ )=qFB(0)

, (18)

where α and β are any of x, y, and �, while i and j express
particle indices. Therefore, the Jacobian matrix, which is a
3N × 3N matrix, can be written as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 · · · J1i · · · J1 j · · · J1N
...

. . .
...

...
...

Ji1 · · · Jii · · · Ji j · · · JiN
...

...
. . .

...
...

J j1 · · · J ji · · · J j j · · · J jN
...

...
...

. . .
...

JN1 · · · JNi · · · JN j · · · JNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where Ji j is a 3 × 3 submatrix of the Jacobian J for a pair of
particles i and j:

Ji j =

⎡
⎢⎢⎣
J xx

i j J xy
i j J x�

i j

J yx
i j J yy

i j J y�
i j

J �x
i j J �y

i j J ��
i j

⎤
⎥⎥⎦. (20)

See Appendixes C and D for detailed properties of the Ja-
cobian. The right and left eigenvalue equations of J are,
respectively, given by

J |Rn〉 = λn |Rn〉 , (21)

〈Ln|J = λn 〈Ln| , (22)

where |Rn〉 and 〈Ln| are the right and left eigenvectors corre-
sponding to λn, respectively. Here, λn is the nth eigenvalue of

J . Note that |Rn〉 and 〈Ln| satisfy the orthonormal relation
〈Lm|Rn〉 = δmn with normalization 〈Rn|Rn〉 = 〈Ln|Ln〉 = 1 if
all eigenstates are nondegenerate. Here, the inner products
for the right and left eigenvectors are defined as 〈Rn|Rn〉 =∑N

i=1

∑
α=x,y,� |Rα

n,i|2 and 〈Ln|Ln〉 = ∑N
i=1

∑
α=x,y,� |Lα

n,i|2, re-
spectively. In the presence of friction, the eigenvalue λn is
generally a complex number, but if we restrict our interest
to infinitesimal distortions from stable configurations without
shear strain, λn becomes real and can be expressed as λn = ω2

n.
The DOS is the distribution function of the eigenvalues, de-
fined as

D(ω) := 1

3N

′∑
n

〈δ(ω − ωn)〉, (23)

where
∑′

n on the right-hand side (RHS) of Eq. (23) expresses
that the summation excludes the contribution of rattlers (see
Appendix E for the details on the rattlers). Using the force
decomposition, the Jacobian can also be divided into

J αβ
i j = J αβ

N,i j + J αβ
T,i j, (24)

where

J αβ
N,i j : = ∂ f̃ α

N,i j (q(γ ))

∂qβ
j

∣∣∣∣∣
q(γ )=qFB(γ )

, (25)

J αβ
T,i j : = ∂ f̃ α

T,i j (q(γ ))

∂qβ
j

∣∣∣∣∣
q(γ )=qFB(γ )

(26)

for i �= j and

J αβ
N,i j : =

∑
(i,k)

∂ f̃ α
N,ik (q(γ ))

∂qβ
i

∣∣∣∣∣
q(γ )=qFB(γ )

, (27)

J αβ
T,i j : =

∑
(i,k)

∂ f̃ α
T,ik (q(γ ))

∂qβ
i

∣∣∣∣∣
q(γ )=qFB(γ )

(28)

for i = j. Here, we have introduced f̃ N,i j =
( f̃ x

N,i j, f̃ y
N,i j, f̃ �

N,i j )
T = ( f x

N,i j, f y
N,i j, 0)T and f̃ T,i j =

( f̃ x
T,i j, f̃ y

T,i j, f̃ �
T,i j )

T = ( f x
T,i j, f y

T,i j, 2Ti j/di )T, where f ζ
N,i j

and f ζ
T,i j are ζ -components of f N,i j and f T,i j , respectively.

Note that
∑

(i, j) denotes the summation for contacted particles

of the ith particle. The explicit expressions of J αβ
N,i j and J αβ

T,i j
are presented in Appendix F.

B. Expressions of the linear rigidity via eigenmodes

Let us introduce |F̃ (q(γ ))〉 as

|F̃ (q(γ ))〉 := [
F̃

T
1 (q(γ )), F̃

T
2 (q(γ )), . . . , F̃

T
N (q(γ ))

]T
. (29)

Because the forces acting on the particles are balanced in the
FB state, |F̃ (q(γ ))〉 |q(γ )=qFB(γ ) satisfies

|F̃ (q(γ ))〉 |q(γ )=qFB(γ ) = |0〉 , (30)

where |0〉 is the ket vector containing 0 for all components.
The stable configuration in the FB state satisfies

d |F̃ (q(γ ))〉
dγ

∣∣∣∣
q(γ )=qFB(0)

= |0〉 , (31)
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where
d |F̃ (q(γ ))〉

dγ

∣∣∣∣
q(γ )=qFB(0)

:= lim
	γ→0

|F̃ (qFB(	γ ))〉 − |F̃ (qFB(0))〉
	γ

. (32)

Introducing∣∣∣∣ dq̊

dγ

〉
:=
[

dr̊x
1

dγ
,

dr̊y
1

dγ
,

d �̊1

dγ
, . . . ,

dr̊x
N

dγ
,

dr̊y
N

dγ
,

d �̊N

dγ

]T

, (33)

the left-hand side (LHS) of Eq. (31) can be rewritten as

d |F̃ (q(γ ))〉
dγ

∣∣∣∣
q(γ )=qFB(0)

= − |�〉 + J̃
∣∣∣∣ dq̊

dγ

〉
, (34)

where we have used Eqs. (12) and (13) (see Appendix G 1).
The first and second terms on the RHS of Eq. (34) represent
the strain derivatives of the forces for the contributions from
the affine and nonaffine displacements, respectively. The ex-
plicit form of |�〉 is given by

|�〉 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j �=1 J xx

N, j1ry
1 j∑

j �=1 J
xy

N, j1ry
1 j∑

j �=1 J x�
N, j1ry

1 j

...∑
j �=N J xx

N, jN ry
N j∑

j �=N J xy
N, jN ry

N j∑
j �=N J x�

N, jN ry
N j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Note that the tangential displacements do not contribute to
|�〉. This is because the affine displacements are applied to
our system instantaneously as a step strain; thus, the integral
interval of the tangential displacement during the affine defor-
mation is zero. We have used J̃ in Eq. (34) defined as

J̃ αβ
ii :=

⎧⎪⎪⎨
⎪⎪⎩

−J �x
ii (α = �, β = x),

−J �y
ii (α = �, β = y),

J αβ
ii (otherwise),

(36)

and

J̃ αβ
i j :=

⎧⎪⎪⎨
⎪⎪⎩

−J x�
i j (α = x, β = �),

−J y�
i j (α = y, β = �),

J αβ
i j (otherwise)

(37)

for i �= j.
Expanding the nonaffine displacements by the eigenfunc-

tions of J̃ and using the fact that the LHS in Eq. (34) is zero,
we obtain ∣∣∣∣ dq̊

dγ

〉
=

′∑
n

〈L̃n|�〉
λ̃n

|R̃n〉 , (38)

where λ̃n, 〈L̃n|, and |R̃n〉 are the nth eigenvalue of J̃ , and
the left and right eigenvectors corresponding to λ̃n, respec-
tively. Note that |R̃n〉 and 〈L̃n| satisfy the orthonormal relation
〈L̃m|R̃n〉 = δmn, if all eigenstates are nondegenerate. See Ap-
pendix G 1 for the derivation of Eq. (38).

The rigidity in the linear response regime under infinitesi-
mal strain 	γ is decomposed into two parts:

G := GA + GNA, (39)

where GA and GNA are the rigidities corresponding to the
affine and nonaffine displacements, respectively. With the aid
of Eqs. (14), (17), and (37), the expressions of GA and GNA

are, respectively, given by (see Appendix G 2)

GA : = 1

2L2

〈 ∑
i, j(i �= j)

(
ry

i j

)2J xx
N, ji

〉
, (40)

GNA : = 1

2L2

〈 ∑
i, j(i �= j)

[ ∑
ζ=x,y

ry
i jJ̃

xζ
i j

d r̊ζ
i j

dγ
− ry

i jJ̃ x�
i j

d �̊i j

dγ

]〉
,

(41)

where we have introduced

dr̊ζ
i j

dγ
: = dr̊ζ

i

dγ
− dr̊ζ

j

dγ
, (42)

d �̊i j

dγ
: = d �̊i

dγ
+ d �̊ j

dγ
. (43)

Substituting Eq. (38) into Eq. (41), GNA can be rewritten as
follows:

GNA = − 1

L2

〈 ′∑
n

〈L̃n|�〉 〈�|R̃n〉
λ̃n

〉
, (44)

where we have introduced

〈�| :=
⎡
⎣∑

j �=1

ry
1 jJ̃ xx

j1 ,
∑
j �=1

ry
1 jJ̃

xy
j1 ,
∑
j �=1

ry
1 jJ̃ x�

j1 , . . . ,

×
∑
j �=N

ry
N jJ̃ xx

jN ,
∑
j �=N

ry
N jJ̃

xy
jN ,
∑
j �=N

ry
N jJ̃ x�

jN

⎤
⎦. (45)

The affine rigidity can also be expressed as

GA = 1

L2
〈〈Y |�〉〉, (46)

where

〈Y | := [
ry

1 j, 0, 0, ry
2 j, 0, 0, . . . , ry

N j, 0, 0
]
. (47)

IV. RESULTS

In this section, we present the results of eigenvalue analysis
and rigidity based on the formulation explained in the pre-
vious section. In Sec. IV A, rigidity is determined using the
eigenmodes of the Jacobian. Section IV B clarifies the effects
of translational and rotational motions on the DOS.

A. Theoretical evaluation of G

In this subsection, the validity of the theoretical rigidity
presented in the previous section is demonstrated. For this
purpose, at first, we examine the validity of Eq. (38), obtained
by the eigenfunction expansion of the nonaffine displacements
for the RHS and by the simulation for the LHS. Figures 3(a)
and 3(b) illustrate the nonaffine displacements on the LHS
and RHS of Eq. (38), respectively. In Figs. 3(a) and 3(b),
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FIG. 3. Plots of nonaffine displacements on (a) the RHS of
Eq. (38) obtained by eigenvalue analysis, and (b) the LHS of Eq. (38).
The vector and color of each particle correspond to x, y, and �

components of the eigenvector of the particle, respectively. Here, the
magnitude of the vectors is magnified 1.3 times for visualization.
(c) Plots of the RHS (open symbols) and LHS (filled symbols)
obtained by the simulation of Eq. (38) for each component whose
order follows Eq. (33). These figures are based on numerical results
for N = 1024.

(x, y) and � components of d q̊i/dγ at ri are represented by
vectors and colors, respectively. Figure 3(c) shows the RHS

FIG. 4. Plots of theoretical [Eq. (39), open symbols] and numer-
ical [Eq. (16), filled symbols] G against φ for various kT /kN . The
figure was obtained by numerical results for N = 1024.

and LHS of Eq. (38) against the components of the vectors
whose orders follow Eq. (33), that is, the local order of the
component follows x, y, and � by fixing the particle number,
and we align the components from the first particle to the
N th particle without omitting modes with extremely small
and zero eigenvalues. Figure 3 shows that the expression in
Eq. (38) correctly reproduces the simulation results.

The dimensionless rigidity obtained from Eqs. (39), (40),
and (44) with the aid of G∗ := kN d1/2 is shown in Fig. 4. This
indicates the quantitative agreement between the theoretical
and numerical values.

Therefore, the rigidity in the linear response regime can be
determined completely using the Jacobian analysis. Contrary
to previous studies [6,66,67], we should note that G is not
proportional to φ − φc for a large kT /kN , where φc is the
critical fraction of a jamming transition for frictional grains.

As is expected, the rigidity G depends on kT /kN only
slightly for kT /kN � 1.0 × 10−4 (see Fig. 5), while G de-
pends on kT /kN for kT /kN > 10−4. We have confirmed that G
smoothly approaches the frictionless value in the limit kT → 0
in contrast to Refs. [62,68]. Here, G cannot be expressed

FIG. 5. Plots of numerical G against kT /kN for various φ. The
figure is obtained by the numerical results for N = 4096.
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FIG. 6. Plots of GNA against φ for various kT /kN . The figure is
obtained by the numerical results for N = 1024.

as a factorization for large kT /kN
2. When we consider the

effect of the dynamical friction, that is, slips between parti-
cles, the rigidity is discontinuously changed in the frictionless
limit [62,68]. However, the rigidity continuously changes with
kT /kN in our system and is smoothly connected to that of
frictionless systems (kT = 0). Because our system can be
regarded as having infinitely large static and dynamical fric-
tional constants, there is no slip between the grains. Therefore,
it might be natural for G to continuously change the limit for
kT /kN → 0 in our system. In future work, we will consider the
effects of slips, which are important for real frictional grains.

To clarify the contributions of nonaffine deformations to
the rigidity, we plot GNA defined in Eq. (41) against φ in
Fig. 6, in which GNA becomes large as φ increases. Remark-
ably, GNA is positive for kT /kN > 2.0, GNA ≈ 0 at kT /kN =
2.0, and GNA is negative for kT /kN < 2.0. The positive GNA

for a large kT /kN is counterintuitive, in which G increases
from GA even when the system is relaxed to the FB state. In
the future, we must clarify the origin of this counterintuitive
GNA. We note that the negative GNA for a small kT /kN can
be understood by the relaxation process to look for a FB
configuration after applying affine deformations to the system.

B. Analysis of eigenvalues and eigenvectors

In Fig. 7 we present some typical right eigenvectors |Rn〉,
which were introduced in Eq. (21) and can be expressed as

|Rn〉 =

⎡
⎢⎢⎣

Rn,1

Rn,2
...

Rn,N

⎤
⎥⎥⎦, (48)

where Rn,i := (Rx
n,i, Ry

n,i, R�
n,i )

T. Figure 7 illustrates vectors
(Rx

n,i, Ry
n,i )

T and colors to characterize the rotation R�
n,i of

particle i for some characteristic ωn with kT /kN = 1.0 × 10−8

[Figs. 7(a1)–7(a3)] and kT /kN = 1.0 × 10−4 [Figs. 7(b1)–
7(b3)]. Figures 7(a1) and 7(b1) show the eigenvectors

2We have confirmed that the factorization G(φ, kT /kN ) =
G0(φ)G(kT /kN ) is not held, where G0(φ) is the rigidity of a fric-
tionless system.

FIG. 7. Plots of eigenvectors for φ = 0.90 with (a1) ωnt0 =
1.0 × 10−4, (a2) 1.3 × 10−2, (a3) 1.0, (b1) 1.0 × 10−2, (b2) 1.3 ×
10−2, and (b3) 1.0, where (a1)–(a3) and (b1)–(b3) are the results for
kT /kN = 1.0 × 10−8 and 1.0 × 10−4, respectively. Here, (Rx

n,i, Ry
n,i )

T

and R�
n,i are represented by vectors and colors for the ith particle,

respectively. Note that the magnitudes of the vectors are magnified 50
times for visualization. These figures are based on numerical results
for N = 4096.

at ωnt0 = 1.0 × 10−2 and ωnt0 = 1.0 × 10−4, respectively,
which are dominated by the rotational modes. In Fig. 7(a2),
we confirm that the eigenvector at ωnt0 = 1.3 × 10−2 is ex-
pressed only by translational modes, whereas the eigenvector
at ωnt0 = 1.3 × 10−2 shown in Fig. 7(b2) is expressed as a
coupling mode of the rotational and translational modes. In
Figs. 7(a3) and 7(b3), we show the eigenvectors at ωnt0 = 1.0,
which are dominated by the translational modes.

To clarify the translational and rotational contributions at
each eigenvalue, we compute the translational and rotational
participation fractions [44,46] defined as

ψT
n :=

N∑
i=1

[∣∣Rx
n,i

∣∣2 + ∣∣Ry
n,i

∣∣2], (49)

ψR
n :=

N∑
i=1

∣∣R�
n,i

∣∣2 = 1 − ψT
n , (50)
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FIG. 8. Semilogarithmic plots of ψT (red filled squares) and
ψR (blue filled circles) against ωt0 for φ = 0.90 at (a) kT /kN =
1.0 × 10−8, (b) 1.0 × 10−4, (c) 1.0, and (d) 10.0. The eigenvalues
of (a1), (a2), (a3), (b1), (b2), and (b3) in these figures correspond to
Figs. 7(a1), 7(a2), 7(a3), 7(b1), 7(b2), and 7(b3), respectively. These
figures are based on numerical results for N = 4096.

respectively, where we have investigated the localization of
the system with the participation ratio in Appendix E. Note
that the translational mode is dominant when ψT

n is close to
1, and the rotational mode is dominant when ψR

n is close to
1. ψT (ω) and ψR(ω) are plotted for various kT /kN in Fig. 8,
where

ψT (ω) : =
∑′

n

〈
ψT

n δ(ω − ωn)
〉

∑′
n〈δ(ω − ωn)〉 , (51)

ψR(ω) : =
∑′

n

〈
ψR

n δ(ω − ωn)
〉

∑′
n〈δ(ω − ωn)〉 . (52)

Here, ψT and ψR are set to zero if there is no right eigenvalue
for ω(s) < ωt0 < ω(s+1) with the sth data point ω(s). Here, we
have used the following steps to determine each data point.
First, we divided the data interval into 50 parts on a logarith-
mic scale. Then we linearly redivided the data interval from
the highest frequency to the 10th highest frequency region.
Finally, we also linearly redivided the data interval of the log
scale corresponding to 0.1

√
kT /kN < ωt0 < 2

√
kT /kN . Note

that for the linear redivision of the data, the regions were
divided into 500 or 100 equally spaced inter-regional intervals
for high frequency or 0.1

√
kT /kN < ωt0 < 2

√
kT /kN , respec-

tively.
As shown in Figs. 8(a) and 8(b), we find the region of

ψR � 1 for low ω and kT /kN < 1.0 × 10−4. This region is re-
ferred to as Region I. We also find a region that satisfies ψT �
1 for high ω and kT /kN < 1.0, in which the translational
modes are dominant. This region is referred to as Region
II. Here, three characteristic behaviors depend on kT /kN at

FIG. 9. Double logarithmic plots of D(ω) against ωt0 for φ =
0.90 at (a) kT /kN = 1.0 × 10−8, (b) 1.0 × 10−4, (c) 1.0, and (d) 10.0.
The eigenvalues of (a1), (a2), (a3), (b1), (b2), and (b3) in these
figures correspond to Figs. 7(a1), 7(a2), 7(a3), 7(b1), 7(b2), and
7(b3), respectively. These figures are based on numerical results for
N = 4096.

φ = 0.90. First, the translational modes are separable from the
rotational modes for kT /kN � 1.0 × 10−8 because we need
a small amount of energy to excite the rotational mode in
nearly frictionless situations, as shown in Figs. 8(a) and 8(b).
Second, the translational and rotational contributions are not
separated for 1.0 × 10−6 � kT /kN � 1.0 × 10−2. Third, the
translational and rotational contributions are indistinguishable
for kT /kN � 1.0.

The DOS obtained from the Jacobian eigenvalues is shown
in Fig. 9. Based on the results of ψT (ω) and ψR(ω), the DOS
is also separated into two regions for kT /kN � 1.0 × 10−8.
The rotational band for low ω shifts to the high ω region as
kT /kN increases [see Figs. 9(a) and 9(b)]. In Region II with a
high ω [see Figs. 9(a) and 9(b)], the DOS is almost indepen-
dent of kT /kN , in which the translational modes are dominant
for kT /kN � 1.0 × 10−2. The distinctions between the two
regions for the DOS are visible with a distinct gap between
the adjacent regions for 1.0 × 10−10 � kT /kN � 1.0 × 10−8.
For 1.0 × 10−6 � kT /kN � 1.0 × 10−2, however, the high-ω
region of the DOS in Region I partially overlaps with the
low-ω region of Region II. Furthermore, Regions I and II
are completely merged for kT /kN � 1.0 [see Figs. 9(c) and
9(d)]. Isolated DOS bands for low ω have been observed in
systems containing anisotropic grains, such as elliptical grains
and dimers [44–46]. However, to the best of our knowledge,
there is no paper pointing out the existence of isolated bands
of DOS in systems of frictional grains.

Because we have confirmed the existence of a peak of
D(ω) around ωt0 � (kT /kN )1/2, Fig. 10 shows the scaling of
the DOS in Region I by plotting ωRD(ω/ωR), where ωR :=
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FIG. 10. Scaling plots of ωRD(ω) versus ω/ωR for φ = 0.90
and various kT /kN in 0.1 < ω/ωR < 10.0. The figure is based on
numerical results for N = 4096.

√
kT /kNt−1

0
3. From Fig. 10 we have confirmed that ωRD(ω)

can be expressed as a universal scaling function of ω/ωR for
0.1 < ω/ωR < 1 and kT /kN � 0.01.

To clarify the behavior of the DOS in the frictionless limit,
we compare the DOS for kT /kN = 10−8 with that for fric-
tionless particles by plotting both cases, where we adopt the
Hessian matrix to calculate the DOS for frictionless systems
(see Fig. 11 and Appendix H). As expected, there is no singu-
larity of the DOS for the translational mode, while the isolated
rotational band in low ω is absent in frictionless particles, as
shown in Fig. 11.

At the end of this subsection, we examine the usefulness of
the effective Hessian H introduced in Refs. [52–54] by com-
paring D(ω) with DH (ω), where DH (ω) is the DOS obtained
from H (see Appendix H). As shown in Figs. 12(a) and 12(b),
D(ω) and DH (ω) for various kT /kN are almost identical. Here,
the peak of the DOS near ω = 0 is caused by the rotational
motion of the grains. This agreement between the Jacobian
and Hessian analyses is natural because the configuration
before the application of shear was prepared with frictionless
particles, and the tangential displacement ξT,i j is sufficiently
small.

V. CONCLUDING REMARKS

We analyzed the eigenmodes of the Jacobian and obtained
an expression for the rigidity of amorphous solids of frictional
particles under an infinitesimal strain. We reproduced the
rigidity in the linear response regime using the eigenvalues
and eigenfunctions of the Jacobian with modifications in the
rotational part.

Further, we confirmed that the DOS can be divided into two
regions for small kT /kN . In the low-frequency region (Region
I), the rotation of the particles plays a dominant role. These

3The reason why D(ω) is multiplied by ωR in Fig. 10 is as fol-
lows. The integral value of the DOS within Region I,

∫
I dωD(ω),

is almost independent of kT /kN . Then, the LHS can be rewritten as
a variable,

∫
I dωD(ω) = ∫

I dω̂D∗(ω̂), where ω̂ := ω/ωR, D∗(ω̂) :=
ωRD(ω/ωR), and

∫
I represents the integral in Region I.

FIG. 11. Double logarithmic plots of D(ω)/t0 vs ωt0 with φ =
0.90, where red circles are the DOS for frictional grains, while blue
triangles are the DOS for frictionless grains. The figure is based on
numerical results for N = 4096.

modes are characterized by the frequency (kT /kN )1/2/t0. Re-
gion I merges into the high-frequency region (Region II) for
large kT /kN , where Region II is dominated by translational
modes.

It should be noted that our results are almost indepen-
dent of system size, as shown in Appendix I. Moreover, we
have briefly analyzed the density dependence of the DOS
in Appendix J, where the rotational band shifts to a lower
frequency region, and the plateau of the translational band
become longer as the density approaches the jamming point.

We have also confirmed that the results of our Jacobian
analysis are almost equivalent to those of the Hessian matrix.

FIG. 12. Plots of D(ω) (filled symbols) and DH (ω) (open sym-
bols) for φ = 0.90 at (a) kT /kN = 1.0 × 10−8, (b) 1.0 × 10−4,
(c) 1.0, and (d) 10.0. These figures are based on numerical results
for N = 4096.
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This is because our preparation of the initial configuration
of grains is made by frictionless grains. Nevertheless, we
expect that the Hessian analysis might be sufficient for stable
configurations of grains.

However, the applicability of this theory is limited. The
method used in this study cannot be used for finite strains
because it is obvious that the eigenvectors are not orthogonal
in the sheared state. Moreover, there are plastic deformations
of the grains under large strains, which were not considered
in this study. Therefore, we cannot predict the correct value of
the theoretical rigidity at the stress drop point. More impor-
tantly, the effect of the history dependence of the frictional
force is significant even in the linear response regime, al-
though we have ignored such contacts because of the difficulty
in constructing a proper theory. This issue should be addressed
in future studies [71].
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APPENDIX A: METHOD OF PREPARING THE
CONFIGURATION BEFORE APPLYING THE SHEAR

In this Appendix, we summarize the method of preparing
a stable configuration of grains before applying the shear.
For this purpose, as the first step, we perform the relaxation
for frictionless particles with the FIRE. As the second step,
the system is relaxed taking into account the static friction
between particles. In the first subsection, we summarize how
to prepare the configurations of frictionless particles by the
FIRE [63]. In the second subsection, we describe the details of
the numerical method including the force with static friction.

1. Method of preparing configuration before applying
shear by FIRE

At first, we place particles at random without any overlaps
of particles with the initial fraction φini = 0.6. We increase the
projected area fraction of the system by the increment of the
fraction � := φNew − φOld up to the target fraction φ, where
φOld and φNew are the projected area fraction of the system
before and after each step of the increment, respectively. After
each step of the increment, the system is relaxed by the FIRE
[63].

To implement the process of increasing the area fraction,
we scale the system as

LNew = LOld

√
φOld

φNew
, (A1)

rNew
i = rOld

i

√
φOld

φNew
, (A2)

where LOld/LNew and rOld
i /rNew

i are the linear system size and
the position of the ith particle before/after rescaling, respec-
tively. We adopt � = 10−4. When there are overlaps between
particles at φNew, the system relaxes to a stable configuration
with the aid of the FIRE.

The FIRE is a fast relaxation method of minimizing poten-
tials U (r) depending on the configuration of the particles r :=
(rT

1 , rT
2 , . . . , rT

N )T with ri := (rx
i , ry

i )T := (xi, yi )T [63]. Here,
we use the Hertzian potential for U (r), which is defined as

U (r) := 2

5
kN

∑
j �=i

ξ
5/2
N,i j�(di j/2 − |ri j |). (A3)

Let us introduce the ζ -component of the force F ζ
F,i acting on

the ith particle as

F ζ
F,i : = − ∂U

∂rζ
i

=
∑
j �=i

kNξ
3/2
N,i jn

ζ
i j�(di j/2 − |ri j |), (A4)

where ζ = x or y. Note that F ζ
F,i only consists of the normal

repulsive force. In the FIRE, the position r and velocity vF :=
(vF,1, vF,2, . . . , vF,N )T with vF,i := (vx

F,i, v
y
F,i )

T are updated by
the following rules from (i) to (iv) with the variable time
increment 	tF . (i) The numerical integration via the velocity
Verlet method is performed on r and vF :

rζ
i → rζ

i + 	tF v
ζ
i + 	t2

F

F ζ
F,i(r)

2mi
, (A5)

v
ζ
F,i → v

ζ
F,i + 	tF

F ζ
F,i(r̃) + F ζ

F,i(r)

2mi
, (A6)

where r̃ is the updated configuration in Eq. (A5). (ii) We calcu-
late P := FF · vF , where FF := (FT

F,1, FT
F,2, . . . , FT

F,N )T with
FF,i := (F x

F,i, F y
F,i )

T. (iii) The velocity vF is updated as

vF,i → vF,i + χ (v̂F,i − F̂F,i )|vF,i|, (A7)

where χ is the relaxation parameter, and â := a/|a| for an
arbitrary vector a. (iv) We update χ and 	tF in the FIRE
according to the positive or negative value of P. To speed up
the relaxation when the motion is along a potential gradient,
we increase 	tF . Note that this process is performed only
when the number of numerical integrations along the potential
gradient is larger than a certain number of times Nmin to
stabilize the numerical calculation. To implement this update
rule, if P > 0 and the number of numerical integrations of
P > 0 is larger than Nmin, 	tF and χ are updated as

	tF → min(	tF finc,	tF,max), (A8)

χ → χ fχ , (A9)

where min(a, b) is a selecting function of a smaller one from
a and b, the parameter finc is introduced to speed up the relax-
ation, and fχ and 	tF,max are parameters to stabilize numerical
calculations. Here, we adopt finc = 1.1, fχ = 0.99, Nmin =
5, 	tF,max = 10	tF,ini, and 	tF,ini = 1.0 × 10−2t0 [63,70].
Note that Nmin is necessary for the stability of the algorithm.
In the case of P � 0, we set

vF → 0, (A10)

χ → χstart, (A11)
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	tF → 	tF fdec, (A12)

where we adopt fdec = 0.5 and χstart = 0.1 [63,70].
We repeat the operations (i)–(iv) until |F ζ

F,i| < FTh for ar-
bitrary i and ζ . Note that we have used the initial values for
	tF = 	tF,ini and χ = χstart at the starting point of the FIRE.
Here, r is given and we set vF = 0 at the starting point of the
FIRE.

2. Numerical method for relaxation of the configuration
of frictional particles

After we obtain a stable configuration of frictionless par-
ticles at a target fraction in terms of the FIRE, we consider
the effect of static friction in the relaxation process of fric-
tional particles. The time evolution of the system is given by
Eqs. (1)–(8) until F̃α

i < FTh for arbitrary i and α. For the time
integration, we adopt the velocity Verlet method with the time
increment 	t = 1.0 × 10−2t0.

APPENDIX B: VELOCITY VERLET METHOD
IN OUR SYSTEM

In this Appendix, we first verify the accuracy of the veloc-
ity Verlet method. Next, we summarize the implementation
of the velocity Verlet method. To simplify the notation, we
introduce the generalized force f̃ := ( f̃

T
1 , f̃

T
2 , . . . , f̃

T
N )T with

f̃ i := ( f̃ x
i , f̃ y

i , f̃ �
i )T := (F̃ x

i /mx
i , F̃ y

i /my
i , F̃ �

i /m�
i )T in this Ap-

pendix, where mα
i is mi for α = x, y and 4Ii/d2

i for α = �.
Note that F̃α

i is the generalized force, which depends on q
and q̇ as in Eqs. (3)–(8), where ȧ := da/dt for an arbitrary
vector a.

1. Accuracy of the velocity Verlet method for the force
depending on the velocity

In this subsection, we check the accuracy of the velocity
Verlet method for the force depending on the velocity with
the aid of discretization based on the Taylor expansion. The
velocity Verlte method is given by a set of equations

qα
i (t + 	t ) = qα

i (t ) + 	t q̇α
i (t ) + 1

2
	t2 f̃ α

i (t ), (B1)

q̇α
i (t + 	t ) = q̇α

i (t ) + 	t
f̃ α
i (t ) + f̃ α

i (t + 	t )

2
. (B2)

The first equation is called the velocity Velret equation for
qα

i (t ) and the second one is the equation for q̇α
i (t ). It is known

that the velocity Verlet algorithm has the accuracy of O(	t2)
in Hamiltonian systems [69], but the accuracy of this method
for dissipative dynamics is little known. Therefore, we clarify
the accuracy of this method in this Appendix.

Here, we show from the Taylor expansion that the velocity
Verlet method has a second-order and first-order accuracies of
	t for q and q̇, respectively. Based on the Taylor expansion of
qα

i (t + 	t ), we obtain

qα
i (t + 	t ) = qα

i (t ) + 	t q̇α
i (t ) + 1

2	t2q̈α
i (t ) + O(	t3)

= qα
i (t ) + 	t q̇α

i (t ) + 1
2	t2 f̃ α

i (t ) + O(	t3),

(B3)

where Ȧ := dA/dt for an arbitrary function A. We can obtain
the quadratic precision of 	t for qα

i (t + 	t ), because the RHS
of Eq. (B3) is a function of current time t .

On the other hand, based on the Taylor expansion of q̇α
i (t +

	t ), we obtain

q̇α
i (t + 	t ) = q̇α

i (t ) + 	t q̈α
i (t ) + 1

2	t2˙̇q̇ α
i (t ) + O(	t3)

= q̇α
i (t ) + 	t f̃ α

i (t ) + 1
2	t2 ˙̃f α

i (t ) + O(	t3).

(B4)

By using f̃ α
i (t + 	t ) = f̃ α

i (t ) + 	t ˙̃f α
i (t ) + O(	t2), we eval-

uate ˙̃f α
i (t ) as

˙̃f α
i (t ) = f̃ α

i (t + 	t ) − f̃ α
i (t )

	t
+ O(	t ). (B5)

Substituting Eq. (B5) into Eq. (B4), we obtain [69]

q̇α
i (t + 	t ) = q̇α

i (t ) + 	t
f̃ α
i (t + 	t ) + f̃ α

i (t )

2
+ O(	t3).

(B6)

If the force f̃ α
i (t + 	t ) is independent of q̇, we can obtain

f̃ α
i (q(t + 	t )) from q(t + 	t ) with the aid of Eq. (B3) [69].

However, if f̃ α
i (t + 	t ) depends on q̇, we have to evaluate

f̃ α
i (q(t + 	t ), q̇(t + 	t )), because f̃ α

i (q(t + 	t ), q̇(t + 	t ))
requires the LHS of Eq. (B6). Thus, we adopt the following
replacements:

f̃ α
i (t + 	t ) := f̃ α

i (q(t + 	t ), q̇(t + 	t ))

→ f̃ α
i (q(t + 	t ), Q̇(t )), (B7)

f̃ α
i (t ) : = f̃ α

i (q(t ), q̇(t )) → f̃ α
i (q(t ), Q̇(t − 	t )), (B8)

where we have introduced

Q̇α
i (t ) : = q̇α

i (t ) + 	t
f̃ α
i (q(t ), Q̇(t − 	t ))

2
, (B9)

Q̇α
i (t − 	t ) := q̇α

i (t − 	t )

+ 	t
f̃ α
i (q(t − 	t ), Q̇(t − 2	t ))

2
. (B10)

Here, the difference between f̃ α
i (q(t + 	t ), q̇(t + 	t )) and

f̃ α
i (q(t + 	t ), Q̇(t )) caused by Eq. (B7) is given by

	 f̃ α
i (t + 	t )

:= f̃ α
i (q(t + 	t ), q̇(t + 	t )) − f̃ α

i (q(t + 	t ), Q̇(t ))

= f̃ α
i (q(t + 	t ), q̇(t ) + 	t f̃ (t ) + O(	t2))

− f̃ α
i

(
q(t + 	t ), q̇(t ) + 	t

f̃ (q(t ), q̇(t ))
2

+ O(	t2)

)

= 	t
N∑

j=1

∑
β=x,y,�

f̃ β
j (q(t ), q̇(t ))

2

∂ f̃ α
i (q(t ), q̇(t ))

∂ q̇β
j

+ O(	t2). (B11)
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Similarly, the difference between f̃ α
i (t ) := f̃ α

i (q(t ), q̇(t )) and
f̃ α
i (q(t ), Q̇(t − 	t )) in Eq. (B8) can be evaluated as

	 f̃ α
i (t ) := f̃ α

i (q(t ), q̇(t )) − f̃ α
i (q(t ), Q̇(t − 	t ))

= 	t
N∑

j=1

∑
β=x,y,�

f̃ β
j (q(t ), q̇(t ))

2

∂ f̃ α
i (q(t ), q̇(t ))

∂ q̇β
j

+ O(	t2). (B12)

Thus, the replacement of Eqs. (B7) and (B8) in Eq. (B6) with
Eqs. (B11) and (B12) leads to

q̇α
i (t + 	t )

= q̇α
i (t ) + 	t

f̃ α
i (q(t + 	t ), Q̇(t )) + f̃ (q(t ), Q̇(t − 	t ))

2

− 	t2
N∑

j=1

∑
β=x,y,�

f̃ β
j (q(t ), q̇(t ))

2

∂ f̃ α
i (q(t ), q̇(t ))

∂ q̇β
j

+ O(	t3). (B13)

Omitting the term including O(	t2) in Eq. (B13), we obtain
the following numerical integration methods for q̇:

q̇α
i (t + 	t ) → q̇α

i (t )

+ 	t
f̃ α
i (q(t + 	t ), Q̇(t )) + f̃ (q(t ), Q̇(t − 	t ))

2
. (B14)

Note that Eq. (B14) is the precise expression of the velocity
Verlet scheme for q̇ presented in Eq. (B2). From the compar-
ison between Eqs. (B13) and (B14), we have confirmed that
the velocity Verlet scheme has the first-order precision of 	t
for q̇. We also note that if f̃ α

i is independent of q̇, as in the
case of Hamiltonian systems, the term proportional to 	t2

is zero, and thus the second-order accuracy of 	t for q̇α
i is

guaranteed.

Let us go back to Eq. (B3) with the replacement of Eq. (B8)
for f̃ α

i (t ):

qα
i (t + 	t ) = qα

i (t ) + 	t q̇α
i (t ) + 1

2	t2 f̃ α
i (t ) + O(	t3)

= qα
i (t ) + 	t q̇α

i (t ) + 1
2	t2 f̃ α

i (q(t ), Q̇(t − 	t ))

+ O(	t3). (B15)

Omitting the term including O(	t3) in Eq. (B15), we obtain
the following numerical integration methods for q:

qα
i (t + 	t ) → qα

i (t ) + 	t q̇α
i (t ) + 1

2	t2 f̃ α
i (q(t ), Q̇(t − 	t )).

(B16)

Here, Eq. (B16) is the precise expression of the velocity Verlet
scheme for q presented in Eq. (B1). From Eqs. (B15) and
(B16), we have confirmed that the velocity Verlet scheme has
the second-order precision of 	t for q.

2. Implementation of the velocity Verlet method
for the force depending on the velocity

In this subsection, we explain how to adopt the velocity
Verlet method in our system. In the main text, we adopt the
following equations:

qα
i (t + 	t ) = qα

i (t ) + 	t q̇α
i (t ) + 	t2 f̃ α

i (q(t ), Q̇(t − 	t ))

2
,

(B17)

Q̇α
i (t ) = q̇α

i (t ) + 	t
f̃ α
i (q(t ), Q̇(t − 	t ))

2
. (B18)

Here, the updated configuration qα
i (t + 	t ) and modified ve-

locity Q̇α
i (t ) are used to obtain the force f̃ α

i (q(t + 	t ), Q̇(t )).
Then, we update the velocity as follows:

q̇α
i (t + 	t ) = Q̇α

i (t ) + 	t
f̃ α
i (q(t + 	t ), Q̇(t ))

2
. (B19)

APPENDIX C: JACOBIAN PROPERTIES

In this Appendix, we summarize the properties of the Jaco-
bian introduced in Eq. (18).

1. Jacobian block elements

Let us write 3 × 3 submatrix Ji j , which is a (i j) block element of the Jacobian obtained from Eq. (18):

[Ji j]
αβ := −∂F̃α

i

∂qβ
j

=

⎡
⎢⎢⎣

−∂qx
j
F x

i −∂qy
j
F x

i −∂q�
j
F x

i

−∂qx
j
F y

i −∂qy
j
F y

i −∂q�
j
F y

i

−∂qx
j
T̃i −∂qy

j
T̃i −∂q�

j
T̃i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−∑N
k=1;k �= j ∂qx

j
f x
ik −∑N

k=1;k �= j ∂qy
j
f x
ik −∑N

k=1;k �= j ∂q�
j
f x
ik

−∑N
k=1;k �= j ∂qx

j
f y
ik −∑N

k=1;k �= j ∂qy
j
f y
ik −∑N

k=1;k �= j ∂q�
j
f y
ik

−∑N
k=1;k �= j ∂qx

j
T̃ik −∑N

k=1;k �= j ∂qy
j
T̃ik −∑N

k=1;k �= j ∂q�
j
T̃ik

⎤
⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

−∂qx
j
f x
i j −∂qy

j
f x
i j −∂q�

j
f x
i j

−∂qx
j
f y
i j −∂qy

j
f y
i j −∂q�

j
f y
i j

−∂qx
j
T̃i j −∂qy

j
T̃i j −∂q�

j
T̃i j

⎤
⎥⎥⎦(i �= j)

⎡
⎢⎢⎣

−∑N
k=1;k �=i ∂qx

i
f x
ik −∑N

k=1;k �=i ∂qy
i
f x
ik −∑N

k=1;k �=i ∂q�
i
f x
ik

−∑N
k=1;k �=i ∂qx

i
f y
ik −∑N

k=1;k �=i ∂qy
i
f y
ik −∑N

k=1;k �=i ∂q�
i
f y
ik

−∑N
k=1;k �=i ∂qx

i
T̃ik −∑N

k=1;k �=i ∂qy
i
T̃ik −∑N

k=1;k �=i ∂q�
i
T̃ik

⎤
⎥⎥⎦(i = j)

, (C1)
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where the superscripts α and β correspond to x, y, � components, and i and j are the particle numbers (see Appendix F for each
component of J ). Here, f ζ

i j, T̃i j are the ζ -component of f i j and scaled torque that the ith particle receives from the jth particle,
respectively. The submatrix for i = j is given by

[Jii]
αβ =

⎡
⎢⎢⎣
∑N

k=1;k �=i ∂qx
k

f x
ik

∑N
k=1;k �=i ∂qy

k
f x
ik −∑N

k=1;k �=i ∂q�
k
f x
ik∑N

k=1;k �=i ∂qx
k

f y
ik

∑N
k=1;k �=i ∂qy

k
f y
ik −∑N

k=1;k �=i ∂q�
k
f y
ik∑N

k=1;k �=i ∂qx
k
T̃ik

∑N
k=1;k �=i ∂qy

k
T̃ik −∑N

k=1;k �=i ∂q�
k
T̃ik

⎤
⎥⎥⎦, (C2)

where we have used ∂qκ
i

f ζ

ik = −∂qκ
k

f ζ

ik, ∂qκ
i
T̃ik = −∂qκ

i
T̃ik,

∂q�
i
f ζ

ik = ∂q�
k
f ζ

ik , and ∂q�
i
T̃ik = ∂q�

i
T̃ik .

Here, the superscripts ζ and κ correspond to x, y compo-
nents.

From Eqs. (C1) and (C2), J ζβ
i j satisfies

J ζβ
ii = −

∑
j �=i

J ζβ
i j . (C3)

Thus, introducing Jnm (n, m = 1, 2, . . . , 3N ), which is a
rewriting of J αβ

i j in Eq. (19) by changing the index from i
and α to n, we obtain ∑

n=1,4,...,3N−2

Jnm = 0, (C4)

∑
n=2,5,...,3N−1

Jnm = 0, (C5)

where
∑

n=1,4,...,3N−2 and
∑

n=2,5,...,3N−1 express the sum-
mations of modulus 1 and modulus 2 with the intervals 3,
respectively. Here, we write a 3N-dimensional vector trans-
lating in the x direction ex as

ex =

⎡
⎢⎢⎣

ex,1

ex,2
...

ex,N

⎤
⎥⎥⎦, (C6)

where ex,i := (1, 0, 0)T for i = 1, 2, . . . , N . Here, the nth
component of the action of J on ex satisfies

{J ex}n =
∑

m

Jnmex,m

=
∑

m=1,4,...,3N−2

Jnm

= 0, (C7)

where we have used Eq. (C4) for the last equality. Thus, we
obtain J ex = 0, where 0 is zero vector. Similarly, using

ey =

⎡
⎢⎢⎣

ey,1

ey,2
...

ey,N

⎤
⎥⎥⎦, (C8)

with ey,i := (0, 1, 0)T, we also obtain J ey = 0. Therefore, ex

and ey are the zero modes for J .

APPENDIX D: EXPLICIT JACOBIAN EXPRESSIONS

In this Appendix, we present the explicit expressions of
the Jacobian based on Eqs. (6)–(8). Then, we clarify the

difference between the present results and the case in which
the tangential force is approximated by the conservative force
used in the previous studies [52,53].

1. Calculation of the Jacobian

Let us consider only the normal and tangential elastic con-
tact forces

f N,i j = kNξ
3/2
N,i jni j, (D1)

f T,i j = kT ξ
1/2
N,i jξT,i j, (D2)

where the integration of dξT,i j ,

ξT,i j :=
∫

Ci j

dξT,i j, (D3)

is performed during the contact between i and j particles.
Since Eq. (D3) does not contain the second term on the RHS
of Eq. (9), ξT,i j may not be perpendicular to ξN,i j . Never-
theless, we adopt Eq. (D3) for simplicity. Here, dξT,i j is
defined as

dξT,i j = dri j − (dri j · ni j )ni j − d�i j × ni j, (D4)

where �i j is defined as

�i j :=
⎡
⎣ 0

0
�i + � j

⎤
⎦. (D5)

Each component of Eq. (D4) is written as

dξ x
T,i j = drx

i j − (dri j · ni j )n
x
i j + d�i jn

y
i j, (D6)

dξ
y
T,i j = dry

i j − (dri j · ni j )n
y
i j − d�i jn

x
i j . (D7)

The derivative of the normal force is given by

∂rζ
i

f κ
N,i j = kN

[
δζκ

ξ
3/2
N,i j

ri j
−
(

3

2
+ ξN,i j

ri j

)
ξ

1/2
N,i jn

ζ
i jn

κ
i j

]
, (D8)

∂�i f κ
N,i j = 0, (D9)

where Kronecker’s delta δζκ satisfies δζκ = 1 for ζ = κ and
δζκ = 0 otherwise. We have used

∂nζ
i j

∂rκ
i

= 1

ri j

(
δζκ − nζ

i jn
κ
i j

)
, (D10)

∂ri j

∂rζ
i

= nζ
i j (D11)

to obtain Eq. (D8).
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The derivative of the tangential force is written as

∂rζ
i

f κ
T,i j = 1

2 kT ξ
−1/2
N,i j nζ

i jξ
κ
T,i j − kT ξ

1/2
N,i j

(
δζκ − nζ

i jn
κ
i j

)
, (D12)

∂�i f κ
T,i j = −εκkT ξ

1/2
N,i jn

νκ

i j , (D13)

where εζ and νζ are, respectively, defined as

εζ : =
{

1 (ζ = x),
−1 (ζ = y), (D14)

νζ : =
{

y (ζ = x),
x (ζ = y). (D15)

Here, ∂rζ
i
ξκ

T,i j and ∂�iξ
κ
T,i j in Eqs. (D12) and (D13) satisfy

∂ξκ
T,i j

∂rζ
i

= δζκ − nζ
i jn

κ
i j, (D16)

∂ξκ
T,i j

∂�i
= εκnνκ

i j . (D17)

The derivations of Eqs. (D16) and (D17) are as follows [55].
From Eq. (D4), dξ

ζ
T,i j can be written as

dξ
ζ
T,i j = drζ

i j − (dri j · ni j )n
ζ
i j + (−1)ζ (d�i + d� j )n

νζ

i j .

(D18)

Then, dξ x
T,i j satisfies

dξ x
T,i j = drx

i j −
∑
κ=x,y

drκ
i jn

κ
i jn

x
i j + ny

i j (d�i + d� j )

= [
1 − (

nx
i j

)2]
drx

i j − nx
i jn

y
i jdry

i j + ny
i j (d�i + d� j )

= (
ny

i j

)2
drx

i j − nx
i jn

y
i jdry

i j + ny
i j (d�i + d� j )

= (
ny

i j

)2
(dxi − dx j ) − nx

i jn
y
i j (dyi − dy j )

+ ny
i j (d�i + d� j ). (D19)

Similarly, dξ
y
T,i j also satisfies

dξ
y
T,i j = −nx

i jn
y
i j (dxi − dx j ) + (

ny
i j

)2
(dyi − dy j )

− nx
i j (d�i + d� j ). (D20)

Here, dξ
ζ
T,i j is the function of xi, yi, �i, x j, y j, and � j . We

obtain the differential form of dξ
ζ
T,i j :

dξ
ζ
T,i j =

(
∂ξ

ζ
T,i j

∂xi

)
(yi,�i,x j ,y j ,� j )

dxi +
(

∂ξ
ζ
T,i j

∂x j

)
(xi,yi,�i,y j ,� j )

dx j

+
(

∂ξ
ζ
T,i j

∂yi

)
(xi,�i,x j ,y j ,� j )

dyi +
(

∂ξ
ζ
T,i j

∂y j

)
(xi,yi,�i,x j ,� j )

dy j

+
(

∂ξ
ζ
T,i j

∂�i

)
(xi,yi,x j ,y j ,� j )

d�i +
(

∂ξ
ζ
T,i j

∂� j

)
(xi,yi,�i,x j ,y j )

d� j .

(D21)

Then, we obtain Eqs. (D16) and (D17) by comparing
Eqs. (D19) and (D20) with Eq. (D21).

Since the scaled torque T̃i j satisfies

T̃i j := 2Ti j

di
= −nx

i j f y
T,i j + ny

i j f x
T,i j, (D22)

we obtain

∂rζ
i
T̃i j = −

(
∂rζ

i
nx

i j

)
f y
T,i j − nx

i j∂rζ
i

f y
T,i j +

(
∂rζ

i
ny

i j

)
f x
T,i j + ny

i j∂rζ
i

f x
T,i j

= −
(

δζx

ri j
− nζ

i jn
x
i j

ri j

)
f y
T,i j − nx

i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

y
i j − kT ξ

1/2
N,i j

(
δζy − nζ

i jn
y
i j

)]

+
(

δζy

ri j
− nζ

i jn
y
i j

ri j

)
f x
T,i j + ny

i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

x
i j − kT ξ

1/2
N,i j

(
δζx − nζ

i jn
x
i j

)]

= −nx
i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

y
i j − kT ξ

1/2
N,i j

(
δζy − nζ

i jn
y
i j

)]+ ny
i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

x
i j − kT ξ

1/2
N,i j

(
δζx − nζ

i jn
x
i j

)]

= −nx
i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

y
i j − kT ξ

1/2
N,i jδζy

]
+ ny

i j

[
1

2
kT ξ

−1/2
N,i j ξT,i jn

ζ
i jt

x
i j − kT ξ

1/2
N,i jδζx

]
, (D23)

∂�i T̃i j = −nx
i j∂�i f y

T,i j + ny
i j∂�i f x

T,i j

= −nx
i jkT ξ

1/2
N,i jn

x
i j − ny

i jkT ξ
1/2
N,i jn

y
i j

= −kT ξ
1/2
N,i j, (D24)

where we have used
∑

ζ f ζ
T,i jn

ζ
i j = 0.

The terms proportional to ξT,i j in the Jacobian include
the history-dependent tangential displacements, which are ig-
nored in the effective potential (see Appendix H) [52–54]. The

reason we use the Jacobian is to include the history-dependent
tangential displacements in the dynamical matrix.

APPENDIX E: EFFECTS OF RATTLERS

In this Appendix, we investigate the effects of rattlers. In
the first subsection, we investigate the effects of rattlers for the
DOS. In the second subsection, we clarify the contributions of
rattlers by using the participation ratio.
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FIG. 13. Double logarithmic plots of D(ω) with (red circles) and without (blue triangles by using ZTh = 2) rattlers against ωt0 for φ = 0.90
at (a) kT /kN = 1.0 × 10−8 and (b) kT /kN = 1.0 × 10−4. These figures are based on numerical results for N = 4096.

1. Effects of rattlers on the DOS

In this subsection, we investigate the role of rattlers. We
call particle i a rattler if its coordination number Zi is Zi �
ZTh. Since the coordination number of the isostatic state is
3, ZTh can be 1 or 2 for frictional grains. The rattlers are
determined by the following method. Given a particle config-
uration, we measure the coordination number Z (n=1)

i of each
particle. Then, we regard N1 particles satisfying Z (n=1)

i � ZTh

as rattlers at the first trial. We measure the coordination
number Z (n=2)

i after we remove the rattler particles. In the
second trial, we regard particles satisfying Z (n=2)

i � ZTh as
new rattlers. We repeat these processes until the number of
rattlers is converged. As shown in Fig. 13, where we adopt
ZTh = 2, low-frequency modes in region I and intermediate
modes between regions I and II are contributions from rattlers.
Thus, we conclude that the contributions of rattlers on the
DOS are not important.

2. Participation ratio

In this subsection, to clarify whether the mode at ωn is
localized or spread to the whole system, we introduce a par-
ticipation ratio pn [44,46],

pn :=
(∑N

i=1 |Rn,i|2
)2

N
∑N

i=1 |Rn,i|4
. (E1)

We plot p(ω) defined as

p(ω) :=
∑′

n〈pnδ(ω − ωn)〉∑′
n〈δ(ω − ωn)〉 (E2)

against ωt0 for φ = 0.90 in Fig. 14. Note that p(ω) are set to
be zero if there is no right eigenvalue in the region (ω(s) <

ω < ω(s+1)).
Figure 14 shows that the modes at ωt0 ≈ 10−5 in Fig. 14(a)

and at ωt0 ≈ 10−3 in Fig. 14(b) are nearly equal to p ≈ 1/N .
Recalling that those modes consist of the rattler, we conclude
that the contribution of the rattler is localized. In the middle
range of ω in Fig. 14, there is an isolated band that shifts to the

large ω as kT /kN increases while maintaining its shape, which
can be seen in the main text.

APPENDIX F: EXPLICIT RESULTS OF JN AND JT

In this Appendix, we have written down the explicit results
of JN and JT . From the results for the derivative of F̃α

i in
Appendix D, the nondiagonal block elements J αβ

N,i j,J
αβ

T,i j (i �=
j) are given by

J xx
N,i j = kN

ξ
3/2
i j,N

ri j
− kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N

(
nx

i j

)2
, (F1)

J xx
T,i j − kT ξ

1/2
i j,N

(
ny

i j

)2 + 1

2
kT ξ

−1/2
i j,N ξi j,T nx

i jt
x
i j, (F2)

J xy
N,i j = −kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N nx

i jn
y
i j, (F3)

J xy
T,i j = kT ξ

1/2
i j,N nx

i jn
y
i j + 1

2
kT ξ

−1/2
i j,N ξi j,T nx

i jt
y
i j, (F4)

J x�
N,i j = 0, (F5)

J x�
T,i j = kT ξ

1/2
i j,N ny

i j + 1

2
kT ξ

−1/2
i j,N ξi j,T nx

i j

(
nx

i jt
y
i j − ny

i jt
x
i j

)
, (F6)

J yx
N,i j = −kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N nx

i jn
y
i j, (F7)

J yx
T,i j = kT ξ

1/2
i j,N nx

i jn
y
i j + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i jt
x
i j, (F8)

J yy
N,i j = kN

ξ
3/2
i j,N

ri j
− kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N

(
ny

i j

)2
, (F9)

J yy
T,i j = −kT ξ

1/2
i j,N

(
nx

i j

)2 + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i jt
y
i j, (F10)

J y�
N,i j = 0, (F11)

J y�
T,i j = −kT ξ

1/2
i j,N nx

i j + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i j

(
nx

i jt
y
i j − ny

i jt
x
i j

)
,(F12)

J �x
N,i j = 0, (F13)
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FIG. 14. Double logarithmic plots of p(ω) for φ = 0.90 against ωt0 at (a) kT /kN = 1.0 × 10−8 and (b) kT /kN = 1.0 × 10−4, where the
guide line is 1/N . These figures are based on numerical results for N = 4096.

J �x
T,i j = −kT ξ

1/2
i j,N ny

i j, (F14)

J �y
N,i j = 0, (F15)

J �y
T,i j = kT ξ

1/2
i j,N nx

i j, (F16)

J ��
N,i j = 0, (F17)

J ��
T,i j = kT ξ

1/2
i j,N . (F18)

Similarly, the diagonal block elements J αβ
N,i j,J

αβ
T,i j (i = j) are

given by

J xx
N,ii = −

∑
j �=i

{
kN

ξ
3/2
i j,N

ri j
− kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N

(
nx

i j

)2

}
, (F19)

J xx
T,ii = −

∑
j �=i

{
−kT ξ

1/2
i j,N

(
ny

i j

)2 + 1

2
kT ξ

−1/2
i j,N ξi j,T nx

i jt
x
i j

}
, (F20)

J xy
N,ii = −

∑
j �=i

{
−kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N nx

i jn
y
i j

}
, (F21)

J xy
T,ii = −

∑
j �=i

{
kT ξ

1/2
i j,N nx

i jn
y
i j + 1

2
kT ξ

−1/2
i j,N ξi j,T nx

i jt
y
i j

}
, (F22)

J x�
N,ii = 0, (F23)

J x�
T,ii =

∑
j �=i

{
kT ξ

1/2
i j,N ny

i j + 1

2
ξ

−1/2
i j,N ξi j,T nx

i j

(
nx

i jt
y
i j − ny

i jt
x
i j

)}
,

(F24)

J yx
N,ii = −

∑
j �=i

{
−kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N nx

i jn
y
i j

}
, (F25)

J yx
T,ii = −

∑
j �=i

{
kT ξ

1/2
i j,N nx

i jn
y
i j + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i jt
x
i j

}
, (F26)

J yy
N,ii = −

∑
j �=i

{
kN

ξ
3/2
i j,N

ri j
− kN

[
3

2
+ ξi j,N

ri j

]
ξ

1/2
i j,N

(
ny

i j

)2

}
, (F27)

J yy
T,ii = −

∑
j �=i

{
−kT ξ

1/2
i j,N

(
nx

i j

)2 + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i jt
y
i j

}
, (F28)

J yy
N,ii = 0, (F29)

J y�
T,ii = −

∑
j �=i

{
kT ξ

1/2
i j,N nx

i j + 1

2
kT ξ

−1/2
i j,N ξi j,T ny

i j

(
nx

i jt
y
i j − ny

i jt
x
i j

)}
,

(F30)

J �x
N,ii = 0, (F31)

J �x
T,ii =

∑
j �=i

kT ξ
1/2
i j,N ny

i j, (F32)

J �y
N,ii = 0, (F33)

J �y
T,ii = −

∑
j �=i

kT ξ
1/2
i j,N nx

i j, (F34)

J ��
N,ii = 0, (F35)

J ��
T,ii =

∑
j �=i

kT ξ
1/2
i j,N . (F36)

Note that the terms proportional to ξi j,T in JT include the
history-dependent tangential displacements, which are ig-
nored in the effective potential [52–54].

APPENDIX G: THE DETAILED DERIVATION OF G
IN THE JACOBIAN ANALYSIS

In this Appendix we derive Eq. (38), which gives the
rigidity. First, nonaffine displacements are expanded in terms
of eigenfunctions of the Jacobian. Next, we express the
rigidity as the eigenvalues and eigenfunctions of the Jaco-
bian. Note that we adopt the abbreviation dA(qFB(0))/dγ :=
dA(q(γ ))/dγ |q(γ )=qFB(0) in this Appendix.

1. Expansion for nonaffine displacements via the eigenfunction
of the Jacobian

At the FB state, F̃α
i /dγ is expressed as
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dF̃α
i

dγ
= lim

	γ→0

F̃α
i (qFB(	γ )) − F̃α

i (qFB(0))
	γ

=
∑
j �=i

⎡
⎣∂ f α

i j

∂qx
i

yi j (qFB(0)) +
∑
ζ=x,y

∂ f α
i j

∂rζ
i

d r̊ζ
i j (q

FB(0))

dγ
+ ∂ f α

i j

∂�i

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)⎤⎦. (G1)

Using the Jacobian, we rewrite Eq. (G1) as

dF̃α
i

dγ
= −

∑
j �=i

⎡
⎣J αx

ji yi j (qFB(0)) +
∑
ζ=x,y

J αζ
ji

d r̊ζ
i j (q

FB(0))

dγ
+ J α�

ji

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)⎤⎦, (G2)

where the first and second terms on the RHS represent the contributions from the affine and nonaffine displacements, respectively.
Since the affine displacements are applied to our system instantaneously as a step strain, the integral interval of tangential
displacements during the affine deformation is zero. Thus, only the normal contributions in the first term on the RHS of Eq. (G2)
survive in the affine displacements. Then, we rewrite J αβ

i j as J αβ
N,i j in Eq. (G2):

dF̃α
i

dγ
= −

∑
j �=i

⎡
⎣J αx

N, jiyi j (qFB(0)) +
∑
ζ=x,y

J αζ
ji

d r̊ζ
i j (q

FB(0))

dγ
+ J α�

ji

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)⎤⎦. (G3)

Introducing

|�i〉 :=

⎡
⎢⎢⎣

∑
j �=i J xx

N, jiyi j∑
j �=i J

xy
N, jiyi j∑

j �=i J x�
N, jiyi j

⎤
⎥⎥⎦ (G4)

and with the aid of dF̃α
i /dγ = 0 at the FB state in Eq. (G3), we obtain

�α
i = −

∑
j �=i

⎡
⎣∑

ζ=x,y

J αζ
ji

d r̊ζ
i j

dγ
+ J α�

ji

(
d �̊i

dγ
+ d �̊ j

dγ

)⎤⎦. (G5)

Since J satisfies J κβ
ii = −∑

j �=i J
κβ
ji , we obtain

�κ
i = −

∑
ζ=x,y

⎡
⎣
⎛
⎝∑

j �=i

J κζ
ji

⎞
⎠dr̊ζ

i

dγ
−
∑
j �=i

J κζ
ji

d r̊ζ
j

dγ

⎤
⎦−

⎡
⎣
⎛
⎝∑

j �=i

J κ�
ji

⎞
⎠d �̊i

dγ
+
∑
j �=i

J κ�
ji

d �̊ j

dγ

⎤
⎦

= −
∑
ζ=x,y

⎡
⎣−J κζ

ii

d r̊ζ
i

dγ
−
∑
j �=i

J κζ
ji

d r̊ζ
j

dγ

⎤
⎦−

⎡
⎣−J κ�

ii

d �̊i

dγ
+
∑
j �=i

J κ�
ji

d �̊ j

dγ

⎤
⎦

=
∑
ζ=x,y

N∑
j=1

J κζ
ji

d r̊ζ
j

dγ
+ J κ�

ii

d �̊i

dγ
−
∑
j �=i

J κ�
ji

d �̊ j

dγ
. (G6)

Since J satisfies J �β
ii = ∑

j �=i J
�β
ji , we obtain

��
i = −

∑
ζ=x,y

⎡
⎣
⎛
⎝∑

j �=i

J �ζ
ji

⎞
⎠dr̊ζ

i

dγ
−
∑
j �=i

J �ζ
ji

d r̊ζ
j

dγ

⎤
⎦−

⎡
⎣
⎛
⎝∑

j �=i

J ��
ji

⎞
⎠d �̊i

dγ
+
∑
j �=i

J ��
ji

d �̊ j

dγ

⎤
⎦

= −
∑
ζ=x,y

⎡
⎣J �ζ

ii

d r̊ζ
i

dγ
−
∑
j �=i

J �ζ
ji

d r̊ζ
j

dγ

⎤
⎦+

⎡
⎣J ��

ii

d �̊i

dγ
+
∑
j �=i

J ��
ji

d �̊ j

dγ

⎤
⎦

= −
∑
ζ=x,y

⎡
⎣J �ζ

ii

d r̊ζ
i

dγ
−
∑
j �=i

J �ζ
ji

d r̊ζ
j

dγ

⎤
⎦+

N∑
j=1

J ��
ji

d �̊ j

dγ
. (G7)
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Let us introduce J̃ αβ
ii as

J̃ αβ
ii :=

⎧⎪⎨
⎪⎩

−J �x
ii (α = �, β = x),

−J �y
ii (α = �, β = y),

J αβ
ii (otherwise),

(G8)

and

J̃ αβ
i j := J αβ

i j . (G9)

Here, J̃i j satisfies

J̃ αβ
ji =

⎧⎪⎪⎨
⎪⎪⎩

−J x�
i j (α = x, β = �),

−J y�
i j (α = y, β = �),

J αβ
i j (otherwise).

(G10)

With the aid of J̃ , Eqs. (G6) and (G7) are rewritten as

�α
i =

∑
ζ=x,y

N∑
j=1

J̃ αζ
i j

d r̊ζ
j

dγ
+ J̃ α�

ii

d �̊i

dγ
+
∑
j �=i

J̃ α�
i j

d �̊ j

dγ

=
∑
ζ=x,y

N∑
j=1

J̃ αζ
i j

d r̊ζ
j

dγ
+

N∑
j=1

J̃ α�
i j

d �̊ j

dγ

=
∑

β=x,y,�

N∑
j=1

J̃ αβ
i j

dq̊β
j

dγ
, (G11)

��
i =

∑
ζ=x,y

⎡
⎣J �ζ

ii

d r̊ζ
i

dγ
+
∑
j �=i

J �ζ
i j

d r̊ζ
j

dγ

⎤
⎦+

N∑
j=1

J ��
ji

d �̊ j

dγ

=
∑
ζ=x,y

N∑
j=1

J �ζ
i j

d r̊ζ
j

dγ
+

N∑
j=1

J ��
ji

d �̊ j

dγ

=
∑

β=x,y,�

N∑
j=1

J �β
i j

dq̊β
j

dγ
. (G12)

Equations (G11) and (G12) can be rewritten as

�α
i =

N∑
j=1

∑
β=x,y,�

J̃ αβ
i j

dq̊β
j

dγ
. (G13)

Furthermore, Eq. (G13) can be expressed as

|�〉 = J̃
∣∣∣∣ dq̊

dγ

〉
, (G14)

which corresponds to Eq. (34) in the main text, where
|dq̊/dγ 〉 is introduced in Eq. (33).

Let us expand |dq̊/dγ 〉 by the right eigenfunction |R̃n〉 of
J̃ as ∣∣∣∣ dq̊

dγ

〉
= an |R̃n〉 . (G15)

Substituting Eq. (G15) into Eq. (G14), we obtain

|�〉 = λ̃nan |R̃n〉 . (G16)

Multiplying 〈L̃m| by Eq. (G16) with the aid of the orthonormal
relation, we obtain

〈L̃m | �〉 = λ̃nan〈L̃m | R̃n〉
= λ̃mam. (G17)

Substituting this into Eq. (G15), we obtain Eq. (38).

2. The expression of G

Let us evaluate the rigidity G defined as Eq. (17). Substi-
tuting Eqs. (14) and (15) into Eq. (17), we obtain

G = −
〈

lim
	γ→0

1

2	γ L2

∑
i, j(i �= j)

[
f x
i j (q

FB(	γ ))ry
i j (q

FB(	γ )) − f x
i j (q

FB(0))ry
i j (q

FB(0))
]〉

, (G18)

where we have adopted the symmetric expression for i and j in the summation in Eq. (G18).
Expanding rα

i j (q
FB(	γ )) in Eq. (G18) by 	γ from the zero strain state, we obtain

rα
i j (q

FB(	γ )) = rα
i (qFB(	γ )) − rα

j (qFB(	γ ))

� rα
i j (q

FB(0)) + 	γ

{
δαx
(
yi(qFB(0)) − y j (qFB(0))

)+ dr̊α
i (qFB(0))

dγ
− dr̊α

j (qFB(0))

dγ

}

= rα
i j (q

FB(0)) + 	γ

{
δαxyi j (qFB(0)) + dr̊α

i j (q
FB(0))

dγ

}
. (G19)

Similarly, expanding f α
i j (	γ ) in Eq. (G18) from the zero strain state, we obtain

f α
i j (q

FB(	γ )) � f α
i j (q

FB(0)) +
N∑

k=1

∑
ζ=x,y

	γ
∂ f α

i j

∂rζ

k

drζ

k

dγ
+

N∑
k=1

	γ
∂ f α

i j

∂�k

d�k

dγ

= f α
i j (q

FB(0)) +
∑
ζ=x,y

	γ

[
∂ f α

i j

∂rζ
i

(
δζxyi(qFB(0)) + dr̊ζ

i (qFB(0))
dγ

)
+ ∂ f α

i j

∂rζ
j

(
δζxy j (qFB(0)) + dr̊ζ

j (qFB(0))

dγ

)]
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+ 	γ

[
∂ f α

i j

∂�i

(
δ�xyi(qFB(0)) + d �̊i(qFB(0))

dγ

)
+ ∂ f α

i j

∂� j

(
δ�xy j (qFB(0)) + d �̊ j (qFB(0))

dγ

)]
. (G20)

Furthermore, using ∂ f α
i j/∂rζ

j = −∂ f α
i j/∂rζ

i and ∂ f α
i j/∂� j = ∂ f α

i j/∂�i, f α
i j can be written as

f α
i j (q

FB(	γ )) = f α
i j (q

FB(0)) +
∑
ζ=x,y

	γ
∂ f α

i j

∂rζ
i

(
δζxyi j (qFB(0)) + dr̊ζ

i j (q
FB(0))

dγ

)

+ 	γ
∂ f α

i j

∂�i

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)
. (G21)

Substituting Eqs. (G19) and (G21) into Eq. (G18), we obtain

G = − 1

2L2

〈 ∑
i, j(i �= j)

[
f x
i j (q

FB(0))
dq̊y

i j (q
FB(0))

dγ
+
∑
ζ=x,y

∂ f x
i j (q

FB(0))

∂rζ
i

ry
i j (q

FB(0))

(
δζxyi j (qFB(0)) + dr̊ζ

i j (q
FB(0))

dγ

)

+ ∂ f x
i j (q

FB(0))

∂�i
ry

i j (q
FB(0))

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)]〉
. (G22)

Because
∑

i(i �= j) f α
i j (q

FB(0)) = 0 at the FB state, the first term on the RHS of Eq. (G22) can be written as

∑
i, j(i �= j)

f x
i j (q

FB(0))
dq̊y

i j (q
FB(0))

dγ
=

∑
i, j(i �= j)

f x
i j (q

FB(0))

(
dq̊y

i (qFB(0))
dγ

− dq̊y
j (q

FB(0))

dγ

)

=
∑

j

⎛
⎝∑

j( j �=i)

f x
i j (q

FB(0))

⎞
⎠dq̊y

i (qFB(0))
dγ

−
∑

i

⎛
⎝∑

i(i �= j)

f x
i j (q

FB(0))

⎞
⎠dq̊y

j (q
FB(0))

dγ
= 0.

(G23)

Thus, G is expressed as

G = − 1

2L2

〈 ∑
i, j(i �= j)

⎡
⎣∑

ζ=x,y

∂ f x
i j (q

FB(0))

∂rζ
i

yi j (qFB(0))

(
δζxyi j (qFB(0)) + dr̊ζ

i j (q
FB(0))

dγ

)

+ ∂ f x
i j (q

FB(0))

∂�i
yi j (qFB(0))

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)]〉
. (G24)

With the aid of J αβ
i j := −∂qβ

j
f α
i j (i �= j), we can express G as

G = 1

2L2

〈 ∑
i, j(i �= j)

⎡
⎣∑

ζ=x,y

yi j (qFB(0))J xζ
ji (qFB(0))

(
δζxyi j (qFB(0)) + dr̊ζ

i j (q
FB(0))

dγ

)

+ yi j (qFB(0))J x�
ji (qFB(0))

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)]〉

= 1

2L2

〈 ∑
i, j(i �= j)

⎡
⎣y2

i j (q
FB(0))J xx

ji (qFB(0)) +
∑
ζ=x,y

yi j (qFB(0))J xζ
ji (qFB(0))

dr̊ζ
i j (q

FB(0))

dγ

+ yi j (qFB(0))J x�
ji (qFB(0))

(
d �̊i(qFB(0))

dγ
+ d �̊ j (qFB(0))

dγ

)]〉
. (G25)

Thus, with Eqs (36) and (37), we obtain Eqs. (39)–(41).
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FIG. 15. Double logarithmic plots of D(ω) against ωt0 for vari-
ous N at kT /kN = 1.0 × 10−8, φ = 0.90.

APPENDIX H: DOS IN TERMS
OF THE EFFECTIVE HESSIAN

In this Appendix, we introduce the DOS with the aid of the
effective Hessian as in Refs. [52–54]. The effective Hessian
H at the FB state is defined as

Hαβ
i j := ∂2Ueff

∂qα
i ∂qβ

j

∣∣∣∣∣
q(γ )=qFB(0)

, (H1)

where Ueff is the effective potential defined as

Ueff := 1

2

∑
〈i j〉

[
kN (δri j · ni j )

2 − | f N,i j |
rFB

i j

(δri j · t i j )
2 + kT δt2

i j

]

(H2)

with δri j := δri − δr j, δri := ri − rFB
i , rFB

i j := |rFB
i −

rFB
j |, δti j := δri j · t i j − (δ�i + δ� j ), and δ�i := �i − �FB

i .
Here, rFB

i and �FB
i are the position of the ith particle and the

third component of qi at the FB state, respectively. Thus,
H is a 3N × 3N matrix corresponding to the Jacobian. We
note that this Hessian matrix is a real symmetric matrix, and
thus it can be diagonalized by an orthogonal matrix, where
the eigenvectors are orthogonal with each other, and the
corresponding eigenvalues are real numbers.

The eigenvalue equation of H is expressed as

H |n〉 = λH,n |n〉 , (H3)

FIG. 16. Double logarithmic plots of D(ω) against ωt0 for vari-
ous φ at kT /kN = 1.0 × 10−8 and N = 4096.

where λH,n and |n〉 are the nth eigenvalue and eigenvector
of H, respectively. Note that the left eigenvalue is also given
by 〈n|H = λH,n〈n|, where 〈n| = |n〉T . Then, we introduce the
DOS DH in terms of H as

DH (ω) := 1

3N

′∑
n

〈δ(ω − ωH,n)〉, (H4)

where ωH,n := √
λH,n.

APPENDIX I: SYSTEM SIZE DEPENDENCE FOR THE DOS

The system size dependence of the DOS is investigated
in this Appendix. From Fig. 15 we have confirmed that both
the rotational and translational bands show little dependence
on system size. This means that the rotational band is not a
virtual band that can only be observed in a small system, but
an intrinsic band that can be observed in the thermodynamic
limit. Thus, we expect that our observed results will remain
unchanged even if we are interested in larger systems.

APPENDIX J: DENSITY DEPENDENCE
FOR DOS

In this Appendix, we investigate the density dependence
for the DOS. As shown in Fig. 16 for kT /kN = 10−8, the DOS
depends on φ, where the rotational band shifts to a lower
frequency region, and the plateau of the translational band
becomes longer as the density approaches the jamming point.
The latter result is well known from previous studies such as
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